Изменить 'wbld/orbits.html'
This commit is contained in:
204
wbld/orbits.html
204
wbld/orbits.html
@@ -46,6 +46,7 @@
|
||||
<option value="10">x10</option>
|
||||
<option value="100">x100</option>
|
||||
<option value="1000">x1000</option>
|
||||
<option value="1000">x1000</option>
|
||||
<option value="10000">x10000</option>
|
||||
<option value="100000">x100000</option>
|
||||
<option value="1000000">x1000000</option>
|
||||
@@ -65,7 +66,7 @@
|
||||
return `Year ${year} - ${seasons[seasonIndex]} ${dayOfSeason}`;
|
||||
}
|
||||
|
||||
// Phaser configuration (responsive)
|
||||
// Phaser configuration
|
||||
const config = {
|
||||
type: Phaser.AUTO,
|
||||
width: window.innerWidth,
|
||||
@@ -85,48 +86,49 @@
|
||||
|
||||
let globalGraphics;
|
||||
let dateText;
|
||||
let simulationTime = 0; // in days (simulation time)
|
||||
let simulationSpeed = 5; // speed multiplier
|
||||
let isPlaying = false; // Start paused
|
||||
let isRewinding = false; // Control forward/backward
|
||||
let simulationTime = 0;
|
||||
let simulationSpeed = 5;
|
||||
let isPlaying = false;
|
||||
let isRewinding = false;
|
||||
|
||||
|
||||
// Orbital periods (in days)
|
||||
const planetPeriod = 396; // Senthara's orbital year
|
||||
const planetRotationPeriod = 1; // Planet rotates fully in 1 day
|
||||
// Orbital parameters (in days and relative units)
|
||||
const planetPeriod = 396;
|
||||
const planetRotationPeriod = 1;
|
||||
const kerielPeriod = 27;
|
||||
const arkaenPeriod = 82;
|
||||
const minianPeriod = 98;
|
||||
|
||||
// Orbital radii (computed relative to window size)
|
||||
// Orbital radii and eccentricities
|
||||
let planetOrbitRadius, kerielOrbitRadius, arkaenOrbitRadius, minianOrbitRadius;
|
||||
const planetEccentricity = 0.2; // Example eccentricity for Senthara
|
||||
const kerielEccentricity = 0.1;
|
||||
const arkaenEccentricity = 0.15;
|
||||
const minianEccentricity = 0.05;
|
||||
|
||||
// Containers for the planet and the moons
|
||||
// Angle offsets
|
||||
let planetAngleOffset;
|
||||
let kerielAngleOffset;
|
||||
let arkaenAngleOffset;
|
||||
let minianAngleOffset;
|
||||
|
||||
// Containers
|
||||
let planetContainer;
|
||||
let kerielContainer, arkaenContainer, minianContainer;
|
||||
|
||||
function preload() {
|
||||
// No external assets are needed.
|
||||
}
|
||||
|
||||
function create() {
|
||||
globalGraphics = this.add.graphics();
|
||||
|
||||
dateText = this.add.text(10, game.scale.height - 30, "", {
|
||||
font: "20px Arial",
|
||||
fill: "#ffffff"
|
||||
});
|
||||
dateText = this.add.text(10, game.scale.height - 30, "", { font: "20px Arial", fill: "#ffffff" });
|
||||
|
||||
recalcOrbitRadii();
|
||||
setRandomAngleOffsets();
|
||||
|
||||
// Create a container for Senthara (the planet)
|
||||
planetContainer = this.add.container(0, 0);
|
||||
|
||||
// Draw the planet body (green circle) with a marker for rotation.
|
||||
let planetBody = this.add.graphics();
|
||||
planetBody.fillStyle(0x00FF00, 1);
|
||||
planetBody.fillCircle(0, 0, 12);
|
||||
// Marker line (points to the right)
|
||||
planetBody.lineStyle(2, 0x000000, 1);
|
||||
planetBody.beginPath();
|
||||
planetBody.moveTo(0, 0);
|
||||
@@ -134,29 +136,22 @@
|
||||
planetBody.strokePath();
|
||||
planetContainer.add(planetBody);
|
||||
|
||||
// Create a night overlay (semi-transparent dark half-circle)
|
||||
let nightOverlay = this.add.graphics();
|
||||
nightOverlay.fillStyle(0x000000, 0.5);
|
||||
// Draw a half-circle (180° arc) with radius 12
|
||||
nightOverlay.slice(0, 0, 12, 0, Math.PI, false);
|
||||
nightOverlay.fillPath();
|
||||
// Save as a property for updating its rotation later.
|
||||
planetContainer.nightOverlay = nightOverlay;
|
||||
planetContainer.add(nightOverlay);
|
||||
|
||||
// Create containers for each moon.
|
||||
kerielContainer = createMoonContainer(this, 6, 0xFF0000); // Keriel: red
|
||||
arkaenContainer = createMoonContainer(this, 5, 0x0000FF); // Arkaen: blue
|
||||
minianContainer = createMoonContainer(this, 5, 0xFFFFFF); // Minian: white
|
||||
kerielContainer = createMoonContainer(this, 6, 0xFF0000);
|
||||
arkaenContainer = createMoonContainer(this, 5, 0x0000FF);
|
||||
minianContainer = createMoonContainer(this, 5, 0xFFFFFF);
|
||||
|
||||
// Listen for window resize events.
|
||||
this.scale.on('resize', (gameSize) => {
|
||||
recalcOrbitRadii();
|
||||
dateText.setPosition(10, gameSize.height - 30);
|
||||
});
|
||||
|
||||
|
||||
// --- UI Control Event Handlers ---
|
||||
const playPauseButton = document.getElementById("playPauseButton");
|
||||
const rewindButton = document.getElementById("rewindButton");
|
||||
const speedSelect = document.getElementById("speedSelect");
|
||||
@@ -164,29 +159,25 @@
|
||||
playPauseButton.addEventListener("click", () => {
|
||||
isPlaying = !isPlaying;
|
||||
playPauseButton.textContent = isPlaying ? "Pause" : "Play";
|
||||
if (isPlaying) isRewinding = false; // Stop rewinding when playing
|
||||
if (isPlaying) isRewinding = false;
|
||||
});
|
||||
|
||||
|
||||
rewindButton.addEventListener("click", () => {
|
||||
isRewinding = !isRewinding;
|
||||
rewindButton.textContent = isRewinding ? "Forward" : "Rewind";
|
||||
if(isRewinding) isPlaying = false; // Pause when rewinding
|
||||
playPauseButton.textContent = "Play"; // Reset play/pause button
|
||||
if (isRewinding) isPlaying = false;
|
||||
playPauseButton.textContent = "Play";
|
||||
});
|
||||
|
||||
speedSelect.addEventListener("change", () => {
|
||||
simulationSpeed = parseFloat(speedSelect.value);
|
||||
});
|
||||
}
|
||||
|
||||
// Helper function to create a moon container with a circular body and a marker.
|
||||
function createMoonContainer(scene, radius, color) {
|
||||
let moonContainer = scene.add.container(0, 0);
|
||||
let moonBody = scene.add.graphics();
|
||||
moonBody.fillStyle(color, 1);
|
||||
moonBody.fillCircle(0, 0, radius);
|
||||
// Marker line indicating the "front" of the moon.
|
||||
moonBody.lineStyle(2, 0x000000, 1);
|
||||
moonBody.beginPath();
|
||||
moonBody.moveTo(0, 0);
|
||||
@@ -199,87 +190,122 @@
|
||||
// Recalculate orbital radii based on the current window size.
|
||||
function recalcOrbitRadii() {
|
||||
const minDim = Math.min(window.innerWidth, window.innerHeight);
|
||||
planetOrbitRadius = minDim * 0.3; // 30% of the smaller dimension
|
||||
planetOrbitRadius = minDim * 0.3;
|
||||
kerielOrbitRadius = planetOrbitRadius * 0.25;
|
||||
arkaenOrbitRadius = planetOrbitRadius * 0.35;
|
||||
minianOrbitRadius = planetOrbitRadius * 0.45;
|
||||
}
|
||||
// Sets random angle offsets.
|
||||
function setRandomAngleOffsets() {
|
||||
planetAngleOffset = Phaser.Math.RND.between(0, 360);
|
||||
kerielAngleOffset = Phaser.Math.RND.between(0, 360);
|
||||
arkaenAngleOffset = Phaser.Math.RND.between(0, 360);
|
||||
minianAngleOffset = Phaser.Math.RND.between(0, 360);
|
||||
}
|
||||
|
||||
// Calculates position on an ellipse.
|
||||
function calculateEllipsePosition(centerX, centerY, semiMajorAxis, eccentricity, period, time, angleOffset) {
|
||||
const meanAnomaly = (2 * Math.PI * (time % period)) / period;
|
||||
// Approximate eccentric anomaly using Newton-Raphson method
|
||||
let eccentricAnomaly = approximateEccentricAnomaly(meanAnomaly, eccentricity);
|
||||
|
||||
// Calculate the true anomaly
|
||||
const trueAnomaly = 2 * Math.atan2(
|
||||
Math.sqrt(1 + eccentricity) * Math.sin(eccentricAnomaly / 2),
|
||||
Math.sqrt(1 - eccentricity) * Math.cos(eccentricAnomaly / 2)
|
||||
);
|
||||
|
||||
// Calculate distance from the center
|
||||
const distance = semiMajorAxis * (1 - eccentricity * Math.cos(eccentricAnomaly));
|
||||
|
||||
// Calculate x and y coordinates, with angle offset
|
||||
const x = centerX + distance * Math.cos(trueAnomaly + Phaser.Math.DegToRad(angleOffset));
|
||||
const y = centerY + distance * Math.sin(trueAnomaly + Phaser.Math.DegToRad(angleOffset));
|
||||
|
||||
return { x, y };
|
||||
}
|
||||
// Approximates the eccentric anomaly using the Newton-Raphson method.
|
||||
function approximateEccentricAnomaly(meanAnomaly, eccentricity) {
|
||||
let E = meanAnomaly; // Initial guess
|
||||
let delta = 1;
|
||||
|
||||
// Iterate until the change is small enough (e.g., less than 0.0001)
|
||||
while (delta > 0.0001) {
|
||||
let nextE = E - (E - eccentricity * Math.sin(E) - meanAnomaly) / (1 - eccentricity * Math.cos(E));
|
||||
delta = Math.abs(nextE - E);
|
||||
E = nextE;
|
||||
}
|
||||
return E;
|
||||
}
|
||||
|
||||
function update(time, delta) {
|
||||
// Advance or rewind simulation time based on state.
|
||||
if (isPlaying) {
|
||||
simulationTime += (delta * simulationSpeed) / 1000;
|
||||
} else if (isRewinding) {
|
||||
simulationTime -= (delta * simulationSpeed) / 1000;
|
||||
}
|
||||
|
||||
|
||||
// Get center of the screen (position of the star).
|
||||
const centerX = game.scale.width / 2;
|
||||
const centerY = game.scale.height / 2;
|
||||
|
||||
// Clear global graphics.
|
||||
globalGraphics.clear();
|
||||
|
||||
// Draw the central star.
|
||||
globalGraphics.fillStyle(0xFFFF00, 1);
|
||||
globalGraphics.fillCircle(centerX, centerY, 20);
|
||||
|
||||
// Draw Senthara's orbital path (around the star).
|
||||
globalGraphics.lineStyle(1, 0x555555, 1);
|
||||
globalGraphics.strokeCircle(centerX, centerY, planetOrbitRadius);
|
||||
// Calculate and draw Senthara's elliptical orbit
|
||||
const planetPos = calculateEllipsePosition(centerX, centerY, planetOrbitRadius, planetEccentricity, planetPeriod, simulationTime, planetAngleOffset);
|
||||
planetContainer.x = planetPos.x;
|
||||
planetContainer.y = planetPos.y;
|
||||
|
||||
// Calculate Senthara's (the planet's) position along its orbit.
|
||||
const planetOrbitAngle = Phaser.Math.DegToRad((360 * (simulationTime % planetPeriod)) / planetPeriod - 90);
|
||||
const planetX = centerX + planetOrbitRadius * Math.cos(planetOrbitAngle);
|
||||
const planetY = centerY + planetOrbitRadius * Math.sin(planetOrbitAngle);
|
||||
|
||||
// Update the planet container's position.
|
||||
planetContainer.x = planetX;
|
||||
planetContainer.y = planetY;
|
||||
// Set the planet's self-rotation (day/night cycle) with a 1-day period.
|
||||
const planetRotationAngle = Phaser.Math.DegToRad((360 * (simulationTime % planetRotationPeriod)) / planetRotationPeriod);
|
||||
planetContainer.rotation = planetRotationAngle;
|
||||
|
||||
// Update the night overlay so that the dark half covers the side away from the star.
|
||||
const subsolarAngle = Phaser.Math.Angle.Between(planetX, planetY, centerX, centerY);
|
||||
// The night overlay's rotation is adjusted relative to the planet's rotation.
|
||||
const subsolarAngle = Phaser.Math.Angle.Between(planetPos.x, planetPos.y, centerX, centerY);
|
||||
planetContainer.nightOverlay.rotation = subsolarAngle + Math.PI / 2 - planetContainer.rotation;
|
||||
|
||||
// Calculate and update moon positions (relative to Senthara).
|
||||
// Keriel:
|
||||
const kerielOrbitAngle = Phaser.Math.DegToRad((360 * (simulationTime % kerielPeriod)) / kerielPeriod - 90);
|
||||
const kerielX = planetX + kerielOrbitRadius * Math.cos(kerielOrbitAngle);
|
||||
const kerielY = planetY + kerielOrbitRadius * Math.sin(kerielOrbitAngle);
|
||||
kerielContainer.x = kerielX;
|
||||
kerielContainer.y = kerielY;
|
||||
// Ensure tidal locking: set Keriel's rotation so its marker points toward Senthara.
|
||||
kerielContainer.rotation = Phaser.Math.Angle.Between(kerielX, kerielY, planetX, planetY);
|
||||
// Calculate and update moon positions (relative to Senthara, using elliptical orbits)
|
||||
const kerielPos = calculateEllipsePosition(planetPos.x, planetPos.y, kerielOrbitRadius, kerielEccentricity, kerielPeriod, simulationTime, kerielAngleOffset);
|
||||
kerielContainer.x = kerielPos.x;
|
||||
kerielContainer.y = kerielPos.y;
|
||||
kerielContainer.rotation = Phaser.Math.Angle.Between(kerielPos.x, kerielPos.y, planetPos.x, planetPos.y);
|
||||
|
||||
// Arkaen:
|
||||
const arkaenOrbitAngle = Phaser.Math.DegToRad((360 * (simulationTime % arkaenPeriod)) / arkaenPeriod - 90);
|
||||
const arkaenX = planetX + arkaenOrbitRadius * Math.cos(arkaenOrbitAngle);
|
||||
const arkaenY = planetY + arkaenOrbitRadius * Math.sin(arkaenOrbitAngle);
|
||||
arkaenContainer.x = arkaenX;
|
||||
arkaenContainer.y = arkaenY;
|
||||
arkaenContainer.rotation = Phaser.Math.Angle.Between(arkaenX, arkaenY, planetX, planetY);
|
||||
const arkaenPos = calculateEllipsePosition(planetPos.x, planetPos.y, arkaenOrbitRadius, arkaenEccentricity, arkaenPeriod, simulationTime, arkaenAngleOffset);
|
||||
arkaenContainer.x = arkaenPos.x;
|
||||
arkaenContainer.y = arkaenPos.y;
|
||||
arkaenContainer.rotation = Phaser.Math.Angle.Between(arkaenPos.x, arkaenPos.y, planetPos.x, planetPos.y);
|
||||
|
||||
// Minian:
|
||||
const minianOrbitAngle = Phaser.Math.DegToRad((360 * (simulationTime % minianPeriod)) / minianPeriod - 90);
|
||||
const minianX = planetX + minianOrbitRadius * Math.cos(minianOrbitAngle);
|
||||
const minianY = planetY + minianOrbitRadius * Math.sin(minianOrbitAngle);
|
||||
minianContainer.x = minianX;
|
||||
minianContainer.y = minianY;
|
||||
minianContainer.rotation = Phaser.Math.Angle.Between(minianX, minianY, planetX, planetY);
|
||||
const minianPos = calculateEllipsePosition(planetPos.x, planetPos.y, minianOrbitRadius, minianEccentricity, minianPeriod, simulationTime, minianAngleOffset);
|
||||
minianContainer.x = minianPos.x;
|
||||
minianContainer.y = minianPos.y;
|
||||
minianContainer.rotation = Phaser.Math.Angle.Between(minianPos.x, minianPos.y, planetPos.x, planetPos.y);
|
||||
|
||||
// Optionally, redraw the moons' orbital paths (around Senthara).
|
||||
globalGraphics.lineStyle(1, 0x888888, 1);
|
||||
globalGraphics.strokeCircle(planetX, planetY, kerielOrbitRadius);
|
||||
globalGraphics.strokeCircle(planetX, planetY, arkaenOrbitRadius);
|
||||
globalGraphics.strokeCircle(planetX, planetY, minianOrbitRadius);
|
||||
// Draw elliptical orbits (optional, for visualization)
|
||||
drawEllipticalOrbit(globalGraphics, centerX, centerY, planetOrbitRadius, planetEccentricity, planetAngleOffset);
|
||||
drawEllipticalOrbit(globalGraphics, planetPos.x, planetPos.y, kerielOrbitRadius, kerielEccentricity, kerielAngleOffset);
|
||||
drawEllipticalOrbit(globalGraphics, planetPos.x, planetPos.y, arkaenOrbitRadius, arkaenEccentricity, arkaenAngleOffset);
|
||||
drawEllipticalOrbit(globalGraphics, planetPos.x, planetPos.y, minianOrbitRadius, minianEccentricity, minianAngleOffset);
|
||||
|
||||
// Update the Senthara calendar date text.
|
||||
dateText.setText(getSentharaDate(simulationTime));
|
||||
}
|
||||
// Helper function to draw an elliptical orbit using Phaser graphics.
|
||||
function drawEllipticalOrbit(graphics, centerX, centerY, semiMajorAxis, eccentricity, angleOffset) {
|
||||
const points = [];
|
||||
const steps = 100; // Number of points to create a smooth curve
|
||||
for (let i = 0; i <= steps; i++) {
|
||||
const meanAnomaly = (2 * Math.PI * i) / steps;
|
||||
const eccentricAnomaly = approximateEccentricAnomaly(meanAnomaly, eccentricity);
|
||||
const trueAnomaly = 2 * Math.atan2(
|
||||
Math.sqrt(1 + eccentricity) * Math.sin(eccentricAnomaly / 2),
|
||||
Math.sqrt(1 - eccentricity) * Math.cos(eccentricAnomaly / 2)
|
||||
);
|
||||
const distance = semiMajorAxis * (1 - eccentricity * Math.cos(eccentricAnomaly));
|
||||
const x = centerX + distance * Math.cos(trueAnomaly + Phaser.Math.DegToRad(angleOffset));
|
||||
const y = centerY + distance * Math.sin(trueAnomaly + Phaser.Math.DegToRad(angleOffset));
|
||||
points.push(new Phaser.Math.Vector2(x, y));
|
||||
}
|
||||
|
||||
graphics.lineStyle(1, 0x888888, 1); // Set orbit line style
|
||||
graphics.strokePoints(points, true); // Draw the ellipse
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
|
||||
Reference in New Issue
Block a user