From 10922ab0351a4f73a12fd38df95a7788bf924798 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=D0=93=D0=BB=D0=B0=D0=B2=D1=80=D0=B5=D0=B4=20=7C=20Glavred?= Date: Thu, 20 Aug 2020 15:14:05 +0300 Subject: [PATCH] =?UTF-8?q?=D0=98=D0=B7=D0=BC=D0=B5=D0=BD=D0=B5=D0=BD?= =?UTF-8?q?=D0=B8=D1=8F=20=D0=BE=D1=82=20=D0=93=D0=BB=D0=B0=D0=B2=D1=80?= =?UTF-8?q?=D0=B5=D0=B4=D0=B0=20=D0=93=D0=B8=D1=82=D0=96=D0=A1=20|=20Chang?= =?UTF-8?q?es=20of=20GitJS=20Glavred?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 0000 | 1 + three.js | 54655 ++++++++++++++++++++++++++++++++++++++++++++++ пуск|run.js | 3 +- 3 files changed, 54658 insertions(+), 1 deletion(-) create mode 100644 three.js diff --git a/0000 b/0000 index 5ce9a46..2cbf648 100644 --- a/0000 +++ b/0000 @@ -2,6 +2,7 @@ three.js r119 https://git.opengamestudio.org/mahjong/threejs +/three.js /three.min.js x /пуск|run.js /пуск|run.череда \ No newline at end of file diff --git a/three.js b/three.js new file mode 100644 index 0000000..b20aad7 --- /dev/null +++ b/three.js @@ -0,0 +1,54655 @@ +(function (global, factory) { + typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : + typeof define === 'function' && define.amd ? define(['exports'], factory) : + (global = global || self, factory(global.THREE = {})); +}(this, (function (exports) { 'use strict'; + + // Polyfills + + if ( Number.EPSILON === undefined ) { + + Number.EPSILON = Math.pow( 2, - 52 ); + + } + + if ( Number.isInteger === undefined ) { + + // Missing in IE + // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger + + Number.isInteger = function ( value ) { + + return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value; + + }; + + } + + // + + if ( Math.sign === undefined ) { + + // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign + + Math.sign = function ( x ) { + + return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x; + + }; + + } + + if ( 'name' in Function.prototype === false ) { + + // Missing in IE + // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name + + Object.defineProperty( Function.prototype, 'name', { + + get: function () { + + return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ]; + + } + + } ); + + } + + if ( Object.assign === undefined ) { + + // Missing in IE + // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign + + Object.assign = function ( target ) { + + if ( target === undefined || target === null ) { + + throw new TypeError( 'Cannot convert undefined or null to object' ); + + } + + var output = Object( target ); + + for ( var index = 1; index < arguments.length; index ++ ) { + + var source = arguments[ index ]; + + if ( source !== undefined && source !== null ) { + + for ( var nextKey in source ) { + + if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) { + + output[ nextKey ] = source[ nextKey ]; + + } + + } + + } + + } + + return output; + + }; + + } + + var REVISION = '119'; + var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; + var TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; + var CullFaceNone = 0; + var CullFaceBack = 1; + var CullFaceFront = 2; + var CullFaceFrontBack = 3; + var BasicShadowMap = 0; + var PCFShadowMap = 1; + var PCFSoftShadowMap = 2; + var VSMShadowMap = 3; + var FrontSide = 0; + var BackSide = 1; + var DoubleSide = 2; + var FlatShading = 1; + var SmoothShading = 2; + var NoBlending = 0; + var NormalBlending = 1; + var AdditiveBlending = 2; + var SubtractiveBlending = 3; + var MultiplyBlending = 4; + var CustomBlending = 5; + var AddEquation = 100; + var SubtractEquation = 101; + var ReverseSubtractEquation = 102; + var MinEquation = 103; + var MaxEquation = 104; + var ZeroFactor = 200; + var OneFactor = 201; + var SrcColorFactor = 202; + var OneMinusSrcColorFactor = 203; + var SrcAlphaFactor = 204; + var OneMinusSrcAlphaFactor = 205; + var DstAlphaFactor = 206; + var OneMinusDstAlphaFactor = 207; + var DstColorFactor = 208; + var OneMinusDstColorFactor = 209; + var SrcAlphaSaturateFactor = 210; + var NeverDepth = 0; + var AlwaysDepth = 1; + var LessDepth = 2; + var LessEqualDepth = 3; + var EqualDepth = 4; + var GreaterEqualDepth = 5; + var GreaterDepth = 6; + var NotEqualDepth = 7; + var MultiplyOperation = 0; + var MixOperation = 1; + var AddOperation = 2; + var NoToneMapping = 0; + var LinearToneMapping = 1; + var ReinhardToneMapping = 2; + var CineonToneMapping = 3; + var ACESFilmicToneMapping = 4; + var CustomToneMapping = 5; + + var UVMapping = 300; + var CubeReflectionMapping = 301; + var CubeRefractionMapping = 302; + var EquirectangularReflectionMapping = 303; + var EquirectangularRefractionMapping = 304; + var CubeUVReflectionMapping = 306; + var CubeUVRefractionMapping = 307; + var RepeatWrapping = 1000; + var ClampToEdgeWrapping = 1001; + var MirroredRepeatWrapping = 1002; + var NearestFilter = 1003; + var NearestMipmapNearestFilter = 1004; + var NearestMipMapNearestFilter = 1004; + var NearestMipmapLinearFilter = 1005; + var NearestMipMapLinearFilter = 1005; + var LinearFilter = 1006; + var LinearMipmapNearestFilter = 1007; + var LinearMipMapNearestFilter = 1007; + var LinearMipmapLinearFilter = 1008; + var LinearMipMapLinearFilter = 1008; + var UnsignedByteType = 1009; + var ByteType = 1010; + var ShortType = 1011; + var UnsignedShortType = 1012; + var IntType = 1013; + var UnsignedIntType = 1014; + var FloatType = 1015; + var HalfFloatType = 1016; + var UnsignedShort4444Type = 1017; + var UnsignedShort5551Type = 1018; + var UnsignedShort565Type = 1019; + var UnsignedInt248Type = 1020; + var AlphaFormat = 1021; + var RGBFormat = 1022; + var RGBAFormat = 1023; + var LuminanceFormat = 1024; + var LuminanceAlphaFormat = 1025; + var RGBEFormat = RGBAFormat; + var DepthFormat = 1026; + var DepthStencilFormat = 1027; + var RedFormat = 1028; + var RedIntegerFormat = 1029; + var RGFormat = 1030; + var RGIntegerFormat = 1031; + var RGBIntegerFormat = 1032; + var RGBAIntegerFormat = 1033; + + var RGB_S3TC_DXT1_Format = 33776; + var RGBA_S3TC_DXT1_Format = 33777; + var RGBA_S3TC_DXT3_Format = 33778; + var RGBA_S3TC_DXT5_Format = 33779; + var RGB_PVRTC_4BPPV1_Format = 35840; + var RGB_PVRTC_2BPPV1_Format = 35841; + var RGBA_PVRTC_4BPPV1_Format = 35842; + var RGBA_PVRTC_2BPPV1_Format = 35843; + var RGB_ETC1_Format = 36196; + var RGB_ETC2_Format = 37492; + var RGBA_ETC2_EAC_Format = 37496; + var RGBA_ASTC_4x4_Format = 37808; + var RGBA_ASTC_5x4_Format = 37809; + var RGBA_ASTC_5x5_Format = 37810; + var RGBA_ASTC_6x5_Format = 37811; + var RGBA_ASTC_6x6_Format = 37812; + var RGBA_ASTC_8x5_Format = 37813; + var RGBA_ASTC_8x6_Format = 37814; + var RGBA_ASTC_8x8_Format = 37815; + var RGBA_ASTC_10x5_Format = 37816; + var RGBA_ASTC_10x6_Format = 37817; + var RGBA_ASTC_10x8_Format = 37818; + var RGBA_ASTC_10x10_Format = 37819; + var RGBA_ASTC_12x10_Format = 37820; + var RGBA_ASTC_12x12_Format = 37821; + var RGBA_BPTC_Format = 36492; + var SRGB8_ALPHA8_ASTC_4x4_Format = 37840; + var SRGB8_ALPHA8_ASTC_5x4_Format = 37841; + var SRGB8_ALPHA8_ASTC_5x5_Format = 37842; + var SRGB8_ALPHA8_ASTC_6x5_Format = 37843; + var SRGB8_ALPHA8_ASTC_6x6_Format = 37844; + var SRGB8_ALPHA8_ASTC_8x5_Format = 37845; + var SRGB8_ALPHA8_ASTC_8x6_Format = 37846; + var SRGB8_ALPHA8_ASTC_8x8_Format = 37847; + var SRGB8_ALPHA8_ASTC_10x5_Format = 37848; + var SRGB8_ALPHA8_ASTC_10x6_Format = 37849; + var SRGB8_ALPHA8_ASTC_10x8_Format = 37850; + var SRGB8_ALPHA8_ASTC_10x10_Format = 37851; + var SRGB8_ALPHA8_ASTC_12x10_Format = 37852; + var SRGB8_ALPHA8_ASTC_12x12_Format = 37853; + var LoopOnce = 2200; + var LoopRepeat = 2201; + var LoopPingPong = 2202; + var InterpolateDiscrete = 2300; + var InterpolateLinear = 2301; + var InterpolateSmooth = 2302; + var ZeroCurvatureEnding = 2400; + var ZeroSlopeEnding = 2401; + var WrapAroundEnding = 2402; + var NormalAnimationBlendMode = 2500; + var AdditiveAnimationBlendMode = 2501; + var TrianglesDrawMode = 0; + var TriangleStripDrawMode = 1; + var TriangleFanDrawMode = 2; + var LinearEncoding = 3000; + var sRGBEncoding = 3001; + var GammaEncoding = 3007; + var RGBEEncoding = 3002; + var LogLuvEncoding = 3003; + var RGBM7Encoding = 3004; + var RGBM16Encoding = 3005; + var RGBDEncoding = 3006; + var BasicDepthPacking = 3200; + var RGBADepthPacking = 3201; + var TangentSpaceNormalMap = 0; + var ObjectSpaceNormalMap = 1; + + var ZeroStencilOp = 0; + var KeepStencilOp = 7680; + var ReplaceStencilOp = 7681; + var IncrementStencilOp = 7682; + var DecrementStencilOp = 7683; + var IncrementWrapStencilOp = 34055; + var DecrementWrapStencilOp = 34056; + var InvertStencilOp = 5386; + + var NeverStencilFunc = 512; + var LessStencilFunc = 513; + var EqualStencilFunc = 514; + var LessEqualStencilFunc = 515; + var GreaterStencilFunc = 516; + var NotEqualStencilFunc = 517; + var GreaterEqualStencilFunc = 518; + var AlwaysStencilFunc = 519; + + var StaticDrawUsage = 35044; + var DynamicDrawUsage = 35048; + var StreamDrawUsage = 35040; + var StaticReadUsage = 35045; + var DynamicReadUsage = 35049; + var StreamReadUsage = 35041; + var StaticCopyUsage = 35046; + var DynamicCopyUsage = 35050; + var StreamCopyUsage = 35042; + + /** + * https://github.com/mrdoob/eventdispatcher.js/ + */ + + function EventDispatcher() {} + + Object.assign( EventDispatcher.prototype, { + + addEventListener: function ( type, listener ) { + + if ( this._listeners === undefined ) { this._listeners = {}; } + + var listeners = this._listeners; + + if ( listeners[ type ] === undefined ) { + + listeners[ type ] = []; + + } + + if ( listeners[ type ].indexOf( listener ) === - 1 ) { + + listeners[ type ].push( listener ); + + } + + }, + + hasEventListener: function ( type, listener ) { + + if ( this._listeners === undefined ) { return false; } + + var listeners = this._listeners; + + return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1; + + }, + + removeEventListener: function ( type, listener ) { + + if ( this._listeners === undefined ) { return; } + + var listeners = this._listeners; + var listenerArray = listeners[ type ]; + + if ( listenerArray !== undefined ) { + + var index = listenerArray.indexOf( listener ); + + if ( index !== - 1 ) { + + listenerArray.splice( index, 1 ); + + } + + } + + }, + + dispatchEvent: function ( event ) { + + if ( this._listeners === undefined ) { return; } + + var listeners = this._listeners; + var listenerArray = listeners[ event.type ]; + + if ( listenerArray !== undefined ) { + + event.target = this; + + // Make a copy, in case listeners are removed while iterating. + var array = listenerArray.slice( 0 ); + + for ( var i = 0, l = array.length; i < l; i ++ ) { + + array[ i ].call( this, event ); + + } + + } + + } + + } ); + + var _lut = []; + + for ( var i = 0; i < 256; i ++ ) { + + _lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 ); + + } + + var _seed = 1234567; + + var MathUtils = { + + DEG2RAD: Math.PI / 180, + RAD2DEG: 180 / Math.PI, + + generateUUID: function () { + + // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 + + var d0 = Math.random() * 0xffffffff | 0; + var d1 = Math.random() * 0xffffffff | 0; + var d2 = Math.random() * 0xffffffff | 0; + var d3 = Math.random() * 0xffffffff | 0; + var uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; + + // .toUpperCase() here flattens concatenated strings to save heap memory space. + return uuid.toUpperCase(); + + }, + + clamp: function ( value, min, max ) { + + return Math.max( min, Math.min( max, value ) ); + + }, + + // compute euclidian modulo of m % n + // https://en.wikipedia.org/wiki/Modulo_operation + + euclideanModulo: function ( n, m ) { + + return ( ( n % m ) + m ) % m; + + }, + + // Linear mapping from range to range + + mapLinear: function ( x, a1, a2, b1, b2 ) { + + return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); + + }, + + // https://en.wikipedia.org/wiki/Linear_interpolation + + lerp: function ( x, y, t ) { + + return ( 1 - t ) * x + t * y; + + }, + + // http://en.wikipedia.org/wiki/Smoothstep + + smoothstep: function ( x, min, max ) { + + if ( x <= min ) { return 0; } + if ( x >= max ) { return 1; } + + x = ( x - min ) / ( max - min ); + + return x * x * ( 3 - 2 * x ); + + }, + + smootherstep: function ( x, min, max ) { + + if ( x <= min ) { return 0; } + if ( x >= max ) { return 1; } + + x = ( x - min ) / ( max - min ); + + return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); + + }, + + // Random integer from interval + + randInt: function ( low, high ) { + + return low + Math.floor( Math.random() * ( high - low + 1 ) ); + + }, + + // Random float from interval + + randFloat: function ( low, high ) { + + return low + Math.random() * ( high - low ); + + }, + + // Random float from <-range/2, range/2> interval + + randFloatSpread: function ( range ) { + + return range * ( 0.5 - Math.random() ); + + }, + + // Deterministic pseudo-random float in the interval [ 0, 1 ] + + seededRandom: function ( s ) { + + if ( s !== undefined ) { _seed = s % 2147483647; } + + // Park-Miller algorithm + + _seed = _seed * 16807 % 2147483647; + + return ( _seed - 1 ) / 2147483646; + + }, + + degToRad: function ( degrees ) { + + return degrees * MathUtils.DEG2RAD; + + }, + + radToDeg: function ( radians ) { + + return radians * MathUtils.RAD2DEG; + + }, + + isPowerOfTwo: function ( value ) { + + return ( value & ( value - 1 ) ) === 0 && value !== 0; + + }, + + ceilPowerOfTwo: function ( value ) { + + return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); + + }, + + floorPowerOfTwo: function ( value ) { + + return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); + + }, + + setQuaternionFromProperEuler: function ( q, a, b, c, order ) { + + // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles + + // rotations are applied to the axes in the order specified by 'order' + // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' + // angles are in radians + + var cos = Math.cos; + var sin = Math.sin; + + var c2 = cos( b / 2 ); + var s2 = sin( b / 2 ); + + var c13 = cos( ( a + c ) / 2 ); + var s13 = sin( ( a + c ) / 2 ); + + var c1_3 = cos( ( a - c ) / 2 ); + var s1_3 = sin( ( a - c ) / 2 ); + + var c3_1 = cos( ( c - a ) / 2 ); + var s3_1 = sin( ( c - a ) / 2 ); + + switch ( order ) { + + case 'XYX': + q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); + break; + + case 'YZY': + q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); + break; + + case 'ZXZ': + q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); + break; + + case 'XZX': + q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); + break; + + case 'YXY': + q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); + break; + + case 'ZYZ': + q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); + break; + + default: + console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); + + } + + } + + }; + + function Vector2( x, y ) { + if ( x === void 0 ) x = 0; + if ( y === void 0 ) y = 0; + + + this.x = x; + this.y = y; + + } + + Object.defineProperties( Vector2.prototype, { + + "width": { + + get: function () { + + return this.x; + + }, + + set: function ( value ) { + + this.x = value; + + } + + }, + + "height": { + + get: function () { + + return this.y; + + }, + + set: function ( value ) { + + this.y = value; + + } + + } + + } ); + + Object.assign( Vector2.prototype, { + + isVector2: true, + + set: function ( x, y ) { + + this.x = x; + this.y = y; + + return this; + + }, + + setScalar: function ( scalar ) { + + this.x = scalar; + this.y = scalar; + + return this; + + }, + + setX: function ( x ) { + + this.x = x; + + return this; + + }, + + setY: function ( y ) { + + this.y = y; + + return this; + + }, + + setComponent: function ( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + }, + + getComponent: function ( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + default: throw new Error( 'index is out of range: ' + index ); + + } + + }, + + clone: function () { + + return new this.constructor( this.x, this.y ); + + }, + + copy: function ( v ) { + + this.x = v.x; + this.y = v.y; + + return this; + + }, + + add: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); + return this.addVectors( v, w ); + + } + + this.x += v.x; + this.y += v.y; + + return this; + + }, + + addScalar: function ( s ) { + + this.x += s; + this.y += s; + + return this; + + }, + + addVectors: function ( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + + return this; + + }, + + addScaledVector: function ( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + + return this; + + }, + + sub: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); + return this.subVectors( v, w ); + + } + + this.x -= v.x; + this.y -= v.y; + + return this; + + }, + + subScalar: function ( s ) { + + this.x -= s; + this.y -= s; + + return this; + + }, + + subVectors: function ( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + + return this; + + }, + + multiply: function ( v ) { + + this.x *= v.x; + this.y *= v.y; + + return this; + + }, + + multiplyScalar: function ( scalar ) { + + this.x *= scalar; + this.y *= scalar; + + return this; + + }, + + divide: function ( v ) { + + this.x /= v.x; + this.y /= v.y; + + return this; + + }, + + divideScalar: function ( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + }, + + applyMatrix3: function ( m ) { + + var x = this.x, y = this.y; + var e = m.elements; + + this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; + this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; + + return this; + + }, + + min: function ( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + + return this; + + }, + + max: function ( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + + return this; + + }, + + clamp: function ( min, max ) { + + // assumes min < max, componentwise + + this.x = Math.max( min.x, Math.min( max.x, this.x ) ); + this.y = Math.max( min.y, Math.min( max.y, this.y ) ); + + return this; + + }, + + clampScalar: function ( minVal, maxVal ) { + + this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); + this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); + + return this; + + }, + + clampLength: function ( min, max ) { + + var length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); + + }, + + floor: function () { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + + return this; + + }, + + ceil: function () { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + + return this; + + }, + + round: function () { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + + return this; + + }, + + roundToZero: function () { + + this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); + this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); + + return this; + + }, + + negate: function () { + + this.x = - this.x; + this.y = - this.y; + + return this; + + }, + + dot: function ( v ) { + + return this.x * v.x + this.y * v.y; + + }, + + cross: function ( v ) { + + return this.x * v.y - this.y * v.x; + + }, + + lengthSq: function () { + + return this.x * this.x + this.y * this.y; + + }, + + length: function () { + + return Math.sqrt( this.x * this.x + this.y * this.y ); + + }, + + manhattanLength: function () { + + return Math.abs( this.x ) + Math.abs( this.y ); + + }, + + normalize: function () { + + return this.divideScalar( this.length() || 1 ); + + }, + + angle: function () { + + // computes the angle in radians with respect to the positive x-axis + + var angle = Math.atan2( - this.y, - this.x ) + Math.PI; + + return angle; + + }, + + distanceTo: function ( v ) { + + return Math.sqrt( this.distanceToSquared( v ) ); + + }, + + distanceToSquared: function ( v ) { + + var dx = this.x - v.x, dy = this.y - v.y; + return dx * dx + dy * dy; + + }, + + manhattanDistanceTo: function ( v ) { + + return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); + + }, + + setLength: function ( length ) { + + return this.normalize().multiplyScalar( length ); + + }, + + lerp: function ( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + + return this; + + }, + + lerpVectors: function ( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + + return this; + + }, + + equals: function ( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) ); + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + + return array; + + }, + + fromBufferAttribute: function ( attribute, index, offset ) { + + if ( offset !== undefined ) { + + console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' ); + + } + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + + return this; + + }, + + rotateAround: function ( center, angle ) { + + var c = Math.cos( angle ), s = Math.sin( angle ); + + var x = this.x - center.x; + var y = this.y - center.y; + + this.x = x * c - y * s + center.x; + this.y = x * s + y * c + center.y; + + return this; + + }, + + random: function () { + + this.x = Math.random(); + this.y = Math.random(); + + return this; + + } + + } ); + + function Matrix3() { + + this.elements = [ + + 1, 0, 0, + 0, 1, 0, + 0, 0, 1 + + ]; + + if ( arguments.length > 0 ) { + + console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' ); + + } + + } + + Object.assign( Matrix3.prototype, { + + isMatrix3: true, + + set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { + + var te = this.elements; + + te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; + te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; + te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; + + return this; + + }, + + identity: function () { + + this.set( + + 1, 0, 0, + 0, 1, 0, + 0, 0, 1 + + ); + + return this; + + }, + + clone: function () { + + return new this.constructor().fromArray( this.elements ); + + }, + + copy: function ( m ) { + + var te = this.elements; + var me = m.elements; + + te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; + te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; + te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; + + return this; + + }, + + extractBasis: function ( xAxis, yAxis, zAxis ) { + + xAxis.setFromMatrix3Column( this, 0 ); + yAxis.setFromMatrix3Column( this, 1 ); + zAxis.setFromMatrix3Column( this, 2 ); + + return this; + + }, + + setFromMatrix4: function ( m ) { + + var me = m.elements; + + this.set( + + me[ 0 ], me[ 4 ], me[ 8 ], + me[ 1 ], me[ 5 ], me[ 9 ], + me[ 2 ], me[ 6 ], me[ 10 ] + + ); + + return this; + + }, + + multiply: function ( m ) { + + return this.multiplyMatrices( this, m ); + + }, + + premultiply: function ( m ) { + + return this.multiplyMatrices( m, this ); + + }, + + multiplyMatrices: function ( a, b ) { + + var ae = a.elements; + var be = b.elements; + var te = this.elements; + + var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; + var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; + var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; + + var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; + var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; + var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; + + te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; + te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; + te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; + + te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; + te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; + te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; + + te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; + te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; + te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; + + return this; + + }, + + multiplyScalar: function ( s ) { + + var te = this.elements; + + te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; + te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; + te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; + + return this; + + }, + + determinant: function () { + + var te = this.elements; + + var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], + d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], + g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; + + return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; + + }, + + getInverse: function ( matrix, throwOnDegenerate ) { + + if ( throwOnDegenerate !== undefined ) { + + console.warn( "THREE.Matrix3: .getInverse() can no longer be configured to throw on degenerate." ); + + } + + var me = matrix.elements, + te = this.elements, + + n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], + n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ], + n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ], + + t11 = n33 * n22 - n32 * n23, + t12 = n32 * n13 - n33 * n12, + t13 = n23 * n12 - n22 * n13, + + det = n11 * t11 + n21 * t12 + n31 * t13; + + if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); } + + var detInv = 1 / det; + + te[ 0 ] = t11 * detInv; + te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; + te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; + + te[ 3 ] = t12 * detInv; + te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; + te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; + + te[ 6 ] = t13 * detInv; + te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; + te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; + + return this; + + }, + + transpose: function () { + + var tmp; + var m = this.elements; + + tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; + tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; + tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; + + return this; + + }, + + getNormalMatrix: function ( matrix4 ) { + + return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose(); + + }, + + transposeIntoArray: function ( r ) { + + var m = this.elements; + + r[ 0 ] = m[ 0 ]; + r[ 1 ] = m[ 3 ]; + r[ 2 ] = m[ 6 ]; + r[ 3 ] = m[ 1 ]; + r[ 4 ] = m[ 4 ]; + r[ 5 ] = m[ 7 ]; + r[ 6 ] = m[ 2 ]; + r[ 7 ] = m[ 5 ]; + r[ 8 ] = m[ 8 ]; + + return this; + + }, + + setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) { + + var c = Math.cos( rotation ); + var s = Math.sin( rotation ); + + this.set( + sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, + - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, + 0, 0, 1 + ); + + }, + + scale: function ( sx, sy ) { + + var te = this.elements; + + te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx; + te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy; + + return this; + + }, + + rotate: function ( theta ) { + + var c = Math.cos( theta ); + var s = Math.sin( theta ); + + var te = this.elements; + + var a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ]; + var a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ]; + + te[ 0 ] = c * a11 + s * a21; + te[ 3 ] = c * a12 + s * a22; + te[ 6 ] = c * a13 + s * a23; + + te[ 1 ] = - s * a11 + c * a21; + te[ 4 ] = - s * a12 + c * a22; + te[ 7 ] = - s * a13 + c * a23; + + return this; + + }, + + translate: function ( tx, ty ) { + + var te = this.elements; + + te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ]; + te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ]; + + return this; + + }, + + equals: function ( matrix ) { + + var te = this.elements; + var me = matrix.elements; + + for ( var i = 0; i < 9; i ++ ) { + + if ( te[ i ] !== me[ i ] ) { return false; } + + } + + return true; + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + for ( var i = 0; i < 9; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + var te = this.elements; + + array[ offset ] = te[ 0 ]; + array[ offset + 1 ] = te[ 1 ]; + array[ offset + 2 ] = te[ 2 ]; + + array[ offset + 3 ] = te[ 3 ]; + array[ offset + 4 ] = te[ 4 ]; + array[ offset + 5 ] = te[ 5 ]; + + array[ offset + 6 ] = te[ 6 ]; + array[ offset + 7 ] = te[ 7 ]; + array[ offset + 8 ] = te[ 8 ]; + + return array; + + } + + } ); + + var _canvas; + + var ImageUtils = { + + getDataURL: function ( image ) { + + if ( /^data:/i.test( image.src ) ) { + + return image.src; + + } + + if ( typeof HTMLCanvasElement == 'undefined' ) { + + return image.src; + + } + + var canvas; + + if ( image instanceof HTMLCanvasElement ) { + + canvas = image; + + } else { + + if ( _canvas === undefined ) { _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); } + + _canvas.width = image.width; + _canvas.height = image.height; + + var context = _canvas.getContext( '2d' ); + + if ( image instanceof ImageData ) { + + context.putImageData( image, 0, 0 ); + + } else { + + context.drawImage( image, 0, 0, image.width, image.height ); + + } + + canvas = _canvas; + + } + + if ( canvas.width > 2048 || canvas.height > 2048 ) { + + return canvas.toDataURL( 'image/jpeg', 0.6 ); + + } else { + + return canvas.toDataURL( 'image/png' ); + + } + + } + + }; + + var textureId = 0; + + function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { + + Object.defineProperty( this, 'id', { value: textureId ++ } ); + + this.uuid = MathUtils.generateUUID(); + + this.name = ''; + + this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE; + this.mipmaps = []; + + this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING; + + this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping; + this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping; + + this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; + this.minFilter = minFilter !== undefined ? minFilter : LinearMipmapLinearFilter; + + this.anisotropy = anisotropy !== undefined ? anisotropy : 1; + + this.format = format !== undefined ? format : RGBAFormat; + this.internalFormat = null; + this.type = type !== undefined ? type : UnsignedByteType; + + this.offset = new Vector2( 0, 0 ); + this.repeat = new Vector2( 1, 1 ); + this.center = new Vector2( 0, 0 ); + this.rotation = 0; + + this.matrixAutoUpdate = true; + this.matrix = new Matrix3(); + + this.generateMipmaps = true; + this.premultiplyAlpha = false; + this.flipY = true; + this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) + + // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. + // + // Also changing the encoding after already used by a Material will not automatically make the Material + // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. + this.encoding = encoding !== undefined ? encoding : LinearEncoding; + + this.version = 0; + this.onUpdate = null; + + } + + Texture.DEFAULT_IMAGE = undefined; + Texture.DEFAULT_MAPPING = UVMapping; + + Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: Texture, + + isTexture: true, + + updateMatrix: function () { + + this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( source ) { + + this.name = source.name; + + this.image = source.image; + this.mipmaps = source.mipmaps.slice( 0 ); + + this.mapping = source.mapping; + + this.wrapS = source.wrapS; + this.wrapT = source.wrapT; + + this.magFilter = source.magFilter; + this.minFilter = source.minFilter; + + this.anisotropy = source.anisotropy; + + this.format = source.format; + this.internalFormat = source.internalFormat; + this.type = source.type; + + this.offset.copy( source.offset ); + this.repeat.copy( source.repeat ); + this.center.copy( source.center ); + this.rotation = source.rotation; + + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrix.copy( source.matrix ); + + this.generateMipmaps = source.generateMipmaps; + this.premultiplyAlpha = source.premultiplyAlpha; + this.flipY = source.flipY; + this.unpackAlignment = source.unpackAlignment; + this.encoding = source.encoding; + + return this; + + }, + + toJSON: function ( meta ) { + + var isRootObject = ( meta === undefined || typeof meta === 'string' ); + + if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { + + return meta.textures[ this.uuid ]; + + } + + var output = { + + metadata: { + version: 4.5, + type: 'Texture', + generator: 'Texture.toJSON' + }, + + uuid: this.uuid, + name: this.name, + + mapping: this.mapping, + + repeat: [ this.repeat.x, this.repeat.y ], + offset: [ this.offset.x, this.offset.y ], + center: [ this.center.x, this.center.y ], + rotation: this.rotation, + + wrap: [ this.wrapS, this.wrapT ], + + format: this.format, + type: this.type, + encoding: this.encoding, + + minFilter: this.minFilter, + magFilter: this.magFilter, + anisotropy: this.anisotropy, + + flipY: this.flipY, + + premultiplyAlpha: this.premultiplyAlpha, + unpackAlignment: this.unpackAlignment + + }; + + if ( this.image !== undefined ) { + + // TODO: Move to THREE.Image + + var image = this.image; + + if ( image.uuid === undefined ) { + + image.uuid = MathUtils.generateUUID(); // UGH + + } + + if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) { + + var url; + + if ( Array.isArray( image ) ) { + + // process array of images e.g. CubeTexture + + url = []; + + for ( var i = 0, l = image.length; i < l; i ++ ) { + + url.push( ImageUtils.getDataURL( image[ i ] ) ); + + } + + } else { + + // process single image + + url = ImageUtils.getDataURL( image ); + + } + + meta.images[ image.uuid ] = { + uuid: image.uuid, + url: url + }; + + } + + output.image = image.uuid; + + } + + if ( ! isRootObject ) { + + meta.textures[ this.uuid ] = output; + + } + + return output; + + }, + + dispose: function () { + + this.dispatchEvent( { type: 'dispose' } ); + + }, + + transformUv: function ( uv ) { + + if ( this.mapping !== UVMapping ) { return uv; } + + uv.applyMatrix3( this.matrix ); + + if ( uv.x < 0 || uv.x > 1 ) { + + switch ( this.wrapS ) { + + case RepeatWrapping: + + uv.x = uv.x - Math.floor( uv.x ); + break; + + case ClampToEdgeWrapping: + + uv.x = uv.x < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + + if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { + + uv.x = Math.ceil( uv.x ) - uv.x; + + } else { + + uv.x = uv.x - Math.floor( uv.x ); + + } + + break; + + } + + } + + if ( uv.y < 0 || uv.y > 1 ) { + + switch ( this.wrapT ) { + + case RepeatWrapping: + + uv.y = uv.y - Math.floor( uv.y ); + break; + + case ClampToEdgeWrapping: + + uv.y = uv.y < 0 ? 0 : 1; + break; + + case MirroredRepeatWrapping: + + if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { + + uv.y = Math.ceil( uv.y ) - uv.y; + + } else { + + uv.y = uv.y - Math.floor( uv.y ); + + } + + break; + + } + + } + + if ( this.flipY ) { + + uv.y = 1 - uv.y; + + } + + return uv; + + } + + } ); + + Object.defineProperty( Texture.prototype, "needsUpdate", { + + set: function ( value ) { + + if ( value === true ) { this.version ++; } + + } + + } ); + + function Vector4( x, y, z, w ) { + if ( x === void 0 ) x = 0; + if ( y === void 0 ) y = 0; + if ( z === void 0 ) z = 0; + if ( w === void 0 ) w = 1; + + + this.x = x; + this.y = y; + this.z = z; + this.w = w; + + } + + Object.defineProperties( Vector4.prototype, { + + "width": { + + get: function () { + + return this.z; + + }, + + set: function ( value ) { + + this.z = value; + + } + + }, + + "height": { + + get: function () { + + return this.w; + + }, + + set: function ( value ) { + + this.w = value; + + } + + } + + } ); + + Object.assign( Vector4.prototype, { + + isVector4: true, + + set: function ( x, y, z, w ) { + + this.x = x; + this.y = y; + this.z = z; + this.w = w; + + return this; + + }, + + setScalar: function ( scalar ) { + + this.x = scalar; + this.y = scalar; + this.z = scalar; + this.w = scalar; + + return this; + + }, + + setX: function ( x ) { + + this.x = x; + + return this; + + }, + + setY: function ( y ) { + + this.y = y; + + return this; + + }, + + setZ: function ( z ) { + + this.z = z; + + return this; + + }, + + setW: function ( w ) { + + this.w = w; + + return this; + + }, + + setComponent: function ( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + case 2: this.z = value; break; + case 3: this.w = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + }, + + getComponent: function ( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + case 2: return this.z; + case 3: return this.w; + default: throw new Error( 'index is out of range: ' + index ); + + } + + }, + + clone: function () { + + return new this.constructor( this.x, this.y, this.z, this.w ); + + }, + + copy: function ( v ) { + + this.x = v.x; + this.y = v.y; + this.z = v.z; + this.w = ( v.w !== undefined ) ? v.w : 1; + + return this; + + }, + + add: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); + return this.addVectors( v, w ); + + } + + this.x += v.x; + this.y += v.y; + this.z += v.z; + this.w += v.w; + + return this; + + }, + + addScalar: function ( s ) { + + this.x += s; + this.y += s; + this.z += s; + this.w += s; + + return this; + + }, + + addVectors: function ( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + this.w = a.w + b.w; + + return this; + + }, + + addScaledVector: function ( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + this.w += v.w * s; + + return this; + + }, + + sub: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); + return this.subVectors( v, w ); + + } + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + this.w -= v.w; + + return this; + + }, + + subScalar: function ( s ) { + + this.x -= s; + this.y -= s; + this.z -= s; + this.w -= s; + + return this; + + }, + + subVectors: function ( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + this.w = a.w - b.w; + + return this; + + }, + + multiplyScalar: function ( scalar ) { + + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + this.w *= scalar; + + return this; + + }, + + applyMatrix4: function ( m ) { + + var x = this.x, y = this.y, z = this.z, w = this.w; + var e = m.elements; + + this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; + this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; + this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; + this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; + + return this; + + }, + + divideScalar: function ( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + }, + + setAxisAngleFromQuaternion: function ( q ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm + + // q is assumed to be normalized + + this.w = 2 * Math.acos( q.w ); + + var s = Math.sqrt( 1 - q.w * q.w ); + + if ( s < 0.0001 ) { + + this.x = 1; + this.y = 0; + this.z = 0; + + } else { + + this.x = q.x / s; + this.y = q.y / s; + this.z = q.z / s; + + } + + return this; + + }, + + setAxisAngleFromRotationMatrix: function ( m ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + var angle, x, y, z; // variables for result + var epsilon = 0.01, // margin to allow for rounding errors + epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees + + te = m.elements, + + m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], + m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], + m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; + + if ( ( Math.abs( m12 - m21 ) < epsilon ) && + ( Math.abs( m13 - m31 ) < epsilon ) && + ( Math.abs( m23 - m32 ) < epsilon ) ) { + + // singularity found + // first check for identity matrix which must have +1 for all terms + // in leading diagonal and zero in other terms + + if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && + ( Math.abs( m13 + m31 ) < epsilon2 ) && + ( Math.abs( m23 + m32 ) < epsilon2 ) && + ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { + + // this singularity is identity matrix so angle = 0 + + this.set( 1, 0, 0, 0 ); + + return this; // zero angle, arbitrary axis + + } + + // otherwise this singularity is angle = 180 + + angle = Math.PI; + + var xx = ( m11 + 1 ) / 2; + var yy = ( m22 + 1 ) / 2; + var zz = ( m33 + 1 ) / 2; + var xy = ( m12 + m21 ) / 4; + var xz = ( m13 + m31 ) / 4; + var yz = ( m23 + m32 ) / 4; + + if ( ( xx > yy ) && ( xx > zz ) ) { + + // m11 is the largest diagonal term + + if ( xx < epsilon ) { + + x = 0; + y = 0.707106781; + z = 0.707106781; + + } else { + + x = Math.sqrt( xx ); + y = xy / x; + z = xz / x; + + } + + } else if ( yy > zz ) { + + // m22 is the largest diagonal term + + if ( yy < epsilon ) { + + x = 0.707106781; + y = 0; + z = 0.707106781; + + } else { + + y = Math.sqrt( yy ); + x = xy / y; + z = yz / y; + + } + + } else { + + // m33 is the largest diagonal term so base result on this + + if ( zz < epsilon ) { + + x = 0.707106781; + y = 0.707106781; + z = 0; + + } else { + + z = Math.sqrt( zz ); + x = xz / z; + y = yz / z; + + } + + } + + this.set( x, y, z, angle ); + + return this; // return 180 deg rotation + + } + + // as we have reached here there are no singularities so we can handle normally + + var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + + ( m13 - m31 ) * ( m13 - m31 ) + + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize + + if ( Math.abs( s ) < 0.001 ) { s = 1; } + + // prevent divide by zero, should not happen if matrix is orthogonal and should be + // caught by singularity test above, but I've left it in just in case + + this.x = ( m32 - m23 ) / s; + this.y = ( m13 - m31 ) / s; + this.z = ( m21 - m12 ) / s; + this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); + + return this; + + }, + + min: function ( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + this.z = Math.min( this.z, v.z ); + this.w = Math.min( this.w, v.w ); + + return this; + + }, + + max: function ( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + this.z = Math.max( this.z, v.z ); + this.w = Math.max( this.w, v.w ); + + return this; + + }, + + clamp: function ( min, max ) { + + // assumes min < max, componentwise + + this.x = Math.max( min.x, Math.min( max.x, this.x ) ); + this.y = Math.max( min.y, Math.min( max.y, this.y ) ); + this.z = Math.max( min.z, Math.min( max.z, this.z ) ); + this.w = Math.max( min.w, Math.min( max.w, this.w ) ); + + return this; + + }, + + clampScalar: function ( minVal, maxVal ) { + + this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); + this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); + this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); + this.w = Math.max( minVal, Math.min( maxVal, this.w ) ); + + return this; + + }, + + clampLength: function ( min, max ) { + + var length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); + + }, + + floor: function () { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + this.z = Math.floor( this.z ); + this.w = Math.floor( this.w ); + + return this; + + }, + + ceil: function () { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + this.z = Math.ceil( this.z ); + this.w = Math.ceil( this.w ); + + return this; + + }, + + round: function () { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + this.z = Math.round( this.z ); + this.w = Math.round( this.w ); + + return this; + + }, + + roundToZero: function () { + + this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); + this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); + this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); + this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w ); + + return this; + + }, + + negate: function () { + + this.x = - this.x; + this.y = - this.y; + this.z = - this.z; + this.w = - this.w; + + return this; + + }, + + dot: function ( v ) { + + return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; + + }, + + lengthSq: function () { + + return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; + + }, + + length: function () { + + return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); + + }, + + manhattanLength: function () { + + return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); + + }, + + normalize: function () { + + return this.divideScalar( this.length() || 1 ); + + }, + + setLength: function ( length ) { + + return this.normalize().multiplyScalar( length ); + + }, + + lerp: function ( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + this.z += ( v.z - this.z ) * alpha; + this.w += ( v.w - this.w ) * alpha; + + return this; + + }, + + lerpVectors: function ( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + this.z = v1.z + ( v2.z - v1.z ) * alpha; + this.w = v1.w + ( v2.w - v1.w ) * alpha; + + return this; + + }, + + equals: function ( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + this.z = array[ offset + 2 ]; + this.w = array[ offset + 3 ]; + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + array[ offset + 2 ] = this.z; + array[ offset + 3 ] = this.w; + + return array; + + }, + + fromBufferAttribute: function ( attribute, index, offset ) { + + if ( offset !== undefined ) { + + console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' ); + + } + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + this.z = attribute.getZ( index ); + this.w = attribute.getW( index ); + + return this; + + }, + + random: function () { + + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + this.w = Math.random(); + + return this; + + } + + } ); + + /* + In options, we can specify: + * Texture parameters for an auto-generated target texture + * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers + */ + function WebGLRenderTarget( width, height, options ) { + + this.width = width; + this.height = height; + + this.scissor = new Vector4( 0, 0, width, height ); + this.scissorTest = false; + + this.viewport = new Vector4( 0, 0, width, height ); + + options = options || {}; + + this.texture = new Texture( undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ); + + this.texture.image = {}; + this.texture.image.width = width; + this.texture.image.height = height; + + this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; + this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; + + this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true; + this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true; + this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null; + + } + + WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: WebGLRenderTarget, + + isWebGLRenderTarget: true, + + setSize: function ( width, height ) { + + if ( this.width !== width || this.height !== height ) { + + this.width = width; + this.height = height; + + this.texture.image.width = width; + this.texture.image.height = height; + + this.dispose(); + + } + + this.viewport.set( 0, 0, width, height ); + this.scissor.set( 0, 0, width, height ); + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( source ) { + + this.width = source.width; + this.height = source.height; + + this.viewport.copy( source.viewport ); + + this.texture = source.texture.clone(); + + this.depthBuffer = source.depthBuffer; + this.stencilBuffer = source.stencilBuffer; + this.depthTexture = source.depthTexture; + + return this; + + }, + + dispose: function () { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + } ); + + function WebGLMultisampleRenderTarget( width, height, options ) { + + WebGLRenderTarget.call( this, width, height, options ); + + this.samples = 4; + + } + + WebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), { + + constructor: WebGLMultisampleRenderTarget, + + isWebGLMultisampleRenderTarget: true, + + copy: function ( source ) { + + WebGLRenderTarget.prototype.copy.call( this, source ); + + this.samples = source.samples; + + return this; + + } + + } ); + + function Quaternion( x, y, z, w ) { + if ( x === void 0 ) x = 0; + if ( y === void 0 ) y = 0; + if ( z === void 0 ) z = 0; + if ( w === void 0 ) w = 1; + + + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + } + + Object.assign( Quaternion, { + + slerp: function ( qa, qb, qm, t ) { + + return qm.copy( qa ).slerp( qb, t ); + + }, + + slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { + + // fuzz-free, array-based Quaternion SLERP operation + + var x0 = src0[ srcOffset0 + 0 ], + y0 = src0[ srcOffset0 + 1 ], + z0 = src0[ srcOffset0 + 2 ], + w0 = src0[ srcOffset0 + 3 ]; + + var x1 = src1[ srcOffset1 + 0 ], + y1 = src1[ srcOffset1 + 1 ], + z1 = src1[ srcOffset1 + 2 ], + w1 = src1[ srcOffset1 + 3 ]; + + if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { + + var s = 1 - t, + + cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, + + dir = ( cos >= 0 ? 1 : - 1 ), + sqrSin = 1 - cos * cos; + + // Skip the Slerp for tiny steps to avoid numeric problems: + if ( sqrSin > Number.EPSILON ) { + + var sin = Math.sqrt( sqrSin ), + len = Math.atan2( sin, cos * dir ); + + s = Math.sin( s * len ) / sin; + t = Math.sin( t * len ) / sin; + + } + + var tDir = t * dir; + + x0 = x0 * s + x1 * tDir; + y0 = y0 * s + y1 * tDir; + z0 = z0 * s + z1 * tDir; + w0 = w0 * s + w1 * tDir; + + // Normalize in case we just did a lerp: + if ( s === 1 - t ) { + + var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); + + x0 *= f; + y0 *= f; + z0 *= f; + w0 *= f; + + } + + } + + dst[ dstOffset ] = x0; + dst[ dstOffset + 1 ] = y0; + dst[ dstOffset + 2 ] = z0; + dst[ dstOffset + 3 ] = w0; + + }, + + multiplyQuaternionsFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { + + var x0 = src0[ srcOffset0 ]; + var y0 = src0[ srcOffset0 + 1 ]; + var z0 = src0[ srcOffset0 + 2 ]; + var w0 = src0[ srcOffset0 + 3 ]; + + var x1 = src1[ srcOffset1 ]; + var y1 = src1[ srcOffset1 + 1 ]; + var z1 = src1[ srcOffset1 + 2 ]; + var w1 = src1[ srcOffset1 + 3 ]; + + dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; + dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; + dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; + dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; + + return dst; + + } + + } ); + + Object.defineProperties( Quaternion.prototype, { + + x: { + + get: function () { + + return this._x; + + }, + + set: function ( value ) { + + this._x = value; + this._onChangeCallback(); + + } + + }, + + y: { + + get: function () { + + return this._y; + + }, + + set: function ( value ) { + + this._y = value; + this._onChangeCallback(); + + } + + }, + + z: { + + get: function () { + + return this._z; + + }, + + set: function ( value ) { + + this._z = value; + this._onChangeCallback(); + + } + + }, + + w: { + + get: function () { + + return this._w; + + }, + + set: function ( value ) { + + this._w = value; + this._onChangeCallback(); + + } + + } + + } ); + + Object.assign( Quaternion.prototype, { + + isQuaternion: true, + + set: function ( x, y, z, w ) { + + this._x = x; + this._y = y; + this._z = z; + this._w = w; + + this._onChangeCallback(); + + return this; + + }, + + clone: function () { + + return new this.constructor( this._x, this._y, this._z, this._w ); + + }, + + copy: function ( quaternion ) { + + this._x = quaternion.x; + this._y = quaternion.y; + this._z = quaternion.z; + this._w = quaternion.w; + + this._onChangeCallback(); + + return this; + + }, + + setFromEuler: function ( euler, update ) { + + if ( ! ( euler && euler.isEuler ) ) { + + throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ); + + } + + var x = euler._x, y = euler._y, z = euler._z, order = euler.order; + + // http://www.mathworks.com/matlabcentral/fileexchange/ + // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ + // content/SpinCalc.m + + var cos = Math.cos; + var sin = Math.sin; + + var c1 = cos( x / 2 ); + var c2 = cos( y / 2 ); + var c3 = cos( z / 2 ); + + var s1 = sin( x / 2 ); + var s2 = sin( y / 2 ); + var s3 = sin( z / 2 ); + + switch ( order ) { + + case 'XYZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'YXZ': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'ZXY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'ZYX': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + case 'YZX': + this._x = s1 * c2 * c3 + c1 * s2 * s3; + this._y = c1 * s2 * c3 + s1 * c2 * s3; + this._z = c1 * c2 * s3 - s1 * s2 * c3; + this._w = c1 * c2 * c3 - s1 * s2 * s3; + break; + + case 'XZY': + this._x = s1 * c2 * c3 - c1 * s2 * s3; + this._y = c1 * s2 * c3 - s1 * c2 * s3; + this._z = c1 * c2 * s3 + s1 * s2 * c3; + this._w = c1 * c2 * c3 + s1 * s2 * s3; + break; + + default: + console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); + + } + + if ( update !== false ) { this._onChangeCallback(); } + + return this; + + }, + + setFromAxisAngle: function ( axis, angle ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm + + // assumes axis is normalized + + var halfAngle = angle / 2, s = Math.sin( halfAngle ); + + this._x = axis.x * s; + this._y = axis.y * s; + this._z = axis.z * s; + this._w = Math.cos( halfAngle ); + + this._onChangeCallback(); + + return this; + + }, + + setFromRotationMatrix: function ( m ) { + + // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + var te = m.elements, + + m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], + m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], + m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], + + trace = m11 + m22 + m33; + + if ( trace > 0 ) { + + var s = 0.5 / Math.sqrt( trace + 1.0 ); + + this._w = 0.25 / s; + this._x = ( m32 - m23 ) * s; + this._y = ( m13 - m31 ) * s; + this._z = ( m21 - m12 ) * s; + + } else if ( m11 > m22 && m11 > m33 ) { + + var s$1 = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); + + this._w = ( m32 - m23 ) / s$1; + this._x = 0.25 * s$1; + this._y = ( m12 + m21 ) / s$1; + this._z = ( m13 + m31 ) / s$1; + + } else if ( m22 > m33 ) { + + var s$2 = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); + + this._w = ( m13 - m31 ) / s$2; + this._x = ( m12 + m21 ) / s$2; + this._y = 0.25 * s$2; + this._z = ( m23 + m32 ) / s$2; + + } else { + + var s$3 = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); + + this._w = ( m21 - m12 ) / s$3; + this._x = ( m13 + m31 ) / s$3; + this._y = ( m23 + m32 ) / s$3; + this._z = 0.25 * s$3; + + } + + this._onChangeCallback(); + + return this; + + }, + + setFromUnitVectors: function ( vFrom, vTo ) { + + // assumes direction vectors vFrom and vTo are normalized + + var EPS = 0.000001; + + var r = vFrom.dot( vTo ) + 1; + + if ( r < EPS ) { + + r = 0; + + if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { + + this._x = - vFrom.y; + this._y = vFrom.x; + this._z = 0; + this._w = r; + + } else { + + this._x = 0; + this._y = - vFrom.z; + this._z = vFrom.y; + this._w = r; + + } + + } else { + + // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 + + this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; + this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; + this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; + this._w = r; + + } + + return this.normalize(); + + }, + + angleTo: function ( q ) { + + return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) ); + + }, + + rotateTowards: function ( q, step ) { + + var angle = this.angleTo( q ); + + if ( angle === 0 ) { return this; } + + var t = Math.min( 1, step / angle ); + + this.slerp( q, t ); + + return this; + + }, + + identity: function () { + + return this.set( 0, 0, 0, 1 ); + + }, + + inverse: function () { + + // quaternion is assumed to have unit length + + return this.conjugate(); + + }, + + conjugate: function () { + + this._x *= - 1; + this._y *= - 1; + this._z *= - 1; + + this._onChangeCallback(); + + return this; + + }, + + dot: function ( v ) { + + return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; + + }, + + lengthSq: function () { + + return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; + + }, + + length: function () { + + return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); + + }, + + normalize: function () { + + var l = this.length(); + + if ( l === 0 ) { + + this._x = 0; + this._y = 0; + this._z = 0; + this._w = 1; + + } else { + + l = 1 / l; + + this._x = this._x * l; + this._y = this._y * l; + this._z = this._z * l; + this._w = this._w * l; + + } + + this._onChangeCallback(); + + return this; + + }, + + multiply: function ( q, p ) { + + if ( p !== undefined ) { + + console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ); + return this.multiplyQuaternions( q, p ); + + } + + return this.multiplyQuaternions( this, q ); + + }, + + premultiply: function ( q ) { + + return this.multiplyQuaternions( q, this ); + + }, + + multiplyQuaternions: function ( a, b ) { + + // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm + + var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; + var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; + + this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; + this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; + this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; + this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; + + this._onChangeCallback(); + + return this; + + }, + + slerp: function ( qb, t ) { + + if ( t === 0 ) { return this; } + if ( t === 1 ) { return this.copy( qb ); } + + var x = this._x, y = this._y, z = this._z, w = this._w; + + // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ + + var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; + + if ( cosHalfTheta < 0 ) { + + this._w = - qb._w; + this._x = - qb._x; + this._y = - qb._y; + this._z = - qb._z; + + cosHalfTheta = - cosHalfTheta; + + } else { + + this.copy( qb ); + + } + + if ( cosHalfTheta >= 1.0 ) { + + this._w = w; + this._x = x; + this._y = y; + this._z = z; + + return this; + + } + + var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; + + if ( sqrSinHalfTheta <= Number.EPSILON ) { + + var s = 1 - t; + this._w = s * w + t * this._w; + this._x = s * x + t * this._x; + this._y = s * y + t * this._y; + this._z = s * z + t * this._z; + + this.normalize(); + this._onChangeCallback(); + + return this; + + } + + var sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); + var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); + var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, + ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; + + this._w = ( w * ratioA + this._w * ratioB ); + this._x = ( x * ratioA + this._x * ratioB ); + this._y = ( y * ratioA + this._y * ratioB ); + this._z = ( z * ratioA + this._z * ratioB ); + + this._onChangeCallback(); + + return this; + + }, + + equals: function ( quaternion ) { + + return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this._x = array[ offset ]; + this._y = array[ offset + 1 ]; + this._z = array[ offset + 2 ]; + this._w = array[ offset + 3 ]; + + this._onChangeCallback(); + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + array[ offset ] = this._x; + array[ offset + 1 ] = this._y; + array[ offset + 2 ] = this._z; + array[ offset + 3 ] = this._w; + + return array; + + }, + + fromBufferAttribute: function ( attribute, index ) { + + this._x = attribute.getX( index ); + this._y = attribute.getY( index ); + this._z = attribute.getZ( index ); + this._w = attribute.getW( index ); + + return this; + + }, + + _onChange: function ( callback ) { + + this._onChangeCallback = callback; + + return this; + + }, + + _onChangeCallback: function () {} + + } ); + + var _vector = new Vector3(); + var _quaternion = new Quaternion(); + + function Vector3( x, y, z ) { + if ( x === void 0 ) x = 0; + if ( y === void 0 ) y = 0; + if ( z === void 0 ) z = 0; + + + this.x = x; + this.y = y; + this.z = z; + + } + + Object.assign( Vector3.prototype, { + + isVector3: true, + + set: function ( x, y, z ) { + + if ( z === undefined ) { z = this.z; } // sprite.scale.set(x,y) + + this.x = x; + this.y = y; + this.z = z; + + return this; + + }, + + setScalar: function ( scalar ) { + + this.x = scalar; + this.y = scalar; + this.z = scalar; + + return this; + + }, + + setX: function ( x ) { + + this.x = x; + + return this; + + }, + + setY: function ( y ) { + + this.y = y; + + return this; + + }, + + setZ: function ( z ) { + + this.z = z; + + return this; + + }, + + setComponent: function ( index, value ) { + + switch ( index ) { + + case 0: this.x = value; break; + case 1: this.y = value; break; + case 2: this.z = value; break; + default: throw new Error( 'index is out of range: ' + index ); + + } + + return this; + + }, + + getComponent: function ( index ) { + + switch ( index ) { + + case 0: return this.x; + case 1: return this.y; + case 2: return this.z; + default: throw new Error( 'index is out of range: ' + index ); + + } + + }, + + clone: function () { + + return new this.constructor( this.x, this.y, this.z ); + + }, + + copy: function ( v ) { + + this.x = v.x; + this.y = v.y; + this.z = v.z; + + return this; + + }, + + add: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ); + return this.addVectors( v, w ); + + } + + this.x += v.x; + this.y += v.y; + this.z += v.z; + + return this; + + }, + + addScalar: function ( s ) { + + this.x += s; + this.y += s; + this.z += s; + + return this; + + }, + + addVectors: function ( a, b ) { + + this.x = a.x + b.x; + this.y = a.y + b.y; + this.z = a.z + b.z; + + return this; + + }, + + addScaledVector: function ( v, s ) { + + this.x += v.x * s; + this.y += v.y * s; + this.z += v.z * s; + + return this; + + }, + + sub: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ); + return this.subVectors( v, w ); + + } + + this.x -= v.x; + this.y -= v.y; + this.z -= v.z; + + return this; + + }, + + subScalar: function ( s ) { + + this.x -= s; + this.y -= s; + this.z -= s; + + return this; + + }, + + subVectors: function ( a, b ) { + + this.x = a.x - b.x; + this.y = a.y - b.y; + this.z = a.z - b.z; + + return this; + + }, + + multiply: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ); + return this.multiplyVectors( v, w ); + + } + + this.x *= v.x; + this.y *= v.y; + this.z *= v.z; + + return this; + + }, + + multiplyScalar: function ( scalar ) { + + this.x *= scalar; + this.y *= scalar; + this.z *= scalar; + + return this; + + }, + + multiplyVectors: function ( a, b ) { + + this.x = a.x * b.x; + this.y = a.y * b.y; + this.z = a.z * b.z; + + return this; + + }, + + applyEuler: function ( euler ) { + + if ( ! ( euler && euler.isEuler ) ) { + + console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ); + + } + + return this.applyQuaternion( _quaternion.setFromEuler( euler ) ); + + }, + + applyAxisAngle: function ( axis, angle ) { + + return this.applyQuaternion( _quaternion.setFromAxisAngle( axis, angle ) ); + + }, + + applyMatrix3: function ( m ) { + + var x = this.x, y = this.y, z = this.z; + var e = m.elements; + + this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; + this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; + this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; + + return this; + + }, + + applyNormalMatrix: function ( m ) { + + return this.applyMatrix3( m ).normalize(); + + }, + + applyMatrix4: function ( m ) { + + var x = this.x, y = this.y, z = this.z; + var e = m.elements; + + var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); + + this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; + this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; + this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; + + return this; + + }, + + applyQuaternion: function ( q ) { + + var x = this.x, y = this.y, z = this.z; + var qx = q.x, qy = q.y, qz = q.z, qw = q.w; + + // calculate quat * vector + + var ix = qw * x + qy * z - qz * y; + var iy = qw * y + qz * x - qx * z; + var iz = qw * z + qx * y - qy * x; + var iw = - qx * x - qy * y - qz * z; + + // calculate result * inverse quat + + this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy; + this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz; + this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx; + + return this; + + }, + + project: function ( camera ) { + + return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); + + }, + + unproject: function ( camera ) { + + return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); + + }, + + transformDirection: function ( m ) { + + // input: THREE.Matrix4 affine matrix + // vector interpreted as a direction + + var x = this.x, y = this.y, z = this.z; + var e = m.elements; + + this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; + this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; + this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; + + return this.normalize(); + + }, + + divide: function ( v ) { + + this.x /= v.x; + this.y /= v.y; + this.z /= v.z; + + return this; + + }, + + divideScalar: function ( scalar ) { + + return this.multiplyScalar( 1 / scalar ); + + }, + + min: function ( v ) { + + this.x = Math.min( this.x, v.x ); + this.y = Math.min( this.y, v.y ); + this.z = Math.min( this.z, v.z ); + + return this; + + }, + + max: function ( v ) { + + this.x = Math.max( this.x, v.x ); + this.y = Math.max( this.y, v.y ); + this.z = Math.max( this.z, v.z ); + + return this; + + }, + + clamp: function ( min, max ) { + + // assumes min < max, componentwise + + this.x = Math.max( min.x, Math.min( max.x, this.x ) ); + this.y = Math.max( min.y, Math.min( max.y, this.y ) ); + this.z = Math.max( min.z, Math.min( max.z, this.z ) ); + + return this; + + }, + + clampScalar: function ( minVal, maxVal ) { + + this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); + this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); + this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); + + return this; + + }, + + clampLength: function ( min, max ) { + + var length = this.length(); + + return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); + + }, + + floor: function () { + + this.x = Math.floor( this.x ); + this.y = Math.floor( this.y ); + this.z = Math.floor( this.z ); + + return this; + + }, + + ceil: function () { + + this.x = Math.ceil( this.x ); + this.y = Math.ceil( this.y ); + this.z = Math.ceil( this.z ); + + return this; + + }, + + round: function () { + + this.x = Math.round( this.x ); + this.y = Math.round( this.y ); + this.z = Math.round( this.z ); + + return this; + + }, + + roundToZero: function () { + + this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x ); + this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y ); + this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z ); + + return this; + + }, + + negate: function () { + + this.x = - this.x; + this.y = - this.y; + this.z = - this.z; + + return this; + + }, + + dot: function ( v ) { + + return this.x * v.x + this.y * v.y + this.z * v.z; + + }, + + // TODO lengthSquared? + + lengthSq: function () { + + return this.x * this.x + this.y * this.y + this.z * this.z; + + }, + + length: function () { + + return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); + + }, + + manhattanLength: function () { + + return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); + + }, + + normalize: function () { + + return this.divideScalar( this.length() || 1 ); + + }, + + setLength: function ( length ) { + + return this.normalize().multiplyScalar( length ); + + }, + + lerp: function ( v, alpha ) { + + this.x += ( v.x - this.x ) * alpha; + this.y += ( v.y - this.y ) * alpha; + this.z += ( v.z - this.z ) * alpha; + + return this; + + }, + + lerpVectors: function ( v1, v2, alpha ) { + + this.x = v1.x + ( v2.x - v1.x ) * alpha; + this.y = v1.y + ( v2.y - v1.y ) * alpha; + this.z = v1.z + ( v2.z - v1.z ) * alpha; + + return this; + + }, + + cross: function ( v, w ) { + + if ( w !== undefined ) { + + console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ); + return this.crossVectors( v, w ); + + } + + return this.crossVectors( this, v ); + + }, + + crossVectors: function ( a, b ) { + + var ax = a.x, ay = a.y, az = a.z; + var bx = b.x, by = b.y, bz = b.z; + + this.x = ay * bz - az * by; + this.y = az * bx - ax * bz; + this.z = ax * by - ay * bx; + + return this; + + }, + + projectOnVector: function ( v ) { + + var denominator = v.lengthSq(); + + if ( denominator === 0 ) { return this.set( 0, 0, 0 ); } + + var scalar = v.dot( this ) / denominator; + + return this.copy( v ).multiplyScalar( scalar ); + + }, + + projectOnPlane: function ( planeNormal ) { + + _vector.copy( this ).projectOnVector( planeNormal ); + + return this.sub( _vector ); + + }, + + reflect: function ( normal ) { + + // reflect incident vector off plane orthogonal to normal + // normal is assumed to have unit length + + return this.sub( _vector.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); + + }, + + angleTo: function ( v ) { + + var denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); + + if ( denominator === 0 ) { return Math.PI / 2; } + + var theta = this.dot( v ) / denominator; + + // clamp, to handle numerical problems + + return Math.acos( MathUtils.clamp( theta, - 1, 1 ) ); + + }, + + distanceTo: function ( v ) { + + return Math.sqrt( this.distanceToSquared( v ) ); + + }, + + distanceToSquared: function ( v ) { + + var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; + + return dx * dx + dy * dy + dz * dz; + + }, + + manhattanDistanceTo: function ( v ) { + + return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); + + }, + + setFromSpherical: function ( s ) { + + return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); + + }, + + setFromSphericalCoords: function ( radius, phi, theta ) { + + var sinPhiRadius = Math.sin( phi ) * radius; + + this.x = sinPhiRadius * Math.sin( theta ); + this.y = Math.cos( phi ) * radius; + this.z = sinPhiRadius * Math.cos( theta ); + + return this; + + }, + + setFromCylindrical: function ( c ) { + + return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); + + }, + + setFromCylindricalCoords: function ( radius, theta, y ) { + + this.x = radius * Math.sin( theta ); + this.y = y; + this.z = radius * Math.cos( theta ); + + return this; + + }, + + setFromMatrixPosition: function ( m ) { + + var e = m.elements; + + this.x = e[ 12 ]; + this.y = e[ 13 ]; + this.z = e[ 14 ]; + + return this; + + }, + + setFromMatrixScale: function ( m ) { + + var sx = this.setFromMatrixColumn( m, 0 ).length(); + var sy = this.setFromMatrixColumn( m, 1 ).length(); + var sz = this.setFromMatrixColumn( m, 2 ).length(); + + this.x = sx; + this.y = sy; + this.z = sz; + + return this; + + }, + + setFromMatrixColumn: function ( m, index ) { + + return this.fromArray( m.elements, index * 4 ); + + }, + + setFromMatrix3Column: function ( m, index ) { + + return this.fromArray( m.elements, index * 3 ); + + }, + + equals: function ( v ) { + + return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this.x = array[ offset ]; + this.y = array[ offset + 1 ]; + this.z = array[ offset + 2 ]; + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + array[ offset ] = this.x; + array[ offset + 1 ] = this.y; + array[ offset + 2 ] = this.z; + + return array; + + }, + + fromBufferAttribute: function ( attribute, index, offset ) { + + if ( offset !== undefined ) { + + console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' ); + + } + + this.x = attribute.getX( index ); + this.y = attribute.getY( index ); + this.z = attribute.getZ( index ); + + return this; + + }, + + random: function () { + + this.x = Math.random(); + this.y = Math.random(); + this.z = Math.random(); + + return this; + + } + + } ); + + var _v1 = new Vector3(); + var _m1 = new Matrix4(); + var _zero = new Vector3( 0, 0, 0 ); + var _one = new Vector3( 1, 1, 1 ); + var _x = new Vector3(); + var _y = new Vector3(); + var _z = new Vector3(); + + function Matrix4() { + + this.elements = [ + + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ]; + + if ( arguments.length > 0 ) { + + console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' ); + + } + + } + + Object.assign( Matrix4.prototype, { + + isMatrix4: true, + + set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { + + var te = this.elements; + + te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; + te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; + te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; + te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; + + return this; + + }, + + identity: function () { + + this.set( + + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + clone: function () { + + return new Matrix4().fromArray( this.elements ); + + }, + + copy: function ( m ) { + + var te = this.elements; + var me = m.elements; + + te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; + te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; + te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; + te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; + + return this; + + }, + + copyPosition: function ( m ) { + + var te = this.elements, me = m.elements; + + te[ 12 ] = me[ 12 ]; + te[ 13 ] = me[ 13 ]; + te[ 14 ] = me[ 14 ]; + + return this; + + }, + + extractBasis: function ( xAxis, yAxis, zAxis ) { + + xAxis.setFromMatrixColumn( this, 0 ); + yAxis.setFromMatrixColumn( this, 1 ); + zAxis.setFromMatrixColumn( this, 2 ); + + return this; + + }, + + makeBasis: function ( xAxis, yAxis, zAxis ) { + + this.set( + xAxis.x, yAxis.x, zAxis.x, 0, + xAxis.y, yAxis.y, zAxis.y, 0, + xAxis.z, yAxis.z, zAxis.z, 0, + 0, 0, 0, 1 + ); + + return this; + + }, + + extractRotation: function ( m ) { + + // this method does not support reflection matrices + + var te = this.elements; + var me = m.elements; + + var scaleX = 1 / _v1.setFromMatrixColumn( m, 0 ).length(); + var scaleY = 1 / _v1.setFromMatrixColumn( m, 1 ).length(); + var scaleZ = 1 / _v1.setFromMatrixColumn( m, 2 ).length(); + + te[ 0 ] = me[ 0 ] * scaleX; + te[ 1 ] = me[ 1 ] * scaleX; + te[ 2 ] = me[ 2 ] * scaleX; + te[ 3 ] = 0; + + te[ 4 ] = me[ 4 ] * scaleY; + te[ 5 ] = me[ 5 ] * scaleY; + te[ 6 ] = me[ 6 ] * scaleY; + te[ 7 ] = 0; + + te[ 8 ] = me[ 8 ] * scaleZ; + te[ 9 ] = me[ 9 ] * scaleZ; + te[ 10 ] = me[ 10 ] * scaleZ; + te[ 11 ] = 0; + + te[ 12 ] = 0; + te[ 13 ] = 0; + te[ 14 ] = 0; + te[ 15 ] = 1; + + return this; + + }, + + makeRotationFromEuler: function ( euler ) { + + if ( ! ( euler && euler.isEuler ) ) { + + console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); + + } + + var te = this.elements; + + var x = euler.x, y = euler.y, z = euler.z; + var a = Math.cos( x ), b = Math.sin( x ); + var c = Math.cos( y ), d = Math.sin( y ); + var e = Math.cos( z ), f = Math.sin( z ); + + if ( euler.order === 'XYZ' ) { + + var ae = a * e, af = a * f, be = b * e, bf = b * f; + + te[ 0 ] = c * e; + te[ 4 ] = - c * f; + te[ 8 ] = d; + + te[ 1 ] = af + be * d; + te[ 5 ] = ae - bf * d; + te[ 9 ] = - b * c; + + te[ 2 ] = bf - ae * d; + te[ 6 ] = be + af * d; + te[ 10 ] = a * c; + + } else if ( euler.order === 'YXZ' ) { + + var ce = c * e, cf = c * f, de = d * e, df = d * f; + + te[ 0 ] = ce + df * b; + te[ 4 ] = de * b - cf; + te[ 8 ] = a * d; + + te[ 1 ] = a * f; + te[ 5 ] = a * e; + te[ 9 ] = - b; + + te[ 2 ] = cf * b - de; + te[ 6 ] = df + ce * b; + te[ 10 ] = a * c; + + } else if ( euler.order === 'ZXY' ) { + + var ce$1 = c * e, cf$1 = c * f, de$1 = d * e, df$1 = d * f; + + te[ 0 ] = ce$1 - df$1 * b; + te[ 4 ] = - a * f; + te[ 8 ] = de$1 + cf$1 * b; + + te[ 1 ] = cf$1 + de$1 * b; + te[ 5 ] = a * e; + te[ 9 ] = df$1 - ce$1 * b; + + te[ 2 ] = - a * d; + te[ 6 ] = b; + te[ 10 ] = a * c; + + } else if ( euler.order === 'ZYX' ) { + + var ae$1 = a * e, af$1 = a * f, be$1 = b * e, bf$1 = b * f; + + te[ 0 ] = c * e; + te[ 4 ] = be$1 * d - af$1; + te[ 8 ] = ae$1 * d + bf$1; + + te[ 1 ] = c * f; + te[ 5 ] = bf$1 * d + ae$1; + te[ 9 ] = af$1 * d - be$1; + + te[ 2 ] = - d; + te[ 6 ] = b * c; + te[ 10 ] = a * c; + + } else if ( euler.order === 'YZX' ) { + + var ac = a * c, ad = a * d, bc = b * c, bd = b * d; + + te[ 0 ] = c * e; + te[ 4 ] = bd - ac * f; + te[ 8 ] = bc * f + ad; + + te[ 1 ] = f; + te[ 5 ] = a * e; + te[ 9 ] = - b * e; + + te[ 2 ] = - d * e; + te[ 6 ] = ad * f + bc; + te[ 10 ] = ac - bd * f; + + } else if ( euler.order === 'XZY' ) { + + var ac$1 = a * c, ad$1 = a * d, bc$1 = b * c, bd$1 = b * d; + + te[ 0 ] = c * e; + te[ 4 ] = - f; + te[ 8 ] = d * e; + + te[ 1 ] = ac$1 * f + bd$1; + te[ 5 ] = a * e; + te[ 9 ] = ad$1 * f - bc$1; + + te[ 2 ] = bc$1 * f - ad$1; + te[ 6 ] = b * e; + te[ 10 ] = bd$1 * f + ac$1; + + } + + // bottom row + te[ 3 ] = 0; + te[ 7 ] = 0; + te[ 11 ] = 0; + + // last column + te[ 12 ] = 0; + te[ 13 ] = 0; + te[ 14 ] = 0; + te[ 15 ] = 1; + + return this; + + }, + + makeRotationFromQuaternion: function ( q ) { + + return this.compose( _zero, q, _one ); + + }, + + lookAt: function ( eye, target, up ) { + + var te = this.elements; + + _z.subVectors( eye, target ); + + if ( _z.lengthSq() === 0 ) { + + // eye and target are in the same position + + _z.z = 1; + + } + + _z.normalize(); + _x.crossVectors( up, _z ); + + if ( _x.lengthSq() === 0 ) { + + // up and z are parallel + + if ( Math.abs( up.z ) === 1 ) { + + _z.x += 0.0001; + + } else { + + _z.z += 0.0001; + + } + + _z.normalize(); + _x.crossVectors( up, _z ); + + } + + _x.normalize(); + _y.crossVectors( _z, _x ); + + te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; + te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; + te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; + + return this; + + }, + + multiply: function ( m, n ) { + + if ( n !== undefined ) { + + console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ); + return this.multiplyMatrices( m, n ); + + } + + return this.multiplyMatrices( this, m ); + + }, + + premultiply: function ( m ) { + + return this.multiplyMatrices( m, this ); + + }, + + multiplyMatrices: function ( a, b ) { + + var ae = a.elements; + var be = b.elements; + var te = this.elements; + + var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; + var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; + var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; + var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; + + var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; + var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; + var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; + var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; + + te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; + te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; + te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; + te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; + + te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; + te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; + te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; + te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; + + te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; + te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; + te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; + te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; + + te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; + te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; + te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; + te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; + + return this; + + }, + + multiplyScalar: function ( s ) { + + var te = this.elements; + + te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; + te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; + te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; + te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; + + return this; + + }, + + determinant: function () { + + var te = this.elements; + + var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; + var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; + var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; + var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; + + //TODO: make this more efficient + //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) + + return ( + n41 * ( + + n14 * n23 * n32 + - n13 * n24 * n32 + - n14 * n22 * n33 + + n12 * n24 * n33 + + n13 * n22 * n34 + - n12 * n23 * n34 + ) + + n42 * ( + + n11 * n23 * n34 + - n11 * n24 * n33 + + n14 * n21 * n33 + - n13 * n21 * n34 + + n13 * n24 * n31 + - n14 * n23 * n31 + ) + + n43 * ( + + n11 * n24 * n32 + - n11 * n22 * n34 + - n14 * n21 * n32 + + n12 * n21 * n34 + + n14 * n22 * n31 + - n12 * n24 * n31 + ) + + n44 * ( + - n13 * n22 * n31 + - n11 * n23 * n32 + + n11 * n22 * n33 + + n13 * n21 * n32 + - n12 * n21 * n33 + + n12 * n23 * n31 + ) + + ); + + }, + + transpose: function () { + + var te = this.elements; + var tmp; + + tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; + tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; + tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; + + tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; + tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; + tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; + + return this; + + }, + + setPosition: function ( x, y, z ) { + + var te = this.elements; + + if ( x.isVector3 ) { + + te[ 12 ] = x.x; + te[ 13 ] = x.y; + te[ 14 ] = x.z; + + } else { + + te[ 12 ] = x; + te[ 13 ] = y; + te[ 14 ] = z; + + } + + return this; + + }, + + getInverse: function ( m, throwOnDegenerate ) { + + if ( throwOnDegenerate !== undefined ) { + + console.warn( "THREE.Matrix4: .getInverse() can no longer be configured to throw on degenerate." ); + + } + + // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm + var te = this.elements, + me = m.elements, + + n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ], + n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ], + n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ], + n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ], + + t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, + t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, + t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, + t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; + + var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; + + if ( det === 0 ) { return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); } + + var detInv = 1 / det; + + te[ 0 ] = t11 * detInv; + te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; + te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; + te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; + + te[ 4 ] = t12 * detInv; + te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; + te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; + te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; + + te[ 8 ] = t13 * detInv; + te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; + te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; + te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; + + te[ 12 ] = t14 * detInv; + te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; + te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; + te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; + + return this; + + }, + + scale: function ( v ) { + + var te = this.elements; + var x = v.x, y = v.y, z = v.z; + + te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; + te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; + te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; + te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; + + return this; + + }, + + getMaxScaleOnAxis: function () { + + var te = this.elements; + + var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; + var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; + var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; + + return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); + + }, + + makeTranslation: function ( x, y, z ) { + + this.set( + + 1, 0, 0, x, + 0, 1, 0, y, + 0, 0, 1, z, + 0, 0, 0, 1 + + ); + + return this; + + }, + + makeRotationX: function ( theta ) { + + var c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + 1, 0, 0, 0, + 0, c, - s, 0, + 0, s, c, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + makeRotationY: function ( theta ) { + + var c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + c, 0, s, 0, + 0, 1, 0, 0, + - s, 0, c, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + makeRotationZ: function ( theta ) { + + var c = Math.cos( theta ), s = Math.sin( theta ); + + this.set( + + c, - s, 0, 0, + s, c, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + makeRotationAxis: function ( axis, angle ) { + + // Based on http://www.gamedev.net/reference/articles/article1199.asp + + var c = Math.cos( angle ); + var s = Math.sin( angle ); + var t = 1 - c; + var x = axis.x, y = axis.y, z = axis.z; + var tx = t * x, ty = t * y; + + this.set( + + tx * x + c, tx * y - s * z, tx * z + s * y, 0, + tx * y + s * z, ty * y + c, ty * z - s * x, 0, + tx * z - s * y, ty * z + s * x, t * z * z + c, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + makeScale: function ( x, y, z ) { + + this.set( + + x, 0, 0, 0, + 0, y, 0, 0, + 0, 0, z, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + makeShear: function ( x, y, z ) { + + this.set( + + 1, y, z, 0, + x, 1, z, 0, + x, y, 1, 0, + 0, 0, 0, 1 + + ); + + return this; + + }, + + compose: function ( position, quaternion, scale ) { + + var te = this.elements; + + var x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; + var x2 = x + x, y2 = y + y, z2 = z + z; + var xx = x * x2, xy = x * y2, xz = x * z2; + var yy = y * y2, yz = y * z2, zz = z * z2; + var wx = w * x2, wy = w * y2, wz = w * z2; + + var sx = scale.x, sy = scale.y, sz = scale.z; + + te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; + te[ 1 ] = ( xy + wz ) * sx; + te[ 2 ] = ( xz - wy ) * sx; + te[ 3 ] = 0; + + te[ 4 ] = ( xy - wz ) * sy; + te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; + te[ 6 ] = ( yz + wx ) * sy; + te[ 7 ] = 0; + + te[ 8 ] = ( xz + wy ) * sz; + te[ 9 ] = ( yz - wx ) * sz; + te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; + te[ 11 ] = 0; + + te[ 12 ] = position.x; + te[ 13 ] = position.y; + te[ 14 ] = position.z; + te[ 15 ] = 1; + + return this; + + }, + + decompose: function ( position, quaternion, scale ) { + + var te = this.elements; + + var sx = _v1.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); + var sy = _v1.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); + var sz = _v1.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); + + // if determine is negative, we need to invert one scale + var det = this.determinant(); + if ( det < 0 ) { sx = - sx; } + + position.x = te[ 12 ]; + position.y = te[ 13 ]; + position.z = te[ 14 ]; + + // scale the rotation part + _m1.copy( this ); + + var invSX = 1 / sx; + var invSY = 1 / sy; + var invSZ = 1 / sz; + + _m1.elements[ 0 ] *= invSX; + _m1.elements[ 1 ] *= invSX; + _m1.elements[ 2 ] *= invSX; + + _m1.elements[ 4 ] *= invSY; + _m1.elements[ 5 ] *= invSY; + _m1.elements[ 6 ] *= invSY; + + _m1.elements[ 8 ] *= invSZ; + _m1.elements[ 9 ] *= invSZ; + _m1.elements[ 10 ] *= invSZ; + + quaternion.setFromRotationMatrix( _m1 ); + + scale.x = sx; + scale.y = sy; + scale.z = sz; + + return this; + + }, + + makePerspective: function ( left, right, top, bottom, near, far ) { + + if ( far === undefined ) { + + console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' ); + + } + + var te = this.elements; + var x = 2 * near / ( right - left ); + var y = 2 * near / ( top - bottom ); + + var a = ( right + left ) / ( right - left ); + var b = ( top + bottom ) / ( top - bottom ); + var c = - ( far + near ) / ( far - near ); + var d = - 2 * far * near / ( far - near ); + + te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; + te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; + te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; + te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; + + return this; + + }, + + makeOrthographic: function ( left, right, top, bottom, near, far ) { + + var te = this.elements; + var w = 1.0 / ( right - left ); + var h = 1.0 / ( top - bottom ); + var p = 1.0 / ( far - near ); + + var x = ( right + left ) * w; + var y = ( top + bottom ) * h; + var z = ( far + near ) * p; + + te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; + te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; + te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 * p; te[ 14 ] = - z; + te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; + + return this; + + }, + + equals: function ( matrix ) { + + var te = this.elements; + var me = matrix.elements; + + for ( var i = 0; i < 16; i ++ ) { + + if ( te[ i ] !== me[ i ] ) { return false; } + + } + + return true; + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + for ( var i = 0; i < 16; i ++ ) { + + this.elements[ i ] = array[ i + offset ]; + + } + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + var te = this.elements; + + array[ offset ] = te[ 0 ]; + array[ offset + 1 ] = te[ 1 ]; + array[ offset + 2 ] = te[ 2 ]; + array[ offset + 3 ] = te[ 3 ]; + + array[ offset + 4 ] = te[ 4 ]; + array[ offset + 5 ] = te[ 5 ]; + array[ offset + 6 ] = te[ 6 ]; + array[ offset + 7 ] = te[ 7 ]; + + array[ offset + 8 ] = te[ 8 ]; + array[ offset + 9 ] = te[ 9 ]; + array[ offset + 10 ] = te[ 10 ]; + array[ offset + 11 ] = te[ 11 ]; + + array[ offset + 12 ] = te[ 12 ]; + array[ offset + 13 ] = te[ 13 ]; + array[ offset + 14 ] = te[ 14 ]; + array[ offset + 15 ] = te[ 15 ]; + + return array; + + } + + } ); + + var _matrix = new Matrix4(); + var _quaternion$1 = new Quaternion(); + + function Euler( x, y, z, order ) { + if ( x === void 0 ) x = 0; + if ( y === void 0 ) y = 0; + if ( z === void 0 ) z = 0; + if ( order === void 0 ) order = Euler.DefaultOrder; + + + this._x = x; + this._y = y; + this._z = z; + this._order = order; + + } + + Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ]; + + Euler.DefaultOrder = 'XYZ'; + + Object.defineProperties( Euler.prototype, { + + x: { + + get: function () { + + return this._x; + + }, + + set: function ( value ) { + + this._x = value; + this._onChangeCallback(); + + } + + }, + + y: { + + get: function () { + + return this._y; + + }, + + set: function ( value ) { + + this._y = value; + this._onChangeCallback(); + + } + + }, + + z: { + + get: function () { + + return this._z; + + }, + + set: function ( value ) { + + this._z = value; + this._onChangeCallback(); + + } + + }, + + order: { + + get: function () { + + return this._order; + + }, + + set: function ( value ) { + + this._order = value; + this._onChangeCallback(); + + } + + } + + } ); + + Object.assign( Euler.prototype, { + + isEuler: true, + + set: function ( x, y, z, order ) { + + this._x = x; + this._y = y; + this._z = z; + this._order = order || this._order; + + this._onChangeCallback(); + + return this; + + }, + + clone: function () { + + return new this.constructor( this._x, this._y, this._z, this._order ); + + }, + + copy: function ( euler ) { + + this._x = euler._x; + this._y = euler._y; + this._z = euler._z; + this._order = euler._order; + + this._onChangeCallback(); + + return this; + + }, + + setFromRotationMatrix: function ( m, order, update ) { + + var clamp = MathUtils.clamp; + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + var te = m.elements; + var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; + var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; + var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; + + order = order || this._order; + + switch ( order ) { + + case 'XYZ': + + this._y = Math.asin( clamp( m13, - 1, 1 ) ); + + if ( Math.abs( m13 ) < 0.9999999 ) { + + this._x = Math.atan2( - m23, m33 ); + this._z = Math.atan2( - m12, m11 ); + + } else { + + this._x = Math.atan2( m32, m22 ); + this._z = 0; + + } + + break; + + case 'YXZ': + + this._x = Math.asin( - clamp( m23, - 1, 1 ) ); + + if ( Math.abs( m23 ) < 0.9999999 ) { + + this._y = Math.atan2( m13, m33 ); + this._z = Math.atan2( m21, m22 ); + + } else { + + this._y = Math.atan2( - m31, m11 ); + this._z = 0; + + } + + break; + + case 'ZXY': + + this._x = Math.asin( clamp( m32, - 1, 1 ) ); + + if ( Math.abs( m32 ) < 0.9999999 ) { + + this._y = Math.atan2( - m31, m33 ); + this._z = Math.atan2( - m12, m22 ); + + } else { + + this._y = 0; + this._z = Math.atan2( m21, m11 ); + + } + + break; + + case 'ZYX': + + this._y = Math.asin( - clamp( m31, - 1, 1 ) ); + + if ( Math.abs( m31 ) < 0.9999999 ) { + + this._x = Math.atan2( m32, m33 ); + this._z = Math.atan2( m21, m11 ); + + } else { + + this._x = 0; + this._z = Math.atan2( - m12, m22 ); + + } + + break; + + case 'YZX': + + this._z = Math.asin( clamp( m21, - 1, 1 ) ); + + if ( Math.abs( m21 ) < 0.9999999 ) { + + this._x = Math.atan2( - m23, m22 ); + this._y = Math.atan2( - m31, m11 ); + + } else { + + this._x = 0; + this._y = Math.atan2( m13, m33 ); + + } + + break; + + case 'XZY': + + this._z = Math.asin( - clamp( m12, - 1, 1 ) ); + + if ( Math.abs( m12 ) < 0.9999999 ) { + + this._x = Math.atan2( m32, m22 ); + this._y = Math.atan2( m13, m11 ); + + } else { + + this._x = Math.atan2( - m23, m33 ); + this._y = 0; + + } + + break; + + default: + + console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); + + } + + this._order = order; + + if ( update !== false ) { this._onChangeCallback(); } + + return this; + + }, + + setFromQuaternion: function ( q, order, update ) { + + _matrix.makeRotationFromQuaternion( q ); + + return this.setFromRotationMatrix( _matrix, order, update ); + + }, + + setFromVector3: function ( v, order ) { + + return this.set( v.x, v.y, v.z, order || this._order ); + + }, + + reorder: function ( newOrder ) { + + // WARNING: this discards revolution information -bhouston + + _quaternion$1.setFromEuler( this ); + + return this.setFromQuaternion( _quaternion$1, newOrder ); + + }, + + equals: function ( euler ) { + + return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); + + }, + + fromArray: function ( array ) { + + this._x = array[ 0 ]; + this._y = array[ 1 ]; + this._z = array[ 2 ]; + if ( array[ 3 ] !== undefined ) { this._order = array[ 3 ]; } + + this._onChangeCallback(); + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + array[ offset ] = this._x; + array[ offset + 1 ] = this._y; + array[ offset + 2 ] = this._z; + array[ offset + 3 ] = this._order; + + return array; + + }, + + toVector3: function ( optionalResult ) { + + if ( optionalResult ) { + + return optionalResult.set( this._x, this._y, this._z ); + + } else { + + return new Vector3( this._x, this._y, this._z ); + + } + + }, + + _onChange: function ( callback ) { + + this._onChangeCallback = callback; + + return this; + + }, + + _onChangeCallback: function () {} + + } ); + + function Layers() { + + this.mask = 1 | 0; + + } + + Object.assign( Layers.prototype, { + + set: function ( channel ) { + + this.mask = 1 << channel | 0; + + }, + + enable: function ( channel ) { + + this.mask |= 1 << channel | 0; + + }, + + enableAll: function () { + + this.mask = 0xffffffff | 0; + + }, + + toggle: function ( channel ) { + + this.mask ^= 1 << channel | 0; + + }, + + disable: function ( channel ) { + + this.mask &= ~ ( 1 << channel | 0 ); + + }, + + disableAll: function () { + + this.mask = 0; + + }, + + test: function ( layers ) { + + return ( this.mask & layers.mask ) !== 0; + + } + + } ); + + var _object3DId = 0; + + var _v1$1 = new Vector3(); + var _q1 = new Quaternion(); + var _m1$1 = new Matrix4(); + var _target = new Vector3(); + + var _position = new Vector3(); + var _scale = new Vector3(); + var _quaternion$2 = new Quaternion(); + + var _xAxis = new Vector3( 1, 0, 0 ); + var _yAxis = new Vector3( 0, 1, 0 ); + var _zAxis = new Vector3( 0, 0, 1 ); + + var _addedEvent = { type: 'added' }; + var _removedEvent = { type: 'removed' }; + + function Object3D() { + + Object.defineProperty( this, 'id', { value: _object3DId ++ } ); + + this.uuid = MathUtils.generateUUID(); + + this.name = ''; + this.type = 'Object3D'; + + this.parent = null; + this.children = []; + + this.up = Object3D.DefaultUp.clone(); + + var position = new Vector3(); + var rotation = new Euler(); + var quaternion = new Quaternion(); + var scale = new Vector3( 1, 1, 1 ); + + function onRotationChange() { + + quaternion.setFromEuler( rotation, false ); + + } + + function onQuaternionChange() { + + rotation.setFromQuaternion( quaternion, undefined, false ); + + } + + rotation._onChange( onRotationChange ); + quaternion._onChange( onQuaternionChange ); + + Object.defineProperties( this, { + position: { + configurable: true, + enumerable: true, + value: position + }, + rotation: { + configurable: true, + enumerable: true, + value: rotation + }, + quaternion: { + configurable: true, + enumerable: true, + value: quaternion + }, + scale: { + configurable: true, + enumerable: true, + value: scale + }, + modelViewMatrix: { + value: new Matrix4() + }, + normalMatrix: { + value: new Matrix3() + } + } ); + + this.matrix = new Matrix4(); + this.matrixWorld = new Matrix4(); + + this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate; + this.matrixWorldNeedsUpdate = false; + + this.layers = new Layers(); + this.visible = true; + + this.castShadow = false; + this.receiveShadow = false; + + this.frustumCulled = true; + this.renderOrder = 0; + + this.userData = {}; + + } + + Object3D.DefaultUp = new Vector3( 0, 1, 0 ); + Object3D.DefaultMatrixAutoUpdate = true; + + Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: Object3D, + + isObject3D: true, + + onBeforeRender: function () {}, + onAfterRender: function () {}, + + applyMatrix4: function ( matrix ) { + + if ( this.matrixAutoUpdate ) { this.updateMatrix(); } + + this.matrix.premultiply( matrix ); + + this.matrix.decompose( this.position, this.quaternion, this.scale ); + + }, + + applyQuaternion: function ( q ) { + + this.quaternion.premultiply( q ); + + return this; + + }, + + setRotationFromAxisAngle: function ( axis, angle ) { + + // assumes axis is normalized + + this.quaternion.setFromAxisAngle( axis, angle ); + + }, + + setRotationFromEuler: function ( euler ) { + + this.quaternion.setFromEuler( euler, true ); + + }, + + setRotationFromMatrix: function ( m ) { + + // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) + + this.quaternion.setFromRotationMatrix( m ); + + }, + + setRotationFromQuaternion: function ( q ) { + + // assumes q is normalized + + this.quaternion.copy( q ); + + }, + + rotateOnAxis: function ( axis, angle ) { + + // rotate object on axis in object space + // axis is assumed to be normalized + + _q1.setFromAxisAngle( axis, angle ); + + this.quaternion.multiply( _q1 ); + + return this; + + }, + + rotateOnWorldAxis: function ( axis, angle ) { + + // rotate object on axis in world space + // axis is assumed to be normalized + // method assumes no rotated parent + + _q1.setFromAxisAngle( axis, angle ); + + this.quaternion.premultiply( _q1 ); + + return this; + + }, + + rotateX: function ( angle ) { + + return this.rotateOnAxis( _xAxis, angle ); + + }, + + rotateY: function ( angle ) { + + return this.rotateOnAxis( _yAxis, angle ); + + }, + + rotateZ: function ( angle ) { + + return this.rotateOnAxis( _zAxis, angle ); + + }, + + translateOnAxis: function ( axis, distance ) { + + // translate object by distance along axis in object space + // axis is assumed to be normalized + + _v1$1.copy( axis ).applyQuaternion( this.quaternion ); + + this.position.add( _v1$1.multiplyScalar( distance ) ); + + return this; + + }, + + translateX: function ( distance ) { + + return this.translateOnAxis( _xAxis, distance ); + + }, + + translateY: function ( distance ) { + + return this.translateOnAxis( _yAxis, distance ); + + }, + + translateZ: function ( distance ) { + + return this.translateOnAxis( _zAxis, distance ); + + }, + + localToWorld: function ( vector ) { + + return vector.applyMatrix4( this.matrixWorld ); + + }, + + worldToLocal: function ( vector ) { + + return vector.applyMatrix4( _m1$1.getInverse( this.matrixWorld ) ); + + }, + + lookAt: function ( x, y, z ) { + + // This method does not support objects having non-uniformly-scaled parent(s) + + if ( x.isVector3 ) { + + _target.copy( x ); + + } else { + + _target.set( x, y, z ); + + } + + var parent = this.parent; + + this.updateWorldMatrix( true, false ); + + _position.setFromMatrixPosition( this.matrixWorld ); + + if ( this.isCamera || this.isLight ) { + + _m1$1.lookAt( _position, _target, this.up ); + + } else { + + _m1$1.lookAt( _target, _position, this.up ); + + } + + this.quaternion.setFromRotationMatrix( _m1$1 ); + + if ( parent ) { + + _m1$1.extractRotation( parent.matrixWorld ); + _q1.setFromRotationMatrix( _m1$1 ); + this.quaternion.premultiply( _q1.inverse() ); + + } + + }, + + add: function ( object ) { + + if ( arguments.length > 1 ) { + + for ( var i = 0; i < arguments.length; i ++ ) { + + this.add( arguments[ i ] ); + + } + + return this; + + } + + if ( object === this ) { + + console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object ); + return this; + + } + + if ( ( object && object.isObject3D ) ) { + + if ( object.parent !== null ) { + + object.parent.remove( object ); + + } + + object.parent = this; + this.children.push( object ); + + object.dispatchEvent( _addedEvent ); + + } else { + + console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object ); + + } + + return this; + + }, + + remove: function ( object ) { + + if ( arguments.length > 1 ) { + + for ( var i = 0; i < arguments.length; i ++ ) { + + this.remove( arguments[ i ] ); + + } + + return this; + + } + + var index = this.children.indexOf( object ); + + if ( index !== - 1 ) { + + object.parent = null; + this.children.splice( index, 1 ); + + object.dispatchEvent( _removedEvent ); + + } + + return this; + + }, + + attach: function ( object ) { + + // adds object as a child of this, while maintaining the object's world transform + + this.updateWorldMatrix( true, false ); + + _m1$1.getInverse( this.matrixWorld ); + + if ( object.parent !== null ) { + + object.parent.updateWorldMatrix( true, false ); + + _m1$1.multiply( object.parent.matrixWorld ); + + } + + object.applyMatrix4( _m1$1 ); + + object.updateWorldMatrix( false, false ); + + this.add( object ); + + return this; + + }, + + getObjectById: function ( id ) { + + return this.getObjectByProperty( 'id', id ); + + }, + + getObjectByName: function ( name ) { + + return this.getObjectByProperty( 'name', name ); + + }, + + getObjectByProperty: function ( name, value ) { + + if ( this[ name ] === value ) { return this; } + + for ( var i = 0, l = this.children.length; i < l; i ++ ) { + + var child = this.children[ i ]; + var object = child.getObjectByProperty( name, value ); + + if ( object !== undefined ) { + + return object; + + } + + } + + return undefined; + + }, + + getWorldPosition: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' ); + target = new Vector3(); + + } + + this.updateMatrixWorld( true ); + + return target.setFromMatrixPosition( this.matrixWorld ); + + }, + + getWorldQuaternion: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' ); + target = new Quaternion(); + + } + + this.updateMatrixWorld( true ); + + this.matrixWorld.decompose( _position, target, _scale ); + + return target; + + }, + + getWorldScale: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Object3D: .getWorldScale() target is now required' ); + target = new Vector3(); + + } + + this.updateMatrixWorld( true ); + + this.matrixWorld.decompose( _position, _quaternion$2, target ); + + return target; + + }, + + getWorldDirection: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' ); + target = new Vector3(); + + } + + this.updateMatrixWorld( true ); + + var e = this.matrixWorld.elements; + + return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); + + }, + + raycast: function () {}, + + traverse: function ( callback ) { + + callback( this ); + + var children = this.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].traverse( callback ); + + } + + }, + + traverseVisible: function ( callback ) { + + if ( this.visible === false ) { return; } + + callback( this ); + + var children = this.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].traverseVisible( callback ); + + } + + }, + + traverseAncestors: function ( callback ) { + + var parent = this.parent; + + if ( parent !== null ) { + + callback( parent ); + + parent.traverseAncestors( callback ); + + } + + }, + + updateMatrix: function () { + + this.matrix.compose( this.position, this.quaternion, this.scale ); + + this.matrixWorldNeedsUpdate = true; + + }, + + updateMatrixWorld: function ( force ) { + + if ( this.matrixAutoUpdate ) { this.updateMatrix(); } + + if ( this.matrixWorldNeedsUpdate || force ) { + + if ( this.parent === null ) { + + this.matrixWorld.copy( this.matrix ); + + } else { + + this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); + + } + + this.matrixWorldNeedsUpdate = false; + + force = true; + + } + + // update children + + var children = this.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].updateMatrixWorld( force ); + + } + + }, + + updateWorldMatrix: function ( updateParents, updateChildren ) { + + var parent = this.parent; + + if ( updateParents === true && parent !== null ) { + + parent.updateWorldMatrix( true, false ); + + } + + if ( this.matrixAutoUpdate ) { this.updateMatrix(); } + + if ( this.parent === null ) { + + this.matrixWorld.copy( this.matrix ); + + } else { + + this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); + + } + + // update children + + if ( updateChildren === true ) { + + var children = this.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + children[ i ].updateWorldMatrix( false, true ); + + } + + } + + }, + + toJSON: function ( meta ) { + + // meta is a string when called from JSON.stringify + var isRootObject = ( meta === undefined || typeof meta === 'string' ); + + var output = {}; + + // meta is a hash used to collect geometries, materials. + // not providing it implies that this is the root object + // being serialized. + if ( isRootObject ) { + + // initialize meta obj + meta = { + geometries: {}, + materials: {}, + textures: {}, + images: {}, + shapes: {} + }; + + output.metadata = { + version: 4.5, + type: 'Object', + generator: 'Object3D.toJSON' + }; + + } + + // standard Object3D serialization + + var object = {}; + + object.uuid = this.uuid; + object.type = this.type; + + if ( this.name !== '' ) { object.name = this.name; } + if ( this.castShadow === true ) { object.castShadow = true; } + if ( this.receiveShadow === true ) { object.receiveShadow = true; } + if ( this.visible === false ) { object.visible = false; } + if ( this.frustumCulled === false ) { object.frustumCulled = false; } + if ( this.renderOrder !== 0 ) { object.renderOrder = this.renderOrder; } + if ( JSON.stringify( this.userData ) !== '{}' ) { object.userData = this.userData; } + + object.layers = this.layers.mask; + object.matrix = this.matrix.toArray(); + + if ( this.matrixAutoUpdate === false ) { object.matrixAutoUpdate = false; } + + // object specific properties + + if ( this.isInstancedMesh ) { + + object.type = 'InstancedMesh'; + object.count = this.count; + object.instanceMatrix = this.instanceMatrix.toJSON(); + + } + + // + + function serialize( library, element ) { + + if ( library[ element.uuid ] === undefined ) { + + library[ element.uuid ] = element.toJSON( meta ); + + } + + return element.uuid; + + } + + if ( this.isMesh || this.isLine || this.isPoints ) { + + object.geometry = serialize( meta.geometries, this.geometry ); + + var parameters = this.geometry.parameters; + + if ( parameters !== undefined && parameters.shapes !== undefined ) { + + var shapes = parameters.shapes; + + if ( Array.isArray( shapes ) ) { + + for ( var i = 0, l = shapes.length; i < l; i ++ ) { + + var shape = shapes[ i ]; + + serialize( meta.shapes, shape ); + + } + + } else { + + serialize( meta.shapes, shapes ); + + } + + } + + } + + if ( this.material !== undefined ) { + + if ( Array.isArray( this.material ) ) { + + var uuids = []; + + for ( var i$1 = 0, l$1 = this.material.length; i$1 < l$1; i$1 ++ ) { + + uuids.push( serialize( meta.materials, this.material[ i$1 ] ) ); + + } + + object.material = uuids; + + } else { + + object.material = serialize( meta.materials, this.material ); + + } + + } + + // + + if ( this.children.length > 0 ) { + + object.children = []; + + for ( var i$2 = 0; i$2 < this.children.length; i$2 ++ ) { + + object.children.push( this.children[ i$2 ].toJSON( meta ).object ); + + } + + } + + if ( isRootObject ) { + + var geometries = extractFromCache( meta.geometries ); + var materials = extractFromCache( meta.materials ); + var textures = extractFromCache( meta.textures ); + var images = extractFromCache( meta.images ); + var shapes$1 = extractFromCache( meta.shapes ); + + if ( geometries.length > 0 ) { output.geometries = geometries; } + if ( materials.length > 0 ) { output.materials = materials; } + if ( textures.length > 0 ) { output.textures = textures; } + if ( images.length > 0 ) { output.images = images; } + if ( shapes$1.length > 0 ) { output.shapes = shapes$1; } + + } + + output.object = object; + + return output; + + // extract data from the cache hash + // remove metadata on each item + // and return as array + function extractFromCache( cache ) { + + var values = []; + for ( var key in cache ) { + + var data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + }, + + clone: function ( recursive ) { + + return new this.constructor().copy( this, recursive ); + + }, + + copy: function ( source, recursive ) { + + if ( recursive === undefined ) { recursive = true; } + + this.name = source.name; + + this.up.copy( source.up ); + + this.position.copy( source.position ); + this.rotation.order = source.rotation.order; + this.quaternion.copy( source.quaternion ); + this.scale.copy( source.scale ); + + this.matrix.copy( source.matrix ); + this.matrixWorld.copy( source.matrixWorld ); + + this.matrixAutoUpdate = source.matrixAutoUpdate; + this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; + + this.layers.mask = source.layers.mask; + this.visible = source.visible; + + this.castShadow = source.castShadow; + this.receiveShadow = source.receiveShadow; + + this.frustumCulled = source.frustumCulled; + this.renderOrder = source.renderOrder; + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + if ( recursive === true ) { + + for ( var i = 0; i < source.children.length; i ++ ) { + + var child = source.children[ i ]; + this.add( child.clone() ); + + } + + } + + return this; + + } + + } ); + + function Scene() { + + Object3D.call( this ); + + this.type = 'Scene'; + + this.background = null; + this.environment = null; + this.fog = null; + + this.overrideMaterial = null; + + this.autoUpdate = true; // checked by the renderer + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef + + } + + } + + Scene.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Scene, + + isScene: true, + + copy: function ( source, recursive ) { + + Object3D.prototype.copy.call( this, source, recursive ); + + if ( source.background !== null ) { this.background = source.background.clone(); } + if ( source.environment !== null ) { this.environment = source.environment.clone(); } + if ( source.fog !== null ) { this.fog = source.fog.clone(); } + + if ( source.overrideMaterial !== null ) { this.overrideMaterial = source.overrideMaterial.clone(); } + + this.autoUpdate = source.autoUpdate; + this.matrixAutoUpdate = source.matrixAutoUpdate; + + return this; + + }, + + toJSON: function ( meta ) { + + var data = Object3D.prototype.toJSON.call( this, meta ); + + if ( this.background !== null ) { data.object.background = this.background.toJSON( meta ); } + if ( this.environment !== null ) { data.object.environment = this.environment.toJSON( meta ); } + if ( this.fog !== null ) { data.object.fog = this.fog.toJSON(); } + + return data; + + }, + + dispose: function () { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + } ); + + var _points = [ + new Vector3(), + new Vector3(), + new Vector3(), + new Vector3(), + new Vector3(), + new Vector3(), + new Vector3(), + new Vector3() + ]; + + var _vector$1 = new Vector3(); + + var _box = new Box3(); + + // triangle centered vertices + + var _v0 = new Vector3(); + var _v1$2 = new Vector3(); + var _v2 = new Vector3(); + + // triangle edge vectors + + var _f0 = new Vector3(); + var _f1 = new Vector3(); + var _f2 = new Vector3(); + + var _center = new Vector3(); + var _extents = new Vector3(); + var _triangleNormal = new Vector3(); + var _testAxis = new Vector3(); + + function Box3( min, max ) { + + this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity ); + this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity ); + + } + + + Object.assign( Box3.prototype, { + + isBox3: true, + + set: function ( min, max ) { + + this.min.copy( min ); + this.max.copy( max ); + + return this; + + }, + + setFromArray: function ( array ) { + + var minX = + Infinity; + var minY = + Infinity; + var minZ = + Infinity; + + var maxX = - Infinity; + var maxY = - Infinity; + var maxZ = - Infinity; + + for ( var i = 0, l = array.length; i < l; i += 3 ) { + + var x = array[ i ]; + var y = array[ i + 1 ]; + var z = array[ i + 2 ]; + + if ( x < minX ) { minX = x; } + if ( y < minY ) { minY = y; } + if ( z < minZ ) { minZ = z; } + + if ( x > maxX ) { maxX = x; } + if ( y > maxY ) { maxY = y; } + if ( z > maxZ ) { maxZ = z; } + + } + + this.min.set( minX, minY, minZ ); + this.max.set( maxX, maxY, maxZ ); + + return this; + + }, + + setFromBufferAttribute: function ( attribute ) { + + var minX = + Infinity; + var minY = + Infinity; + var minZ = + Infinity; + + var maxX = - Infinity; + var maxY = - Infinity; + var maxZ = - Infinity; + + for ( var i = 0, l = attribute.count; i < l; i ++ ) { + + var x = attribute.getX( i ); + var y = attribute.getY( i ); + var z = attribute.getZ( i ); + + if ( x < minX ) { minX = x; } + if ( y < minY ) { minY = y; } + if ( z < minZ ) { minZ = z; } + + if ( x > maxX ) { maxX = x; } + if ( y > maxY ) { maxY = y; } + if ( z > maxZ ) { maxZ = z; } + + } + + this.min.set( minX, minY, minZ ); + this.max.set( maxX, maxY, maxZ ); + + return this; + + }, + + setFromPoints: function ( points ) { + + this.makeEmpty(); + + for ( var i = 0, il = points.length; i < il; i ++ ) { + + this.expandByPoint( points[ i ] ); + + } + + return this; + + }, + + setFromCenterAndSize: function ( center, size ) { + + var halfSize = _vector$1.copy( size ).multiplyScalar( 0.5 ); + + this.min.copy( center ).sub( halfSize ); + this.max.copy( center ).add( halfSize ); + + return this; + + }, + + setFromObject: function ( object ) { + + this.makeEmpty(); + + return this.expandByObject( object ); + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( box ) { + + this.min.copy( box.min ); + this.max.copy( box.max ); + + return this; + + }, + + makeEmpty: function () { + + this.min.x = this.min.y = this.min.z = + Infinity; + this.max.x = this.max.y = this.max.z = - Infinity; + + return this; + + }, + + isEmpty: function () { + + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + + return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); + + }, + + getCenter: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Box3: .getCenter() target is now required' ); + target = new Vector3(); + + } + + return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); + + }, + + getSize: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Box3: .getSize() target is now required' ); + target = new Vector3(); + + } + + return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); + + }, + + expandByPoint: function ( point ) { + + this.min.min( point ); + this.max.max( point ); + + return this; + + }, + + expandByVector: function ( vector ) { + + this.min.sub( vector ); + this.max.add( vector ); + + return this; + + }, + + expandByScalar: function ( scalar ) { + + this.min.addScalar( - scalar ); + this.max.addScalar( scalar ); + + return this; + + }, + + expandByObject: function ( object ) { + + // Computes the world-axis-aligned bounding box of an object (including its children), + // accounting for both the object's, and children's, world transforms + + object.updateWorldMatrix( false, false ); + + var geometry = object.geometry; + + if ( geometry !== undefined ) { + + if ( geometry.boundingBox === null ) { + + geometry.computeBoundingBox(); + + } + + _box.copy( geometry.boundingBox ); + _box.applyMatrix4( object.matrixWorld ); + + this.union( _box ); + + } + + var children = object.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + this.expandByObject( children[ i ] ); + + } + + return this; + + }, + + containsPoint: function ( point ) { + + return point.x < this.min.x || point.x > this.max.x || + point.y < this.min.y || point.y > this.max.y || + point.z < this.min.z || point.z > this.max.z ? false : true; + + }, + + containsBox: function ( box ) { + + return this.min.x <= box.min.x && box.max.x <= this.max.x && + this.min.y <= box.min.y && box.max.y <= this.max.y && + this.min.z <= box.min.z && box.max.z <= this.max.z; + + }, + + getParameter: function ( point, target ) { + + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + + if ( target === undefined ) { + + console.warn( 'THREE.Box3: .getParameter() target is now required' ); + target = new Vector3(); + + } + + return target.set( + ( point.x - this.min.x ) / ( this.max.x - this.min.x ), + ( point.y - this.min.y ) / ( this.max.y - this.min.y ), + ( point.z - this.min.z ) / ( this.max.z - this.min.z ) + ); + + }, + + intersectsBox: function ( box ) { + + // using 6 splitting planes to rule out intersections. + return box.max.x < this.min.x || box.min.x > this.max.x || + box.max.y < this.min.y || box.min.y > this.max.y || + box.max.z < this.min.z || box.min.z > this.max.z ? false : true; + + }, + + intersectsSphere: function ( sphere ) { + + // Find the point on the AABB closest to the sphere center. + this.clampPoint( sphere.center, _vector$1 ); + + // If that point is inside the sphere, the AABB and sphere intersect. + return _vector$1.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); + + }, + + intersectsPlane: function ( plane ) { + + // We compute the minimum and maximum dot product values. If those values + // are on the same side (back or front) of the plane, then there is no intersection. + + var min, max; + + if ( plane.normal.x > 0 ) { + + min = plane.normal.x * this.min.x; + max = plane.normal.x * this.max.x; + + } else { + + min = plane.normal.x * this.max.x; + max = plane.normal.x * this.min.x; + + } + + if ( plane.normal.y > 0 ) { + + min += plane.normal.y * this.min.y; + max += plane.normal.y * this.max.y; + + } else { + + min += plane.normal.y * this.max.y; + max += plane.normal.y * this.min.y; + + } + + if ( plane.normal.z > 0 ) { + + min += plane.normal.z * this.min.z; + max += plane.normal.z * this.max.z; + + } else { + + min += plane.normal.z * this.max.z; + max += plane.normal.z * this.min.z; + + } + + return ( min <= - plane.constant && max >= - plane.constant ); + + }, + + intersectsTriangle: function ( triangle ) { + + if ( this.isEmpty() ) { + + return false; + + } + + // compute box center and extents + this.getCenter( _center ); + _extents.subVectors( this.max, _center ); + + // translate triangle to aabb origin + _v0.subVectors( triangle.a, _center ); + _v1$2.subVectors( triangle.b, _center ); + _v2.subVectors( triangle.c, _center ); + + // compute edge vectors for triangle + _f0.subVectors( _v1$2, _v0 ); + _f1.subVectors( _v2, _v1$2 ); + _f2.subVectors( _v0, _v2 ); + + // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb + // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation + // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) + var axes = [ + 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, + _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, + - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 + ]; + if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) { + + return false; + + } + + // test 3 face normals from the aabb + axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; + if ( ! satForAxes( axes, _v0, _v1$2, _v2, _extents ) ) { + + return false; + + } + + // finally testing the face normal of the triangle + // use already existing triangle edge vectors here + _triangleNormal.crossVectors( _f0, _f1 ); + axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; + + return satForAxes( axes, _v0, _v1$2, _v2, _extents ); + + }, + + clampPoint: function ( point, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Box3: .clampPoint() target is now required' ); + target = new Vector3(); + + } + + return target.copy( point ).clamp( this.min, this.max ); + + }, + + distanceToPoint: function ( point ) { + + var clampedPoint = _vector$1.copy( point ).clamp( this.min, this.max ); + + return clampedPoint.sub( point ).length(); + + }, + + getBoundingSphere: function ( target ) { + + if ( target === undefined ) { + + console.error( 'THREE.Box3: .getBoundingSphere() target is now required' ); + //target = new Sphere(); // removed to avoid cyclic dependency + + } + + this.getCenter( target.center ); + + target.radius = this.getSize( _vector$1 ).length() * 0.5; + + return target; + + }, + + intersect: function ( box ) { + + this.min.max( box.min ); + this.max.min( box.max ); + + // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. + if ( this.isEmpty() ) { this.makeEmpty(); } + + return this; + + }, + + union: function ( box ) { + + this.min.min( box.min ); + this.max.max( box.max ); + + return this; + + }, + + applyMatrix4: function ( matrix ) { + + // transform of empty box is an empty box. + if ( this.isEmpty() ) { return this; } + + // NOTE: I am using a binary pattern to specify all 2^3 combinations below + _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 + _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 + _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 + _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 + _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 + _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 + _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 + _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 + + this.setFromPoints( _points ); + + return this; + + }, + + translate: function ( offset ) { + + this.min.add( offset ); + this.max.add( offset ); + + return this; + + }, + + equals: function ( box ) { + + return box.min.equals( this.min ) && box.max.equals( this.max ); + + } + + } ); + + function satForAxes( axes, v0, v1, v2, extents ) { + + for ( var i = 0, j = axes.length - 3; i <= j; i += 3 ) { + + _testAxis.fromArray( axes, i ); + // project the aabb onto the seperating axis + var r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); + // project all 3 vertices of the triangle onto the seperating axis + var p0 = v0.dot( _testAxis ); + var p1 = v1.dot( _testAxis ); + var p2 = v2.dot( _testAxis ); + // actual test, basically see if either of the most extreme of the triangle points intersects r + if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { + + // points of the projected triangle are outside the projected half-length of the aabb + // the axis is seperating and we can exit + return false; + + } + + } + + return true; + + } + + var _box$1 = new Box3(); + + function Sphere( center, radius ) { + + this.center = ( center !== undefined ) ? center : new Vector3(); + this.radius = ( radius !== undefined ) ? radius : - 1; + + } + + Object.assign( Sphere.prototype, { + + set: function ( center, radius ) { + + this.center.copy( center ); + this.radius = radius; + + return this; + + }, + + setFromPoints: function ( points, optionalCenter ) { + + var center = this.center; + + if ( optionalCenter !== undefined ) { + + center.copy( optionalCenter ); + + } else { + + _box$1.setFromPoints( points ).getCenter( center ); + + } + + var maxRadiusSq = 0; + + for ( var i = 0, il = points.length; i < il; i ++ ) { + + maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); + + } + + this.radius = Math.sqrt( maxRadiusSq ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( sphere ) { + + this.center.copy( sphere.center ); + this.radius = sphere.radius; + + return this; + + }, + + isEmpty: function () { + + return ( this.radius < 0 ); + + }, + + makeEmpty: function () { + + this.center.set( 0, 0, 0 ); + this.radius = - 1; + + return this; + + }, + + containsPoint: function ( point ) { + + return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); + + }, + + distanceToPoint: function ( point ) { + + return ( point.distanceTo( this.center ) - this.radius ); + + }, + + intersectsSphere: function ( sphere ) { + + var radiusSum = this.radius + sphere.radius; + + return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); + + }, + + intersectsBox: function ( box ) { + + return box.intersectsSphere( this ); + + }, + + intersectsPlane: function ( plane ) { + + return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; + + }, + + clampPoint: function ( point, target ) { + + var deltaLengthSq = this.center.distanceToSquared( point ); + + if ( target === undefined ) { + + console.warn( 'THREE.Sphere: .clampPoint() target is now required' ); + target = new Vector3(); + + } + + target.copy( point ); + + if ( deltaLengthSq > ( this.radius * this.radius ) ) { + + target.sub( this.center ).normalize(); + target.multiplyScalar( this.radius ).add( this.center ); + + } + + return target; + + }, + + getBoundingBox: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' ); + target = new Box3(); + + } + + if ( this.isEmpty() ) { + + // Empty sphere produces empty bounding box + target.makeEmpty(); + return target; + + } + + target.set( this.center, this.center ); + target.expandByScalar( this.radius ); + + return target; + + }, + + applyMatrix4: function ( matrix ) { + + this.center.applyMatrix4( matrix ); + this.radius = this.radius * matrix.getMaxScaleOnAxis(); + + return this; + + }, + + translate: function ( offset ) { + + this.center.add( offset ); + + return this; + + }, + + equals: function ( sphere ) { + + return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); + + } + + } ); + + var _vector$2 = new Vector3(); + var _segCenter = new Vector3(); + var _segDir = new Vector3(); + var _diff = new Vector3(); + + var _edge1 = new Vector3(); + var _edge2 = new Vector3(); + var _normal = new Vector3(); + + function Ray( origin, direction ) { + + this.origin = ( origin !== undefined ) ? origin : new Vector3(); + this.direction = ( direction !== undefined ) ? direction : new Vector3( 0, 0, - 1 ); + + } + + Object.assign( Ray.prototype, { + + set: function ( origin, direction ) { + + this.origin.copy( origin ); + this.direction.copy( direction ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( ray ) { + + this.origin.copy( ray.origin ); + this.direction.copy( ray.direction ); + + return this; + + }, + + at: function ( t, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Ray: .at() target is now required' ); + target = new Vector3(); + + } + + return target.copy( this.direction ).multiplyScalar( t ).add( this.origin ); + + }, + + lookAt: function ( v ) { + + this.direction.copy( v ).sub( this.origin ).normalize(); + + return this; + + }, + + recast: function ( t ) { + + this.origin.copy( this.at( t, _vector$2 ) ); + + return this; + + }, + + closestPointToPoint: function ( point, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' ); + target = new Vector3(); + + } + + target.subVectors( point, this.origin ); + + var directionDistance = target.dot( this.direction ); + + if ( directionDistance < 0 ) { + + return target.copy( this.origin ); + + } + + return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); + + }, + + distanceToPoint: function ( point ) { + + return Math.sqrt( this.distanceSqToPoint( point ) ); + + }, + + distanceSqToPoint: function ( point ) { + + var directionDistance = _vector$2.subVectors( point, this.origin ).dot( this.direction ); + + // point behind the ray + + if ( directionDistance < 0 ) { + + return this.origin.distanceToSquared( point ); + + } + + _vector$2.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin ); + + return _vector$2.distanceToSquared( point ); + + }, + + distanceSqToSegment: function ( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { + + // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h + // It returns the min distance between the ray and the segment + // defined by v0 and v1 + // It can also set two optional targets : + // - The closest point on the ray + // - The closest point on the segment + + _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); + _segDir.copy( v1 ).sub( v0 ).normalize(); + _diff.copy( this.origin ).sub( _segCenter ); + + var segExtent = v0.distanceTo( v1 ) * 0.5; + var a01 = - this.direction.dot( _segDir ); + var b0 = _diff.dot( this.direction ); + var b1 = - _diff.dot( _segDir ); + var c = _diff.lengthSq(); + var det = Math.abs( 1 - a01 * a01 ); + var s0, s1, sqrDist, extDet; + + if ( det > 0 ) { + + // The ray and segment are not parallel. + + s0 = a01 * b1 - b0; + s1 = a01 * b0 - b1; + extDet = segExtent * det; + + if ( s0 >= 0 ) { + + if ( s1 >= - extDet ) { + + if ( s1 <= extDet ) { + + // region 0 + // Minimum at interior points of ray and segment. + + var invDet = 1 / det; + s0 *= invDet; + s1 *= invDet; + sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; + + } else { + + // region 1 + + s1 = segExtent; + s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + } else { + + // region 5 + + s1 = - segExtent; + s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + } else { + + if ( s1 <= - extDet ) { + + // region 4 + + s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); + s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } else if ( s1 <= extDet ) { + + // region 3 + + s0 = 0; + s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); + sqrDist = s1 * ( s1 + 2 * b1 ) + c; + + } else { + + // region 2 + + s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); + s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + } + + } else { + + // Ray and segment are parallel. + + s1 = ( a01 > 0 ) ? - segExtent : segExtent; + s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); + sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; + + } + + if ( optionalPointOnRay ) { + + optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin ); + + } + + if ( optionalPointOnSegment ) { + + optionalPointOnSegment.copy( _segDir ).multiplyScalar( s1 ).add( _segCenter ); + + } + + return sqrDist; + + }, + + intersectSphere: function ( sphere, target ) { + + _vector$2.subVectors( sphere.center, this.origin ); + var tca = _vector$2.dot( this.direction ); + var d2 = _vector$2.dot( _vector$2 ) - tca * tca; + var radius2 = sphere.radius * sphere.radius; + + if ( d2 > radius2 ) { return null; } + + var thc = Math.sqrt( radius2 - d2 ); + + // t0 = first intersect point - entrance on front of sphere + var t0 = tca - thc; + + // t1 = second intersect point - exit point on back of sphere + var t1 = tca + thc; + + // test to see if both t0 and t1 are behind the ray - if so, return null + if ( t0 < 0 && t1 < 0 ) { return null; } + + // test to see if t0 is behind the ray: + // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, + // in order to always return an intersect point that is in front of the ray. + if ( t0 < 0 ) { return this.at( t1, target ); } + + // else t0 is in front of the ray, so return the first collision point scaled by t0 + return this.at( t0, target ); + + }, + + intersectsSphere: function ( sphere ) { + + return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); + + }, + + distanceToPlane: function ( plane ) { + + var denominator = plane.normal.dot( this.direction ); + + if ( denominator === 0 ) { + + // line is coplanar, return origin + if ( plane.distanceToPoint( this.origin ) === 0 ) { + + return 0; + + } + + // Null is preferable to undefined since undefined means.... it is undefined + + return null; + + } + + var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; + + // Return if the ray never intersects the plane + + return t >= 0 ? t : null; + + }, + + intersectPlane: function ( plane, target ) { + + var t = this.distanceToPlane( plane ); + + if ( t === null ) { + + return null; + + } + + return this.at( t, target ); + + }, + + intersectsPlane: function ( plane ) { + + // check if the ray lies on the plane first + + var distToPoint = plane.distanceToPoint( this.origin ); + + if ( distToPoint === 0 ) { + + return true; + + } + + var denominator = plane.normal.dot( this.direction ); + + if ( denominator * distToPoint < 0 ) { + + return true; + + } + + // ray origin is behind the plane (and is pointing behind it) + + return false; + + }, + + intersectBox: function ( box, target ) { + + var tmin, tmax, tymin, tymax, tzmin, tzmax; + + var invdirx = 1 / this.direction.x, + invdiry = 1 / this.direction.y, + invdirz = 1 / this.direction.z; + + var origin = this.origin; + + if ( invdirx >= 0 ) { + + tmin = ( box.min.x - origin.x ) * invdirx; + tmax = ( box.max.x - origin.x ) * invdirx; + + } else { + + tmin = ( box.max.x - origin.x ) * invdirx; + tmax = ( box.min.x - origin.x ) * invdirx; + + } + + if ( invdiry >= 0 ) { + + tymin = ( box.min.y - origin.y ) * invdiry; + tymax = ( box.max.y - origin.y ) * invdiry; + + } else { + + tymin = ( box.max.y - origin.y ) * invdiry; + tymax = ( box.min.y - origin.y ) * invdiry; + + } + + if ( ( tmin > tymax ) || ( tymin > tmax ) ) { return null; } + + // These lines also handle the case where tmin or tmax is NaN + // (result of 0 * Infinity). x !== x returns true if x is NaN + + if ( tymin > tmin || tmin !== tmin ) { tmin = tymin; } + + if ( tymax < tmax || tmax !== tmax ) { tmax = tymax; } + + if ( invdirz >= 0 ) { + + tzmin = ( box.min.z - origin.z ) * invdirz; + tzmax = ( box.max.z - origin.z ) * invdirz; + + } else { + + tzmin = ( box.max.z - origin.z ) * invdirz; + tzmax = ( box.min.z - origin.z ) * invdirz; + + } + + if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) { return null; } + + if ( tzmin > tmin || tmin !== tmin ) { tmin = tzmin; } + + if ( tzmax < tmax || tmax !== tmax ) { tmax = tzmax; } + + //return point closest to the ray (positive side) + + if ( tmax < 0 ) { return null; } + + return this.at( tmin >= 0 ? tmin : tmax, target ); + + }, + + intersectsBox: function ( box ) { + + return this.intersectBox( box, _vector$2 ) !== null; + + }, + + intersectTriangle: function ( a, b, c, backfaceCulling, target ) { + + // Compute the offset origin, edges, and normal. + + // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h + + _edge1.subVectors( b, a ); + _edge2.subVectors( c, a ); + _normal.crossVectors( _edge1, _edge2 ); + + // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, + // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by + // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) + // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) + // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) + var DdN = this.direction.dot( _normal ); + var sign; + + if ( DdN > 0 ) { + + if ( backfaceCulling ) { return null; } + sign = 1; + + } else if ( DdN < 0 ) { + + sign = - 1; + DdN = - DdN; + + } else { + + return null; + + } + + _diff.subVectors( this.origin, a ); + var DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) ); + + // b1 < 0, no intersection + if ( DdQxE2 < 0 ) { + + return null; + + } + + var DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) ); + + // b2 < 0, no intersection + if ( DdE1xQ < 0 ) { + + return null; + + } + + // b1+b2 > 1, no intersection + if ( DdQxE2 + DdE1xQ > DdN ) { + + return null; + + } + + // Line intersects triangle, check if ray does. + var QdN = - sign * _diff.dot( _normal ); + + // t < 0, no intersection + if ( QdN < 0 ) { + + return null; + + } + + // Ray intersects triangle. + return this.at( QdN / DdN, target ); + + }, + + applyMatrix4: function ( matrix4 ) { + + this.origin.applyMatrix4( matrix4 ); + this.direction.transformDirection( matrix4 ); + + return this; + + }, + + equals: function ( ray ) { + + return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); + + } + + } ); + + var _vector1 = new Vector3(); + var _vector2 = new Vector3(); + var _normalMatrix = new Matrix3(); + + function Plane( normal, constant ) { + + // normal is assumed to be normalized + + this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 ); + this.constant = ( constant !== undefined ) ? constant : 0; + + } + + Object.assign( Plane.prototype, { + + isPlane: true, + + set: function ( normal, constant ) { + + this.normal.copy( normal ); + this.constant = constant; + + return this; + + }, + + setComponents: function ( x, y, z, w ) { + + this.normal.set( x, y, z ); + this.constant = w; + + return this; + + }, + + setFromNormalAndCoplanarPoint: function ( normal, point ) { + + this.normal.copy( normal ); + this.constant = - point.dot( this.normal ); + + return this; + + }, + + setFromCoplanarPoints: function ( a, b, c ) { + + var normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); + + // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? + + this.setFromNormalAndCoplanarPoint( normal, a ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( plane ) { + + this.normal.copy( plane.normal ); + this.constant = plane.constant; + + return this; + + }, + + normalize: function () { + + // Note: will lead to a divide by zero if the plane is invalid. + + var inverseNormalLength = 1.0 / this.normal.length(); + this.normal.multiplyScalar( inverseNormalLength ); + this.constant *= inverseNormalLength; + + return this; + + }, + + negate: function () { + + this.constant *= - 1; + this.normal.negate(); + + return this; + + }, + + distanceToPoint: function ( point ) { + + return this.normal.dot( point ) + this.constant; + + }, + + distanceToSphere: function ( sphere ) { + + return this.distanceToPoint( sphere.center ) - sphere.radius; + + }, + + projectPoint: function ( point, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Plane: .projectPoint() target is now required' ); + target = new Vector3(); + + } + + return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point ); + + }, + + intersectLine: function ( line, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Plane: .intersectLine() target is now required' ); + target = new Vector3(); + + } + + var direction = line.delta( _vector1 ); + + var denominator = this.normal.dot( direction ); + + if ( denominator === 0 ) { + + // line is coplanar, return origin + if ( this.distanceToPoint( line.start ) === 0 ) { + + return target.copy( line.start ); + + } + + // Unsure if this is the correct method to handle this case. + return undefined; + + } + + var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; + + if ( t < 0 || t > 1 ) { + + return undefined; + + } + + return target.copy( direction ).multiplyScalar( t ).add( line.start ); + + }, + + intersectsLine: function ( line ) { + + // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. + + var startSign = this.distanceToPoint( line.start ); + var endSign = this.distanceToPoint( line.end ); + + return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); + + }, + + intersectsBox: function ( box ) { + + return box.intersectsPlane( this ); + + }, + + intersectsSphere: function ( sphere ) { + + return sphere.intersectsPlane( this ); + + }, + + coplanarPoint: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Plane: .coplanarPoint() target is now required' ); + target = new Vector3(); + + } + + return target.copy( this.normal ).multiplyScalar( - this.constant ); + + }, + + applyMatrix4: function ( matrix, optionalNormalMatrix ) { + + var normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); + + var referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); + + var normal = this.normal.applyMatrix3( normalMatrix ).normalize(); + + this.constant = - referencePoint.dot( normal ); + + return this; + + }, + + translate: function ( offset ) { + + this.constant -= offset.dot( this.normal ); + + return this; + + }, + + equals: function ( plane ) { + + return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); + + } + + } ); + + var _v0$1 = new Vector3(); + var _v1$3 = new Vector3(); + var _v2$1 = new Vector3(); + var _v3 = new Vector3(); + + var _vab = new Vector3(); + var _vac = new Vector3(); + var _vbc = new Vector3(); + var _vap = new Vector3(); + var _vbp = new Vector3(); + var _vcp = new Vector3(); + + function Triangle( a, b, c ) { + + this.a = ( a !== undefined ) ? a : new Vector3(); + this.b = ( b !== undefined ) ? b : new Vector3(); + this.c = ( c !== undefined ) ? c : new Vector3(); + + } + + Object.assign( Triangle, { + + getNormal: function ( a, b, c, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Triangle: .getNormal() target is now required' ); + target = new Vector3(); + + } + + target.subVectors( c, b ); + _v0$1.subVectors( a, b ); + target.cross( _v0$1 ); + + var targetLengthSq = target.lengthSq(); + if ( targetLengthSq > 0 ) { + + return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); + + } + + return target.set( 0, 0, 0 ); + + }, + + // static/instance method to calculate barycentric coordinates + // based on: http://www.blackpawn.com/texts/pointinpoly/default.html + getBarycoord: function ( point, a, b, c, target ) { + + _v0$1.subVectors( c, a ); + _v1$3.subVectors( b, a ); + _v2$1.subVectors( point, a ); + + var dot00 = _v0$1.dot( _v0$1 ); + var dot01 = _v0$1.dot( _v1$3 ); + var dot02 = _v0$1.dot( _v2$1 ); + var dot11 = _v1$3.dot( _v1$3 ); + var dot12 = _v1$3.dot( _v2$1 ); + + var denom = ( dot00 * dot11 - dot01 * dot01 ); + + if ( target === undefined ) { + + console.warn( 'THREE.Triangle: .getBarycoord() target is now required' ); + target = new Vector3(); + + } + + // collinear or singular triangle + if ( denom === 0 ) { + + // arbitrary location outside of triangle? + // not sure if this is the best idea, maybe should be returning undefined + return target.set( - 2, - 1, - 1 ); + + } + + var invDenom = 1 / denom; + var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; + var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; + + // barycentric coordinates must always sum to 1 + return target.set( 1 - u - v, v, u ); + + }, + + containsPoint: function ( point, a, b, c ) { + + Triangle.getBarycoord( point, a, b, c, _v3 ); + + return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 ); + + }, + + getUV: function ( point, p1, p2, p3, uv1, uv2, uv3, target ) { + + this.getBarycoord( point, p1, p2, p3, _v3 ); + + target.set( 0, 0 ); + target.addScaledVector( uv1, _v3.x ); + target.addScaledVector( uv2, _v3.y ); + target.addScaledVector( uv3, _v3.z ); + + return target; + + }, + + isFrontFacing: function ( a, b, c, direction ) { + + _v0$1.subVectors( c, b ); + _v1$3.subVectors( a, b ); + + // strictly front facing + return ( _v0$1.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; + + } + + } ); + + Object.assign( Triangle.prototype, { + + set: function ( a, b, c ) { + + this.a.copy( a ); + this.b.copy( b ); + this.c.copy( c ); + + return this; + + }, + + setFromPointsAndIndices: function ( points, i0, i1, i2 ) { + + this.a.copy( points[ i0 ] ); + this.b.copy( points[ i1 ] ); + this.c.copy( points[ i2 ] ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( triangle ) { + + this.a.copy( triangle.a ); + this.b.copy( triangle.b ); + this.c.copy( triangle.c ); + + return this; + + }, + + getArea: function () { + + _v0$1.subVectors( this.c, this.b ); + _v1$3.subVectors( this.a, this.b ); + + return _v0$1.cross( _v1$3 ).length() * 0.5; + + }, + + getMidpoint: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Triangle: .getMidpoint() target is now required' ); + target = new Vector3(); + + } + + return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); + + }, + + getNormal: function ( target ) { + + return Triangle.getNormal( this.a, this.b, this.c, target ); + + }, + + getPlane: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Triangle: .getPlane() target is now required' ); + target = new Plane(); + + } + + return target.setFromCoplanarPoints( this.a, this.b, this.c ); + + }, + + getBarycoord: function ( point, target ) { + + return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); + + }, + + getUV: function ( point, uv1, uv2, uv3, target ) { + + return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target ); + + }, + + containsPoint: function ( point ) { + + return Triangle.containsPoint( point, this.a, this.b, this.c ); + + }, + + isFrontFacing: function ( direction ) { + + return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); + + }, + + intersectsBox: function ( box ) { + + return box.intersectsTriangle( this ); + + }, + + closestPointToPoint: function ( p, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' ); + target = new Vector3(); + + } + + var a = this.a, b = this.b, c = this.c; + var v, w; + + // algorithm thanks to Real-Time Collision Detection by Christer Ericson, + // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., + // under the accompanying license; see chapter 5.1.5 for detailed explanation. + // basically, we're distinguishing which of the voronoi regions of the triangle + // the point lies in with the minimum amount of redundant computation. + + _vab.subVectors( b, a ); + _vac.subVectors( c, a ); + _vap.subVectors( p, a ); + var d1 = _vab.dot( _vap ); + var d2 = _vac.dot( _vap ); + if ( d1 <= 0 && d2 <= 0 ) { + + // vertex region of A; barycentric coords (1, 0, 0) + return target.copy( a ); + + } + + _vbp.subVectors( p, b ); + var d3 = _vab.dot( _vbp ); + var d4 = _vac.dot( _vbp ); + if ( d3 >= 0 && d4 <= d3 ) { + + // vertex region of B; barycentric coords (0, 1, 0) + return target.copy( b ); + + } + + var vc = d1 * d4 - d3 * d2; + if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { + + v = d1 / ( d1 - d3 ); + // edge region of AB; barycentric coords (1-v, v, 0) + return target.copy( a ).addScaledVector( _vab, v ); + + } + + _vcp.subVectors( p, c ); + var d5 = _vab.dot( _vcp ); + var d6 = _vac.dot( _vcp ); + if ( d6 >= 0 && d5 <= d6 ) { + + // vertex region of C; barycentric coords (0, 0, 1) + return target.copy( c ); + + } + + var vb = d5 * d2 - d1 * d6; + if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { + + w = d2 / ( d2 - d6 ); + // edge region of AC; barycentric coords (1-w, 0, w) + return target.copy( a ).addScaledVector( _vac, w ); + + } + + var va = d3 * d6 - d5 * d4; + if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { + + _vbc.subVectors( c, b ); + w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); + // edge region of BC; barycentric coords (0, 1-w, w) + return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC + + } + + // face region + var denom = 1 / ( va + vb + vc ); + // u = va * denom + v = vb * denom; + w = vc * denom; + + return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); + + }, + + equals: function ( triangle ) { + + return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); + + } + + } ); + + var _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, + 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, + 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, + 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, + 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, + 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, + 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, + 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, + 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, + 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, + 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, + 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, + 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, + 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, + 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, + 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, + 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, + 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, + 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, + 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, + 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, + 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, + 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, + 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; + + var _hslA = { h: 0, s: 0, l: 0 }; + var _hslB = { h: 0, s: 0, l: 0 }; + + function Color( r, g, b ) { + + if ( g === undefined && b === undefined ) { + + // r is THREE.Color, hex or string + return this.set( r ); + + } + + return this.setRGB( r, g, b ); + + } + + function hue2rgb( p, q, t ) { + + if ( t < 0 ) { t += 1; } + if ( t > 1 ) { t -= 1; } + if ( t < 1 / 6 ) { return p + ( q - p ) * 6 * t; } + if ( t < 1 / 2 ) { return q; } + if ( t < 2 / 3 ) { return p + ( q - p ) * 6 * ( 2 / 3 - t ); } + return p; + + } + + function SRGBToLinear( c ) { + + return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); + + } + + function LinearToSRGB( c ) { + + return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; + + } + + Object.assign( Color.prototype, { + + isColor: true, + + r: 1, g: 1, b: 1, + + set: function ( value ) { + + if ( value && value.isColor ) { + + this.copy( value ); + + } else if ( typeof value === 'number' ) { + + this.setHex( value ); + + } else if ( typeof value === 'string' ) { + + this.setStyle( value ); + + } + + return this; + + }, + + setScalar: function ( scalar ) { + + this.r = scalar; + this.g = scalar; + this.b = scalar; + + return this; + + }, + + setHex: function ( hex ) { + + hex = Math.floor( hex ); + + this.r = ( hex >> 16 & 255 ) / 255; + this.g = ( hex >> 8 & 255 ) / 255; + this.b = ( hex & 255 ) / 255; + + return this; + + }, + + setRGB: function ( r, g, b ) { + + this.r = r; + this.g = g; + this.b = b; + + return this; + + }, + + setHSL: function ( h, s, l ) { + + // h,s,l ranges are in 0.0 - 1.0 + h = MathUtils.euclideanModulo( h, 1 ); + s = MathUtils.clamp( s, 0, 1 ); + l = MathUtils.clamp( l, 0, 1 ); + + if ( s === 0 ) { + + this.r = this.g = this.b = l; + + } else { + + var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); + var q = ( 2 * l ) - p; + + this.r = hue2rgb( q, p, h + 1 / 3 ); + this.g = hue2rgb( q, p, h ); + this.b = hue2rgb( q, p, h - 1 / 3 ); + + } + + return this; + + }, + + setStyle: function ( style ) { + + function handleAlpha( string ) { + + if ( string === undefined ) { return; } + + if ( parseFloat( string ) < 1 ) { + + console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); + + } + + } + + + var m; + + if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) { + + // rgb / hsl + + var color; + var name = m[ 1 ]; + var components = m[ 2 ]; + + switch ( name ) { + + case 'rgb': + case 'rgba': + + if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { + + // rgb(255,0,0) rgba(255,0,0,0.5) + this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255; + this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255; + this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255; + + handleAlpha( color[ 5 ] ); + + return this; + + } + + if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { + + // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) + this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100; + this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100; + this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100; + + handleAlpha( color[ 5 ] ); + + return this; + + } + + break; + + case 'hsl': + case 'hsla': + + if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) { + + // hsl(120,50%,50%) hsla(120,50%,50%,0.5) + var h = parseFloat( color[ 1 ] ) / 360; + var s = parseInt( color[ 2 ], 10 ) / 100; + var l = parseInt( color[ 3 ], 10 ) / 100; + + handleAlpha( color[ 5 ] ); + + return this.setHSL( h, s, l ); + + } + + break; + + } + + } else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) { + + // hex color + + var hex = m[ 1 ]; + var size = hex.length; + + if ( size === 3 ) { + + // #ff0 + this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255; + this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255; + this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255; + + return this; + + } else if ( size === 6 ) { + + // #ff0000 + this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255; + this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255; + this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255; + + return this; + + } + + } + + if ( style && style.length > 0 ) { + + return this.setColorName( style ); + + } + + return this; + + }, + + setColorName: function ( style ) { + + // color keywords + var hex = _colorKeywords[ style ]; + + if ( hex !== undefined ) { + + // red + this.setHex( hex ); + + } else { + + // unknown color + console.warn( 'THREE.Color: Unknown color ' + style ); + + } + + return this; + + }, + + clone: function () { + + return new this.constructor( this.r, this.g, this.b ); + + }, + + copy: function ( color ) { + + this.r = color.r; + this.g = color.g; + this.b = color.b; + + return this; + + }, + + copyGammaToLinear: function ( color, gammaFactor ) { + + if ( gammaFactor === undefined ) { gammaFactor = 2.0; } + + this.r = Math.pow( color.r, gammaFactor ); + this.g = Math.pow( color.g, gammaFactor ); + this.b = Math.pow( color.b, gammaFactor ); + + return this; + + }, + + copyLinearToGamma: function ( color, gammaFactor ) { + + if ( gammaFactor === undefined ) { gammaFactor = 2.0; } + + var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0; + + this.r = Math.pow( color.r, safeInverse ); + this.g = Math.pow( color.g, safeInverse ); + this.b = Math.pow( color.b, safeInverse ); + + return this; + + }, + + convertGammaToLinear: function ( gammaFactor ) { + + this.copyGammaToLinear( this, gammaFactor ); + + return this; + + }, + + convertLinearToGamma: function ( gammaFactor ) { + + this.copyLinearToGamma( this, gammaFactor ); + + return this; + + }, + + copySRGBToLinear: function ( color ) { + + this.r = SRGBToLinear( color.r ); + this.g = SRGBToLinear( color.g ); + this.b = SRGBToLinear( color.b ); + + return this; + + }, + + copyLinearToSRGB: function ( color ) { + + this.r = LinearToSRGB( color.r ); + this.g = LinearToSRGB( color.g ); + this.b = LinearToSRGB( color.b ); + + return this; + + }, + + convertSRGBToLinear: function () { + + this.copySRGBToLinear( this ); + + return this; + + }, + + convertLinearToSRGB: function () { + + this.copyLinearToSRGB( this ); + + return this; + + }, + + getHex: function () { + + return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0; + + }, + + getHexString: function () { + + return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 ); + + }, + + getHSL: function ( target ) { + + // h,s,l ranges are in 0.0 - 1.0 + + if ( target === undefined ) { + + console.warn( 'THREE.Color: .getHSL() target is now required' ); + target = { h: 0, s: 0, l: 0 }; + + } + + var r = this.r, g = this.g, b = this.b; + + var max = Math.max( r, g, b ); + var min = Math.min( r, g, b ); + + var hue, saturation; + var lightness = ( min + max ) / 2.0; + + if ( min === max ) { + + hue = 0; + saturation = 0; + + } else { + + var delta = max - min; + + saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); + + switch ( max ) { + + case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; + case g: hue = ( b - r ) / delta + 2; break; + case b: hue = ( r - g ) / delta + 4; break; + + } + + hue /= 6; + + } + + target.h = hue; + target.s = saturation; + target.l = lightness; + + return target; + + }, + + getStyle: function () { + + return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')'; + + }, + + offsetHSL: function ( h, s, l ) { + + this.getHSL( _hslA ); + + _hslA.h += h; _hslA.s += s; _hslA.l += l; + + this.setHSL( _hslA.h, _hslA.s, _hslA.l ); + + return this; + + }, + + add: function ( color ) { + + this.r += color.r; + this.g += color.g; + this.b += color.b; + + return this; + + }, + + addColors: function ( color1, color2 ) { + + this.r = color1.r + color2.r; + this.g = color1.g + color2.g; + this.b = color1.b + color2.b; + + return this; + + }, + + addScalar: function ( s ) { + + this.r += s; + this.g += s; + this.b += s; + + return this; + + }, + + sub: function ( color ) { + + this.r = Math.max( 0, this.r - color.r ); + this.g = Math.max( 0, this.g - color.g ); + this.b = Math.max( 0, this.b - color.b ); + + return this; + + }, + + multiply: function ( color ) { + + this.r *= color.r; + this.g *= color.g; + this.b *= color.b; + + return this; + + }, + + multiplyScalar: function ( s ) { + + this.r *= s; + this.g *= s; + this.b *= s; + + return this; + + }, + + lerp: function ( color, alpha ) { + + this.r += ( color.r - this.r ) * alpha; + this.g += ( color.g - this.g ) * alpha; + this.b += ( color.b - this.b ) * alpha; + + return this; + + }, + + lerpHSL: function ( color, alpha ) { + + this.getHSL( _hslA ); + color.getHSL( _hslB ); + + var h = MathUtils.lerp( _hslA.h, _hslB.h, alpha ); + var s = MathUtils.lerp( _hslA.s, _hslB.s, alpha ); + var l = MathUtils.lerp( _hslA.l, _hslB.l, alpha ); + + this.setHSL( h, s, l ); + + return this; + + }, + + equals: function ( c ) { + + return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this.r = array[ offset ]; + this.g = array[ offset + 1 ]; + this.b = array[ offset + 2 ]; + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + array[ offset ] = this.r; + array[ offset + 1 ] = this.g; + array[ offset + 2 ] = this.b; + + return array; + + }, + + fromBufferAttribute: function ( attribute, index ) { + + this.r = attribute.getX( index ); + this.g = attribute.getY( index ); + this.b = attribute.getZ( index ); + + if ( attribute.normalized === true ) { + + // assuming Uint8Array + + this.r /= 255; + this.g /= 255; + this.b /= 255; + + } + + return this; + + }, + + toJSON: function () { + + return this.getHex(); + + } + + } ); + + Color.NAMES = _colorKeywords; + + function Face3( a, b, c, normal, color, materialIndex ) { + + this.a = a; + this.b = b; + this.c = c; + + this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3(); + this.vertexNormals = Array.isArray( normal ) ? normal : []; + + this.color = ( color && color.isColor ) ? color : new Color(); + this.vertexColors = Array.isArray( color ) ? color : []; + + this.materialIndex = materialIndex !== undefined ? materialIndex : 0; + + } + + Object.assign( Face3.prototype, { + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( source ) { + + this.a = source.a; + this.b = source.b; + this.c = source.c; + + this.normal.copy( source.normal ); + this.color.copy( source.color ); + + this.materialIndex = source.materialIndex; + + for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) { + + this.vertexNormals[ i ] = source.vertexNormals[ i ].clone(); + + } + + for ( var i$1 = 0, il$1 = source.vertexColors.length; i$1 < il$1; i$1 ++ ) { + + this.vertexColors[ i$1 ] = source.vertexColors[ i$1 ].clone(); + + } + + return this; + + } + + } ); + + var materialId = 0; + + function Material() { + + Object.defineProperty( this, 'id', { value: materialId ++ } ); + + this.uuid = MathUtils.generateUUID(); + + this.name = ''; + this.type = 'Material'; + + this.fog = true; + + this.blending = NormalBlending; + this.side = FrontSide; + this.flatShading = false; + this.vertexColors = false; + + this.opacity = 1; + this.transparent = false; + + this.blendSrc = SrcAlphaFactor; + this.blendDst = OneMinusSrcAlphaFactor; + this.blendEquation = AddEquation; + this.blendSrcAlpha = null; + this.blendDstAlpha = null; + this.blendEquationAlpha = null; + + this.depthFunc = LessEqualDepth; + this.depthTest = true; + this.depthWrite = true; + + this.stencilWriteMask = 0xff; + this.stencilFunc = AlwaysStencilFunc; + this.stencilRef = 0; + this.stencilFuncMask = 0xff; + this.stencilFail = KeepStencilOp; + this.stencilZFail = KeepStencilOp; + this.stencilZPass = KeepStencilOp; + this.stencilWrite = false; + + this.clippingPlanes = null; + this.clipIntersection = false; + this.clipShadows = false; + + this.shadowSide = null; + + this.colorWrite = true; + + this.precision = null; // override the renderer's default precision for this material + + this.polygonOffset = false; + this.polygonOffsetFactor = 0; + this.polygonOffsetUnits = 0; + + this.dithering = false; + + this.alphaTest = 0; + this.premultipliedAlpha = false; + + this.visible = true; + + this.toneMapped = true; + + this.userData = {}; + + this.version = 0; + + } + + Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: Material, + + isMaterial: true, + + onBeforeCompile: function ( /* shaderobject, renderer */ ) {}, + + customProgramCacheKey: function () { + + return this.onBeforeCompile.toString(); + + }, + + setValues: function ( values ) { + + if ( values === undefined ) { return; } + + for ( var key in values ) { + + var newValue = values[ key ]; + + if ( newValue === undefined ) { + + console.warn( "THREE.Material: '" + key + "' parameter is undefined." ); + continue; + + } + + // for backward compatability if shading is set in the constructor + if ( key === 'shading' ) { + + console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); + this.flatShading = ( newValue === FlatShading ) ? true : false; + continue; + + } + + var currentValue = this[ key ]; + + if ( currentValue === undefined ) { + + console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." ); + continue; + + } + + if ( currentValue && currentValue.isColor ) { + + currentValue.set( newValue ); + + } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { + + currentValue.copy( newValue ); + + } else { + + this[ key ] = newValue; + + } + + } + + }, + + toJSON: function ( meta ) { + + var isRoot = ( meta === undefined || typeof meta === 'string' ); + + if ( isRoot ) { + + meta = { + textures: {}, + images: {} + }; + + } + + var data = { + metadata: { + version: 4.5, + type: 'Material', + generator: 'Material.toJSON' + } + }; + + // standard Material serialization + data.uuid = this.uuid; + data.type = this.type; + + if ( this.name !== '' ) { data.name = this.name; } + + if ( this.color && this.color.isColor ) { data.color = this.color.getHex(); } + + if ( this.roughness !== undefined ) { data.roughness = this.roughness; } + if ( this.metalness !== undefined ) { data.metalness = this.metalness; } + + if ( this.sheen && this.sheen.isColor ) { data.sheen = this.sheen.getHex(); } + if ( this.emissive && this.emissive.isColor ) { data.emissive = this.emissive.getHex(); } + if ( this.emissiveIntensity && this.emissiveIntensity !== 1 ) { data.emissiveIntensity = this.emissiveIntensity; } + + if ( this.specular && this.specular.isColor ) { data.specular = this.specular.getHex(); } + if ( this.shininess !== undefined ) { data.shininess = this.shininess; } + if ( this.clearcoat !== undefined ) { data.clearcoat = this.clearcoat; } + if ( this.clearcoatRoughness !== undefined ) { data.clearcoatRoughness = this.clearcoatRoughness; } + + if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { + + data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; + + } + + if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { + + data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; + + } + + if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { + + data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; + data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); + + } + + if ( this.map && this.map.isTexture ) { data.map = this.map.toJSON( meta ).uuid; } + if ( this.matcap && this.matcap.isTexture ) { data.matcap = this.matcap.toJSON( meta ).uuid; } + if ( this.alphaMap && this.alphaMap.isTexture ) { data.alphaMap = this.alphaMap.toJSON( meta ).uuid; } + if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; } + + if ( this.aoMap && this.aoMap.isTexture ) { + + data.aoMap = this.aoMap.toJSON( meta ).uuid; + data.aoMapIntensity = this.aoMapIntensity; + + } + + if ( this.bumpMap && this.bumpMap.isTexture ) { + + data.bumpMap = this.bumpMap.toJSON( meta ).uuid; + data.bumpScale = this.bumpScale; + + } + + if ( this.normalMap && this.normalMap.isTexture ) { + + data.normalMap = this.normalMap.toJSON( meta ).uuid; + data.normalMapType = this.normalMapType; + data.normalScale = this.normalScale.toArray(); + + } + + if ( this.displacementMap && this.displacementMap.isTexture ) { + + data.displacementMap = this.displacementMap.toJSON( meta ).uuid; + data.displacementScale = this.displacementScale; + data.displacementBias = this.displacementBias; + + } + + if ( this.roughnessMap && this.roughnessMap.isTexture ) { data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; } + if ( this.metalnessMap && this.metalnessMap.isTexture ) { data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; } + + if ( this.emissiveMap && this.emissiveMap.isTexture ) { data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; } + if ( this.specularMap && this.specularMap.isTexture ) { data.specularMap = this.specularMap.toJSON( meta ).uuid; } + + if ( this.envMap && this.envMap.isTexture ) { + + data.envMap = this.envMap.toJSON( meta ).uuid; + data.reflectivity = this.reflectivity; // Scale behind envMap + data.refractionRatio = this.refractionRatio; + + if ( this.combine !== undefined ) { data.combine = this.combine; } + if ( this.envMapIntensity !== undefined ) { data.envMapIntensity = this.envMapIntensity; } + + } + + if ( this.gradientMap && this.gradientMap.isTexture ) { + + data.gradientMap = this.gradientMap.toJSON( meta ).uuid; + + } + + if ( this.size !== undefined ) { data.size = this.size; } + if ( this.sizeAttenuation !== undefined ) { data.sizeAttenuation = this.sizeAttenuation; } + + if ( this.blending !== NormalBlending ) { data.blending = this.blending; } + if ( this.flatShading === true ) { data.flatShading = this.flatShading; } + if ( this.side !== FrontSide ) { data.side = this.side; } + if ( this.vertexColors ) { data.vertexColors = true; } + + if ( this.opacity < 1 ) { data.opacity = this.opacity; } + if ( this.transparent === true ) { data.transparent = this.transparent; } + + data.depthFunc = this.depthFunc; + data.depthTest = this.depthTest; + data.depthWrite = this.depthWrite; + + data.stencilWrite = this.stencilWrite; + data.stencilWriteMask = this.stencilWriteMask; + data.stencilFunc = this.stencilFunc; + data.stencilRef = this.stencilRef; + data.stencilFuncMask = this.stencilFuncMask; + data.stencilFail = this.stencilFail; + data.stencilZFail = this.stencilZFail; + data.stencilZPass = this.stencilZPass; + + // rotation (SpriteMaterial) + if ( this.rotation && this.rotation !== 0 ) { data.rotation = this.rotation; } + + if ( this.polygonOffset === true ) { data.polygonOffset = true; } + if ( this.polygonOffsetFactor !== 0 ) { data.polygonOffsetFactor = this.polygonOffsetFactor; } + if ( this.polygonOffsetUnits !== 0 ) { data.polygonOffsetUnits = this.polygonOffsetUnits; } + + if ( this.linewidth && this.linewidth !== 1 ) { data.linewidth = this.linewidth; } + if ( this.dashSize !== undefined ) { data.dashSize = this.dashSize; } + if ( this.gapSize !== undefined ) { data.gapSize = this.gapSize; } + if ( this.scale !== undefined ) { data.scale = this.scale; } + + if ( this.dithering === true ) { data.dithering = true; } + + if ( this.alphaTest > 0 ) { data.alphaTest = this.alphaTest; } + if ( this.premultipliedAlpha === true ) { data.premultipliedAlpha = this.premultipliedAlpha; } + + if ( this.wireframe === true ) { data.wireframe = this.wireframe; } + if ( this.wireframeLinewidth > 1 ) { data.wireframeLinewidth = this.wireframeLinewidth; } + if ( this.wireframeLinecap !== 'round' ) { data.wireframeLinecap = this.wireframeLinecap; } + if ( this.wireframeLinejoin !== 'round' ) { data.wireframeLinejoin = this.wireframeLinejoin; } + + if ( this.morphTargets === true ) { data.morphTargets = true; } + if ( this.morphNormals === true ) { data.morphNormals = true; } + if ( this.skinning === true ) { data.skinning = true; } + + if ( this.visible === false ) { data.visible = false; } + + if ( this.toneMapped === false ) { data.toneMapped = false; } + + if ( JSON.stringify( this.userData ) !== '{}' ) { data.userData = this.userData; } + + // TODO: Copied from Object3D.toJSON + + function extractFromCache( cache ) { + + var values = []; + + for ( var key in cache ) { + + var data = cache[ key ]; + delete data.metadata; + values.push( data ); + + } + + return values; + + } + + if ( isRoot ) { + + var textures = extractFromCache( meta.textures ); + var images = extractFromCache( meta.images ); + + if ( textures.length > 0 ) { data.textures = textures; } + if ( images.length > 0 ) { data.images = images; } + + } + + return data; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( source ) { + + this.name = source.name; + + this.fog = source.fog; + + this.blending = source.blending; + this.side = source.side; + this.flatShading = source.flatShading; + this.vertexColors = source.vertexColors; + + this.opacity = source.opacity; + this.transparent = source.transparent; + + this.blendSrc = source.blendSrc; + this.blendDst = source.blendDst; + this.blendEquation = source.blendEquation; + this.blendSrcAlpha = source.blendSrcAlpha; + this.blendDstAlpha = source.blendDstAlpha; + this.blendEquationAlpha = source.blendEquationAlpha; + + this.depthFunc = source.depthFunc; + this.depthTest = source.depthTest; + this.depthWrite = source.depthWrite; + + this.stencilWriteMask = source.stencilWriteMask; + this.stencilFunc = source.stencilFunc; + this.stencilRef = source.stencilRef; + this.stencilFuncMask = source.stencilFuncMask; + this.stencilFail = source.stencilFail; + this.stencilZFail = source.stencilZFail; + this.stencilZPass = source.stencilZPass; + this.stencilWrite = source.stencilWrite; + + var srcPlanes = source.clippingPlanes; + var dstPlanes = null; + + if ( srcPlanes !== null ) { + + var n = srcPlanes.length; + dstPlanes = new Array( n ); + + for ( var i = 0; i !== n; ++ i ) { + + dstPlanes[ i ] = srcPlanes[ i ].clone(); + + } + + } + + this.clippingPlanes = dstPlanes; + this.clipIntersection = source.clipIntersection; + this.clipShadows = source.clipShadows; + + this.shadowSide = source.shadowSide; + + this.colorWrite = source.colorWrite; + + this.precision = source.precision; + + this.polygonOffset = source.polygonOffset; + this.polygonOffsetFactor = source.polygonOffsetFactor; + this.polygonOffsetUnits = source.polygonOffsetUnits; + + this.dithering = source.dithering; + + this.alphaTest = source.alphaTest; + this.premultipliedAlpha = source.premultipliedAlpha; + + this.visible = source.visible; + + this.toneMapped = source.toneMapped; + + this.userData = JSON.parse( JSON.stringify( source.userData ) ); + + return this; + + }, + + dispose: function () { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + } ); + + Object.defineProperty( Material.prototype, 'needsUpdate', { + + set: function ( value ) { + + if ( value === true ) { this.version ++; } + + } + + } ); + + /** + * parameters = { + * color: , + * opacity: , + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.Multiply, + * reflectivity: , + * refractionRatio: , + * + * depthTest: , + * depthWrite: , + * + * wireframe: , + * wireframeLinewidth: , + * + * skinning: , + * morphTargets: + * } + */ + + function MeshBasicMaterial( parameters ) { + + Material.call( this ); + + this.type = 'MeshBasicMaterial'; + + this.color = new Color( 0xffffff ); // emissive + + this.map = null; + + this.lightMap = null; + this.lightMapIntensity = 1.0; + + this.aoMap = null; + this.aoMapIntensity = 1.0; + + this.specularMap = null; + + this.alphaMap = null; + + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + + this.skinning = false; + this.morphTargets = false; + + this.setValues( parameters ); + + } + + MeshBasicMaterial.prototype = Object.create( Material.prototype ); + MeshBasicMaterial.prototype.constructor = MeshBasicMaterial; + + MeshBasicMaterial.prototype.isMeshBasicMaterial = true; + + MeshBasicMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.specularMap = source.specularMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + + return this; + + }; + + var _vector$3 = new Vector3(); + var _vector2$1 = new Vector2(); + + function BufferAttribute( array, itemSize, normalized ) { + + if ( Array.isArray( array ) ) { + + throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); + + } + + this.name = ''; + + this.array = array; + this.itemSize = itemSize; + this.count = array !== undefined ? array.length / itemSize : 0; + this.normalized = normalized === true; + + this.usage = StaticDrawUsage; + this.updateRange = { offset: 0, count: - 1 }; + + this.version = 0; + + } + + Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', { + + set: function ( value ) { + + if ( value === true ) { this.version ++; } + + } + + } ); + + Object.assign( BufferAttribute.prototype, { + + isBufferAttribute: true, + + onUploadCallback: function () {}, + + setUsage: function ( value ) { + + this.usage = value; + + return this; + + }, + + copy: function ( source ) { + + this.name = source.name; + this.array = new source.array.constructor( source.array ); + this.itemSize = source.itemSize; + this.count = source.count; + this.normalized = source.normalized; + + this.usage = source.usage; + + return this; + + }, + + copyAt: function ( index1, attribute, index2 ) { + + index1 *= this.itemSize; + index2 *= attribute.itemSize; + + for ( var i = 0, l = this.itemSize; i < l; i ++ ) { + + this.array[ index1 + i ] = attribute.array[ index2 + i ]; + + } + + return this; + + }, + + copyArray: function ( array ) { + + this.array.set( array ); + + return this; + + }, + + copyColorsArray: function ( colors ) { + + var array = this.array; + var offset = 0; + + for ( var i = 0, l = colors.length; i < l; i ++ ) { + + var color = colors[ i ]; + + if ( color === undefined ) { + + console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i ); + color = new Color(); + + } + + array[ offset ++ ] = color.r; + array[ offset ++ ] = color.g; + array[ offset ++ ] = color.b; + + } + + return this; + + }, + + copyVector2sArray: function ( vectors ) { + + var array = this.array; + var offset = 0; + + for ( var i = 0, l = vectors.length; i < l; i ++ ) { + + var vector = vectors[ i ]; + + if ( vector === undefined ) { + + console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i ); + vector = new Vector2(); + + } + + array[ offset ++ ] = vector.x; + array[ offset ++ ] = vector.y; + + } + + return this; + + }, + + copyVector3sArray: function ( vectors ) { + + var array = this.array; + var offset = 0; + + for ( var i = 0, l = vectors.length; i < l; i ++ ) { + + var vector = vectors[ i ]; + + if ( vector === undefined ) { + + console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i ); + vector = new Vector3(); + + } + + array[ offset ++ ] = vector.x; + array[ offset ++ ] = vector.y; + array[ offset ++ ] = vector.z; + + } + + return this; + + }, + + copyVector4sArray: function ( vectors ) { + + var array = this.array; + var offset = 0; + + for ( var i = 0, l = vectors.length; i < l; i ++ ) { + + var vector = vectors[ i ]; + + if ( vector === undefined ) { + + console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i ); + vector = new Vector4(); + + } + + array[ offset ++ ] = vector.x; + array[ offset ++ ] = vector.y; + array[ offset ++ ] = vector.z; + array[ offset ++ ] = vector.w; + + } + + return this; + + }, + + applyMatrix3: function ( m ) { + + if ( this.itemSize === 2 ) { + + for ( var i = 0, l = this.count; i < l; i ++ ) { + + _vector2$1.fromBufferAttribute( this, i ); + _vector2$1.applyMatrix3( m ); + + this.setXY( i, _vector2$1.x, _vector2$1.y ); + + } + + } else if ( this.itemSize === 3 ) { + + for ( var i$1 = 0, l$1 = this.count; i$1 < l$1; i$1 ++ ) { + + _vector$3.fromBufferAttribute( this, i$1 ); + _vector$3.applyMatrix3( m ); + + this.setXYZ( i$1, _vector$3.x, _vector$3.y, _vector$3.z ); + + } + + } + + return this; + + }, + + applyMatrix4: function ( m ) { + + for ( var i = 0, l = this.count; i < l; i ++ ) { + + _vector$3.x = this.getX( i ); + _vector$3.y = this.getY( i ); + _vector$3.z = this.getZ( i ); + + _vector$3.applyMatrix4( m ); + + this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z ); + + } + + return this; + + }, + + applyNormalMatrix: function ( m ) { + + for ( var i = 0, l = this.count; i < l; i ++ ) { + + _vector$3.x = this.getX( i ); + _vector$3.y = this.getY( i ); + _vector$3.z = this.getZ( i ); + + _vector$3.applyNormalMatrix( m ); + + this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z ); + + } + + return this; + + }, + + transformDirection: function ( m ) { + + for ( var i = 0, l = this.count; i < l; i ++ ) { + + _vector$3.x = this.getX( i ); + _vector$3.y = this.getY( i ); + _vector$3.z = this.getZ( i ); + + _vector$3.transformDirection( m ); + + this.setXYZ( i, _vector$3.x, _vector$3.y, _vector$3.z ); + + } + + return this; + + }, + + set: function ( value, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this.array.set( value, offset ); + + return this; + + }, + + getX: function ( index ) { + + return this.array[ index * this.itemSize ]; + + }, + + setX: function ( index, x ) { + + this.array[ index * this.itemSize ] = x; + + return this; + + }, + + getY: function ( index ) { + + return this.array[ index * this.itemSize + 1 ]; + + }, + + setY: function ( index, y ) { + + this.array[ index * this.itemSize + 1 ] = y; + + return this; + + }, + + getZ: function ( index ) { + + return this.array[ index * this.itemSize + 2 ]; + + }, + + setZ: function ( index, z ) { + + this.array[ index * this.itemSize + 2 ] = z; + + return this; + + }, + + getW: function ( index ) { + + return this.array[ index * this.itemSize + 3 ]; + + }, + + setW: function ( index, w ) { + + this.array[ index * this.itemSize + 3 ] = w; + + return this; + + }, + + setXY: function ( index, x, y ) { + + index *= this.itemSize; + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + + return this; + + }, + + setXYZ: function ( index, x, y, z ) { + + index *= this.itemSize; + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + this.array[ index + 2 ] = z; + + return this; + + }, + + setXYZW: function ( index, x, y, z, w ) { + + index *= this.itemSize; + + this.array[ index + 0 ] = x; + this.array[ index + 1 ] = y; + this.array[ index + 2 ] = z; + this.array[ index + 3 ] = w; + + return this; + + }, + + onUpload: function ( callback ) { + + this.onUploadCallback = callback; + + return this; + + }, + + clone: function () { + + return new this.constructor( this.array, this.itemSize ).copy( this ); + + }, + + toJSON: function () { + + return { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: Array.prototype.slice.call( this.array ), + normalized: this.normalized + }; + + } + + } ); + + // + + function Int8BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized ); + + } + + Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Int8BufferAttribute.prototype.constructor = Int8BufferAttribute; + + + function Uint8BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized ); + + } + + Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute; + + + function Uint8ClampedBufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized ); + + } + + Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute; + + + function Int16BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized ); + + } + + Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Int16BufferAttribute.prototype.constructor = Int16BufferAttribute; + + + function Uint16BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized ); + + } + + Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute; + + + function Int32BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized ); + + } + + Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Int32BufferAttribute.prototype.constructor = Int32BufferAttribute; + + + function Uint32BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized ); + + } + + Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute; + + + function Float32BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized ); + + } + + Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Float32BufferAttribute.prototype.constructor = Float32BufferAttribute; + + + function Float64BufferAttribute( array, itemSize, normalized ) { + + BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized ); + + } + + Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype ); + Float64BufferAttribute.prototype.constructor = Float64BufferAttribute; + + function DirectGeometry() { + + this.vertices = []; + this.normals = []; + this.colors = []; + this.uvs = []; + this.uvs2 = []; + + this.groups = []; + + this.morphTargets = {}; + + this.skinWeights = []; + this.skinIndices = []; + + // this.lineDistances = []; + + this.boundingBox = null; + this.boundingSphere = null; + + // update flags + + this.verticesNeedUpdate = false; + this.normalsNeedUpdate = false; + this.colorsNeedUpdate = false; + this.uvsNeedUpdate = false; + this.groupsNeedUpdate = false; + + } + + Object.assign( DirectGeometry.prototype, { + + computeGroups: function ( geometry ) { + + var groups = []; + + var group, i; + var materialIndex = undefined; + + var faces = geometry.faces; + + for ( i = 0; i < faces.length; i ++ ) { + + var face = faces[ i ]; + + // materials + + if ( face.materialIndex !== materialIndex ) { + + materialIndex = face.materialIndex; + + if ( group !== undefined ) { + + group.count = ( i * 3 ) - group.start; + groups.push( group ); + + } + + group = { + start: i * 3, + materialIndex: materialIndex + }; + + } + + } + + if ( group !== undefined ) { + + group.count = ( i * 3 ) - group.start; + groups.push( group ); + + } + + this.groups = groups; + + }, + + fromGeometry: function ( geometry ) { + + var faces = geometry.faces; + var vertices = geometry.vertices; + var faceVertexUvs = geometry.faceVertexUvs; + + var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0; + var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0; + + // morphs + + var morphTargets = geometry.morphTargets; + var morphTargetsLength = morphTargets.length; + + var morphTargetsPosition; + + if ( morphTargetsLength > 0 ) { + + morphTargetsPosition = []; + + for ( var i = 0; i < morphTargetsLength; i ++ ) { + + morphTargetsPosition[ i ] = { + name: morphTargets[ i ].name, + data: [] + }; + + } + + this.morphTargets.position = morphTargetsPosition; + + } + + var morphNormals = geometry.morphNormals; + var morphNormalsLength = morphNormals.length; + + var morphTargetsNormal; + + if ( morphNormalsLength > 0 ) { + + morphTargetsNormal = []; + + for ( var i$1 = 0; i$1 < morphNormalsLength; i$1 ++ ) { + + morphTargetsNormal[ i$1 ] = { + name: morphNormals[ i$1 ].name, + data: [] + }; + + } + + this.morphTargets.normal = morphTargetsNormal; + + } + + // skins + + var skinIndices = geometry.skinIndices; + var skinWeights = geometry.skinWeights; + + var hasSkinIndices = skinIndices.length === vertices.length; + var hasSkinWeights = skinWeights.length === vertices.length; + + // + + if ( vertices.length > 0 && faces.length === 0 ) { + + console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' ); + + } + + for ( var i$2 = 0; i$2 < faces.length; i$2 ++ ) { + + var face = faces[ i$2 ]; + + this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] ); + + var vertexNormals = face.vertexNormals; + + if ( vertexNormals.length === 3 ) { + + this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] ); + + } else { + + var normal = face.normal; + + this.normals.push( normal, normal, normal ); + + } + + var vertexColors = face.vertexColors; + + if ( vertexColors.length === 3 ) { + + this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] ); + + } else { + + var color = face.color; + + this.colors.push( color, color, color ); + + } + + if ( hasFaceVertexUv === true ) { + + var vertexUvs = faceVertexUvs[ 0 ][ i$2 ]; + + if ( vertexUvs !== undefined ) { + + this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] ); + + } else { + + console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i$2 ); + + this.uvs.push( new Vector2(), new Vector2(), new Vector2() ); + + } + + } + + if ( hasFaceVertexUv2 === true ) { + + var vertexUvs$1 = faceVertexUvs[ 1 ][ i$2 ]; + + if ( vertexUvs$1 !== undefined ) { + + this.uvs2.push( vertexUvs$1[ 0 ], vertexUvs$1[ 1 ], vertexUvs$1[ 2 ] ); + + } else { + + console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i$2 ); + + this.uvs2.push( new Vector2(), new Vector2(), new Vector2() ); + + } + + } + + // morphs + + for ( var j = 0; j < morphTargetsLength; j ++ ) { + + var morphTarget = morphTargets[ j ].vertices; + + morphTargetsPosition[ j ].data.push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] ); + + } + + for ( var j$1 = 0; j$1 < morphNormalsLength; j$1 ++ ) { + + var morphNormal = morphNormals[ j$1 ].vertexNormals[ i$2 ]; + + morphTargetsNormal[ j$1 ].data.push( morphNormal.a, morphNormal.b, morphNormal.c ); + + } + + // skins + + if ( hasSkinIndices ) { + + this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] ); + + } + + if ( hasSkinWeights ) { + + this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] ); + + } + + } + + this.computeGroups( geometry ); + + this.verticesNeedUpdate = geometry.verticesNeedUpdate; + this.normalsNeedUpdate = geometry.normalsNeedUpdate; + this.colorsNeedUpdate = geometry.colorsNeedUpdate; + this.uvsNeedUpdate = geometry.uvsNeedUpdate; + this.groupsNeedUpdate = geometry.groupsNeedUpdate; + + if ( geometry.boundingSphere !== null ) { + + this.boundingSphere = geometry.boundingSphere.clone(); + + } + + if ( geometry.boundingBox !== null ) { + + this.boundingBox = geometry.boundingBox.clone(); + + } + + return this; + + } + + } ); + + function arrayMax( array ) { + + if ( array.length === 0 ) { return - Infinity; } + + var max = array[ 0 ]; + + for ( var i = 1, l = array.length; i < l; ++ i ) { + + if ( array[ i ] > max ) { max = array[ i ]; } + + } + + return max; + + } + + var _bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id + + var _m1$2 = new Matrix4(); + var _obj = new Object3D(); + var _offset = new Vector3(); + var _box$2 = new Box3(); + var _boxMorphTargets = new Box3(); + var _vector$4 = new Vector3(); + + function BufferGeometry() { + + Object.defineProperty( this, 'id', { value: _bufferGeometryId += 2 } ); + + this.uuid = MathUtils.generateUUID(); + + this.name = ''; + this.type = 'BufferGeometry'; + + this.index = null; + this.attributes = {}; + + this.morphAttributes = {}; + this.morphTargetsRelative = false; + + this.groups = []; + + this.boundingBox = null; + this.boundingSphere = null; + + this.drawRange = { start: 0, count: Infinity }; + + this.userData = {}; + + } + + BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: BufferGeometry, + + isBufferGeometry: true, + + getIndex: function () { + + return this.index; + + }, + + setIndex: function ( index ) { + + if ( Array.isArray( index ) ) { + + this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); + + } else { + + this.index = index; + + } + + }, + + getAttribute: function ( name ) { + + return this.attributes[ name ]; + + }, + + setAttribute: function ( name, attribute ) { + + this.attributes[ name ] = attribute; + + return this; + + }, + + deleteAttribute: function ( name ) { + + delete this.attributes[ name ]; + + return this; + + }, + + addGroup: function ( start, count, materialIndex ) { + + this.groups.push( { + + start: start, + count: count, + materialIndex: materialIndex !== undefined ? materialIndex : 0 + + } ); + + }, + + clearGroups: function () { + + this.groups = []; + + }, + + setDrawRange: function ( start, count ) { + + this.drawRange.start = start; + this.drawRange.count = count; + + }, + + applyMatrix4: function ( matrix ) { + + var position = this.attributes.position; + + if ( position !== undefined ) { + + position.applyMatrix4( matrix ); + + position.needsUpdate = true; + + } + + var normal = this.attributes.normal; + + if ( normal !== undefined ) { + + var normalMatrix = new Matrix3().getNormalMatrix( matrix ); + + normal.applyNormalMatrix( normalMatrix ); + + normal.needsUpdate = true; + + } + + var tangent = this.attributes.tangent; + + if ( tangent !== undefined ) { + + tangent.transformDirection( matrix ); + + tangent.needsUpdate = true; + + } + + if ( this.boundingBox !== null ) { + + this.computeBoundingBox(); + + } + + if ( this.boundingSphere !== null ) { + + this.computeBoundingSphere(); + + } + + return this; + + }, + + rotateX: function ( angle ) { + + // rotate geometry around world x-axis + + _m1$2.makeRotationX( angle ); + + this.applyMatrix4( _m1$2 ); + + return this; + + }, + + rotateY: function ( angle ) { + + // rotate geometry around world y-axis + + _m1$2.makeRotationY( angle ); + + this.applyMatrix4( _m1$2 ); + + return this; + + }, + + rotateZ: function ( angle ) { + + // rotate geometry around world z-axis + + _m1$2.makeRotationZ( angle ); + + this.applyMatrix4( _m1$2 ); + + return this; + + }, + + translate: function ( x, y, z ) { + + // translate geometry + + _m1$2.makeTranslation( x, y, z ); + + this.applyMatrix4( _m1$2 ); + + return this; + + }, + + scale: function ( x, y, z ) { + + // scale geometry + + _m1$2.makeScale( x, y, z ); + + this.applyMatrix4( _m1$2 ); + + return this; + + }, + + lookAt: function ( vector ) { + + _obj.lookAt( vector ); + + _obj.updateMatrix(); + + this.applyMatrix4( _obj.matrix ); + + return this; + + }, + + center: function () { + + this.computeBoundingBox(); + + this.boundingBox.getCenter( _offset ).negate(); + + this.translate( _offset.x, _offset.y, _offset.z ); + + return this; + + }, + + setFromObject: function ( object ) { + + // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); + + var geometry = object.geometry; + + if ( object.isPoints || object.isLine ) { + + var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 ); + var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 ); + + this.setAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) ); + this.setAttribute( 'color', colors.copyColorsArray( geometry.colors ) ); + + if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) { + + var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 ); + + this.setAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) ); + + } + + if ( geometry.boundingSphere !== null ) { + + this.boundingSphere = geometry.boundingSphere.clone(); + + } + + if ( geometry.boundingBox !== null ) { + + this.boundingBox = geometry.boundingBox.clone(); + + } + + } else if ( object.isMesh ) { + + if ( geometry && geometry.isGeometry ) { + + this.fromGeometry( geometry ); + + } + + } + + return this; + + }, + + setFromPoints: function ( points ) { + + var position = []; + + for ( var i = 0, l = points.length; i < l; i ++ ) { + + var point = points[ i ]; + position.push( point.x, point.y, point.z || 0 ); + + } + + this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); + + return this; + + }, + + updateFromObject: function ( object ) { + + var geometry = object.geometry; + + if ( object.isMesh ) { + + var direct = geometry.__directGeometry; + + if ( geometry.elementsNeedUpdate === true ) { + + direct = undefined; + geometry.elementsNeedUpdate = false; + + } + + if ( direct === undefined ) { + + return this.fromGeometry( geometry ); + + } + + direct.verticesNeedUpdate = geometry.verticesNeedUpdate; + direct.normalsNeedUpdate = geometry.normalsNeedUpdate; + direct.colorsNeedUpdate = geometry.colorsNeedUpdate; + direct.uvsNeedUpdate = geometry.uvsNeedUpdate; + direct.groupsNeedUpdate = geometry.groupsNeedUpdate; + + geometry.verticesNeedUpdate = false; + geometry.normalsNeedUpdate = false; + geometry.colorsNeedUpdate = false; + geometry.uvsNeedUpdate = false; + geometry.groupsNeedUpdate = false; + + geometry = direct; + + } + + if ( geometry.verticesNeedUpdate === true ) { + + var attribute = this.attributes.position; + + if ( attribute !== undefined ) { + + attribute.copyVector3sArray( geometry.vertices ); + attribute.needsUpdate = true; + + } + + geometry.verticesNeedUpdate = false; + + } + + if ( geometry.normalsNeedUpdate === true ) { + + var attribute$1 = this.attributes.normal; + + if ( attribute$1 !== undefined ) { + + attribute$1.copyVector3sArray( geometry.normals ); + attribute$1.needsUpdate = true; + + } + + geometry.normalsNeedUpdate = false; + + } + + if ( geometry.colorsNeedUpdate === true ) { + + var attribute$2 = this.attributes.color; + + if ( attribute$2 !== undefined ) { + + attribute$2.copyColorsArray( geometry.colors ); + attribute$2.needsUpdate = true; + + } + + geometry.colorsNeedUpdate = false; + + } + + if ( geometry.uvsNeedUpdate ) { + + var attribute$3 = this.attributes.uv; + + if ( attribute$3 !== undefined ) { + + attribute$3.copyVector2sArray( geometry.uvs ); + attribute$3.needsUpdate = true; + + } + + geometry.uvsNeedUpdate = false; + + } + + if ( geometry.lineDistancesNeedUpdate ) { + + var attribute$4 = this.attributes.lineDistance; + + if ( attribute$4 !== undefined ) { + + attribute$4.copyArray( geometry.lineDistances ); + attribute$4.needsUpdate = true; + + } + + geometry.lineDistancesNeedUpdate = false; + + } + + if ( geometry.groupsNeedUpdate ) { + + geometry.computeGroups( object.geometry ); + this.groups = geometry.groups; + + geometry.groupsNeedUpdate = false; + + } + + return this; + + }, + + fromGeometry: function ( geometry ) { + + geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry ); + + return this.fromDirectGeometry( geometry.__directGeometry ); + + }, + + fromDirectGeometry: function ( geometry ) { + + var positions = new Float32Array( geometry.vertices.length * 3 ); + this.setAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) ); + + if ( geometry.normals.length > 0 ) { + + var normals = new Float32Array( geometry.normals.length * 3 ); + this.setAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) ); + + } + + if ( geometry.colors.length > 0 ) { + + var colors = new Float32Array( geometry.colors.length * 3 ); + this.setAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) ); + + } + + if ( geometry.uvs.length > 0 ) { + + var uvs = new Float32Array( geometry.uvs.length * 2 ); + this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) ); + + } + + if ( geometry.uvs2.length > 0 ) { + + var uvs2 = new Float32Array( geometry.uvs2.length * 2 ); + this.setAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) ); + + } + + // groups + + this.groups = geometry.groups; + + // morphs + + for ( var name in geometry.morphTargets ) { + + var array = []; + var morphTargets = geometry.morphTargets[ name ]; + + for ( var i = 0, l = morphTargets.length; i < l; i ++ ) { + + var morphTarget = morphTargets[ i ]; + + var attribute = new Float32BufferAttribute( morphTarget.data.length * 3, 3 ); + attribute.name = morphTarget.name; + + array.push( attribute.copyVector3sArray( morphTarget.data ) ); + + } + + this.morphAttributes[ name ] = array; + + } + + // skinning + + if ( geometry.skinIndices.length > 0 ) { + + var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 ); + this.setAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) ); + + } + + if ( geometry.skinWeights.length > 0 ) { + + var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 ); + this.setAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) ); + + } + + // + + if ( geometry.boundingSphere !== null ) { + + this.boundingSphere = geometry.boundingSphere.clone(); + + } + + if ( geometry.boundingBox !== null ) { + + this.boundingBox = geometry.boundingBox.clone(); + + } + + return this; + + }, + + computeBoundingBox: function () { + + if ( this.boundingBox === null ) { + + this.boundingBox = new Box3(); + + } + + var position = this.attributes.position; + var morphAttributesPosition = this.morphAttributes.position; + + if ( position !== undefined ) { + + this.boundingBox.setFromBufferAttribute( position ); + + // process morph attributes if present + + if ( morphAttributesPosition ) { + + for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { + + var morphAttribute = morphAttributesPosition[ i ]; + _box$2.setFromBufferAttribute( morphAttribute ); + + if ( this.morphTargetsRelative ) { + + _vector$4.addVectors( this.boundingBox.min, _box$2.min ); + this.boundingBox.expandByPoint( _vector$4 ); + + _vector$4.addVectors( this.boundingBox.max, _box$2.max ); + this.boundingBox.expandByPoint( _vector$4 ); + + } else { + + this.boundingBox.expandByPoint( _box$2.min ); + this.boundingBox.expandByPoint( _box$2.max ); + + } + + } + + } + + } else { + + this.boundingBox.makeEmpty(); + + } + + if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { + + console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); + + } + + }, + + computeBoundingSphere: function () { + + if ( this.boundingSphere === null ) { + + this.boundingSphere = new Sphere(); + + } + + var position = this.attributes.position; + var morphAttributesPosition = this.morphAttributes.position; + + if ( position ) { + + // first, find the center of the bounding sphere + + var center = this.boundingSphere.center; + + _box$2.setFromBufferAttribute( position ); + + // process morph attributes if present + + if ( morphAttributesPosition ) { + + for ( var i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { + + var morphAttribute = morphAttributesPosition[ i ]; + _boxMorphTargets.setFromBufferAttribute( morphAttribute ); + + if ( this.morphTargetsRelative ) { + + _vector$4.addVectors( _box$2.min, _boxMorphTargets.min ); + _box$2.expandByPoint( _vector$4 ); + + _vector$4.addVectors( _box$2.max, _boxMorphTargets.max ); + _box$2.expandByPoint( _vector$4 ); + + } else { + + _box$2.expandByPoint( _boxMorphTargets.min ); + _box$2.expandByPoint( _boxMorphTargets.max ); + + } + + } + + } + + _box$2.getCenter( center ); + + // second, try to find a boundingSphere with a radius smaller than the + // boundingSphere of the boundingBox: sqrt(3) smaller in the best case + + var maxRadiusSq = 0; + + for ( var i$1 = 0, il$1 = position.count; i$1 < il$1; i$1 ++ ) { + + _vector$4.fromBufferAttribute( position, i$1 ); + + maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) ); + + } + + // process morph attributes if present + + if ( morphAttributesPosition ) { + + for ( var i$2 = 0, il$2 = morphAttributesPosition.length; i$2 < il$2; i$2 ++ ) { + + var morphAttribute$1 = morphAttributesPosition[ i$2 ]; + var morphTargetsRelative = this.morphTargetsRelative; + + for ( var j = 0, jl = morphAttribute$1.count; j < jl; j ++ ) { + + _vector$4.fromBufferAttribute( morphAttribute$1, j ); + + if ( morphTargetsRelative ) { + + _offset.fromBufferAttribute( position, j ); + _vector$4.add( _offset ); + + } + + maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$4 ) ); + + } + + } + + } + + this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); + + if ( isNaN( this.boundingSphere.radius ) ) { + + console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); + + } + + } + + }, + + computeFaceNormals: function () { + + // backwards compatibility + + }, + + computeVertexNormals: function () { + + var index = this.index; + var positionAttribute = this.getAttribute( 'position' ); + + if ( positionAttribute !== undefined ) { + + var normalAttribute = this.getAttribute( 'normal' ); + + if ( normalAttribute === undefined ) { + + normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); + this.setAttribute( 'normal', normalAttribute ); + + } else { + + // reset existing normals to zero + + for ( var i = 0, il = normalAttribute.count; i < il; i ++ ) { + + normalAttribute.setXYZ( i, 0, 0, 0 ); + + } + + } + + var pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); + var nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); + var cb = new Vector3(), ab = new Vector3(); + + // indexed elements + + if ( index ) { + + for ( var i$1 = 0, il$1 = index.count; i$1 < il$1; i$1 += 3 ) { + + var vA = index.getX( i$1 + 0 ); + var vB = index.getX( i$1 + 1 ); + var vC = index.getX( i$1 + 2 ); + + pA.fromBufferAttribute( positionAttribute, vA ); + pB.fromBufferAttribute( positionAttribute, vB ); + pC.fromBufferAttribute( positionAttribute, vC ); + + cb.subVectors( pC, pB ); + ab.subVectors( pA, pB ); + cb.cross( ab ); + + nA.fromBufferAttribute( normalAttribute, vA ); + nB.fromBufferAttribute( normalAttribute, vB ); + nC.fromBufferAttribute( normalAttribute, vC ); + + nA.add( cb ); + nB.add( cb ); + nC.add( cb ); + + normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); + normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); + normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); + + } + + } else { + + // non-indexed elements (unconnected triangle soup) + + for ( var i$2 = 0, il$2 = positionAttribute.count; i$2 < il$2; i$2 += 3 ) { + + pA.fromBufferAttribute( positionAttribute, i$2 + 0 ); + pB.fromBufferAttribute( positionAttribute, i$2 + 1 ); + pC.fromBufferAttribute( positionAttribute, i$2 + 2 ); + + cb.subVectors( pC, pB ); + ab.subVectors( pA, pB ); + cb.cross( ab ); + + normalAttribute.setXYZ( i$2 + 0, cb.x, cb.y, cb.z ); + normalAttribute.setXYZ( i$2 + 1, cb.x, cb.y, cb.z ); + normalAttribute.setXYZ( i$2 + 2, cb.x, cb.y, cb.z ); + + } + + } + + this.normalizeNormals(); + + normalAttribute.needsUpdate = true; + + } + + }, + + merge: function ( geometry, offset ) { + + if ( ! ( geometry && geometry.isBufferGeometry ) ) { + + console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ); + return; + + } + + if ( offset === undefined ) { + + offset = 0; + + console.warn( + 'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.' + ); + + } + + var attributes = this.attributes; + + for ( var key in attributes ) { + + if ( geometry.attributes[ key ] === undefined ) { continue; } + + var attribute1 = attributes[ key ]; + var attributeArray1 = attribute1.array; + + var attribute2 = geometry.attributes[ key ]; + var attributeArray2 = attribute2.array; + + var attributeOffset = attribute2.itemSize * offset; + var length = Math.min( attributeArray2.length, attributeArray1.length - attributeOffset ); + + for ( var i = 0, j = attributeOffset; i < length; i ++, j ++ ) { + + attributeArray1[ j ] = attributeArray2[ i ]; + + } + + } + + return this; + + }, + + normalizeNormals: function () { + + var normals = this.attributes.normal; + + for ( var i = 0, il = normals.count; i < il; i ++ ) { + + _vector$4.fromBufferAttribute( normals, i ); + + _vector$4.normalize(); + + normals.setXYZ( i, _vector$4.x, _vector$4.y, _vector$4.z ); + + } + + }, + + toNonIndexed: function () { + + function convertBufferAttribute( attribute, indices ) { + + var array = attribute.array; + var itemSize = attribute.itemSize; + var normalized = attribute.normalized; + + var array2 = new array.constructor( indices.length * itemSize ); + + var index = 0, index2 = 0; + + for ( var i = 0, l = indices.length; i < l; i ++ ) { + + index = indices[ i ] * itemSize; + + for ( var j = 0; j < itemSize; j ++ ) { + + array2[ index2 ++ ] = array[ index ++ ]; + + } + + } + + return new BufferAttribute( array2, itemSize, normalized ); + + } + + // + + if ( this.index === null ) { + + console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' ); + return this; + + } + + var geometry2 = new BufferGeometry(); + + var indices = this.index.array; + var attributes = this.attributes; + + // attributes + + for ( var name in attributes ) { + + var attribute = attributes[ name ]; + + var newAttribute = convertBufferAttribute( attribute, indices ); + + geometry2.setAttribute( name, newAttribute ); + + } + + // morph attributes + + var morphAttributes = this.morphAttributes; + + for ( var name$1 in morphAttributes ) { + + var morphArray = []; + var morphAttribute = morphAttributes[ name$1 ]; // morphAttribute: array of Float32BufferAttributes + + for ( var i = 0, il = morphAttribute.length; i < il; i ++ ) { + + var attribute$1 = morphAttribute[ i ]; + + var newAttribute$1 = convertBufferAttribute( attribute$1, indices ); + + morphArray.push( newAttribute$1 ); + + } + + geometry2.morphAttributes[ name$1 ] = morphArray; + + } + + geometry2.morphTargetsRelative = this.morphTargetsRelative; + + // groups + + var groups = this.groups; + + for ( var i$1 = 0, l = groups.length; i$1 < l; i$1 ++ ) { + + var group = groups[ i$1 ]; + geometry2.addGroup( group.start, group.count, group.materialIndex ); + + } + + return geometry2; + + }, + + toJSON: function () { + + var data = { + metadata: { + version: 4.5, + type: 'BufferGeometry', + generator: 'BufferGeometry.toJSON' + } + }; + + // standard BufferGeometry serialization + + data.uuid = this.uuid; + data.type = this.type; + if ( this.name !== '' ) { data.name = this.name; } + if ( Object.keys( this.userData ).length > 0 ) { data.userData = this.userData; } + + if ( this.parameters !== undefined ) { + + var parameters = this.parameters; + + for ( var key in parameters ) { + + if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; } + + } + + return data; + + } + + data.data = { attributes: {} }; + + var index = this.index; + + if ( index !== null ) { + + data.data.index = { + type: index.array.constructor.name, + array: Array.prototype.slice.call( index.array ) + }; + + } + + var attributes = this.attributes; + + for ( var key$1 in attributes ) { + + var attribute = attributes[ key$1 ]; + + var attributeData = attribute.toJSON( data.data ); + + if ( attribute.name !== '' ) { attributeData.name = attribute.name; } + + data.data.attributes[ key$1 ] = attributeData; + + } + + var morphAttributes = {}; + var hasMorphAttributes = false; + + for ( var key$2 in this.morphAttributes ) { + + var attributeArray = this.morphAttributes[ key$2 ]; + + var array = []; + + for ( var i = 0, il = attributeArray.length; i < il; i ++ ) { + + var attribute$1 = attributeArray[ i ]; + + var attributeData$1 = attribute$1.toJSON( data.data ); + + if ( attribute$1.name !== '' ) { attributeData$1.name = attribute$1.name; } + + array.push( attributeData$1 ); + + } + + if ( array.length > 0 ) { + + morphAttributes[ key$2 ] = array; + + hasMorphAttributes = true; + + } + + } + + if ( hasMorphAttributes ) { + + data.data.morphAttributes = morphAttributes; + data.data.morphTargetsRelative = this.morphTargetsRelative; + + } + + var groups = this.groups; + + if ( groups.length > 0 ) { + + data.data.groups = JSON.parse( JSON.stringify( groups ) ); + + } + + var boundingSphere = this.boundingSphere; + + if ( boundingSphere !== null ) { + + data.data.boundingSphere = { + center: boundingSphere.center.toArray(), + radius: boundingSphere.radius + }; + + } + + return data; + + }, + + clone: function () { + + /* + // Handle primitives + + const parameters = this.parameters; + + if ( parameters !== undefined ) { + + const values = []; + + for ( const key in parameters ) { + + values.push( parameters[ key ] ); + + } + + const geometry = Object.create( this.constructor.prototype ); + this.constructor.apply( geometry, values ); + return geometry; + + } + + return new this.constructor().copy( this ); + */ + + return new BufferGeometry().copy( this ); + + }, + + copy: function ( source ) { + + // reset + + this.index = null; + this.attributes = {}; + this.morphAttributes = {}; + this.groups = []; + this.boundingBox = null; + this.boundingSphere = null; + + // used for storing cloned, shared data + + var data = {}; + + // name + + this.name = source.name; + + // index + + var index = source.index; + + if ( index !== null ) { + + this.setIndex( index.clone( data ) ); + + } + + // attributes + + var attributes = source.attributes; + + for ( var name in attributes ) { + + var attribute = attributes[ name ]; + this.setAttribute( name, attribute.clone( data ) ); + + } + + // morph attributes + + var morphAttributes = source.morphAttributes; + + for ( var name$1 in morphAttributes ) { + + var array = []; + var morphAttribute = morphAttributes[ name$1 ]; // morphAttribute: array of Float32BufferAttributes + + for ( var i = 0, l = morphAttribute.length; i < l; i ++ ) { + + array.push( morphAttribute[ i ].clone( data ) ); + + } + + this.morphAttributes[ name$1 ] = array; + + } + + this.morphTargetsRelative = source.morphTargetsRelative; + + // groups + + var groups = source.groups; + + for ( var i$1 = 0, l$1 = groups.length; i$1 < l$1; i$1 ++ ) { + + var group = groups[ i$1 ]; + this.addGroup( group.start, group.count, group.materialIndex ); + + } + + // bounding box + + var boundingBox = source.boundingBox; + + if ( boundingBox !== null ) { + + this.boundingBox = boundingBox.clone(); + + } + + // bounding sphere + + var boundingSphere = source.boundingSphere; + + if ( boundingSphere !== null ) { + + this.boundingSphere = boundingSphere.clone(); + + } + + // draw range + + this.drawRange.start = source.drawRange.start; + this.drawRange.count = source.drawRange.count; + + // user data + + this.userData = source.userData; + + return this; + + }, + + dispose: function () { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + } ); + + var _inverseMatrix = new Matrix4(); + var _ray = new Ray(); + var _sphere = new Sphere(); + + var _vA = new Vector3(); + var _vB = new Vector3(); + var _vC = new Vector3(); + + var _tempA = new Vector3(); + var _tempB = new Vector3(); + var _tempC = new Vector3(); + + var _morphA = new Vector3(); + var _morphB = new Vector3(); + var _morphC = new Vector3(); + + var _uvA = new Vector2(); + var _uvB = new Vector2(); + var _uvC = new Vector2(); + + var _intersectionPoint = new Vector3(); + var _intersectionPointWorld = new Vector3(); + + function Mesh( geometry, material ) { + + Object3D.call( this ); + + this.type = 'Mesh'; + + this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); + this.material = material !== undefined ? material : new MeshBasicMaterial(); + + this.updateMorphTargets(); + + } + + Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Mesh, + + isMesh: true, + + copy: function ( source ) { + + Object3D.prototype.copy.call( this, source ); + + if ( source.morphTargetInfluences !== undefined ) { + + this.morphTargetInfluences = source.morphTargetInfluences.slice(); + + } + + if ( source.morphTargetDictionary !== undefined ) { + + this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); + + } + + this.material = source.material; + this.geometry = source.geometry; + + return this; + + }, + + updateMorphTargets: function () { + + var geometry = this.geometry; + + if ( geometry.isBufferGeometry ) { + + var morphAttributes = geometry.morphAttributes; + var keys = Object.keys( morphAttributes ); + + if ( keys.length > 0 ) { + + var morphAttribute = morphAttributes[ keys[ 0 ] ]; + + if ( morphAttribute !== undefined ) { + + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for ( var m = 0, ml = morphAttribute.length; m < ml; m ++ ) { + + var name = morphAttribute[ m ].name || String( m ); + + this.morphTargetInfluences.push( 0 ); + this.morphTargetDictionary[ name ] = m; + + } + + } + + } + + } else { + + var morphTargets = geometry.morphTargets; + + if ( morphTargets !== undefined && morphTargets.length > 0 ) { + + console.error( 'THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); + + } + + } + + }, + + raycast: function ( raycaster, intersects ) { + + var geometry = this.geometry; + var material = this.material; + var matrixWorld = this.matrixWorld; + + if ( material === undefined ) { return; } + + // Checking boundingSphere distance to ray + + if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } + + _sphere.copy( geometry.boundingSphere ); + _sphere.applyMatrix4( matrixWorld ); + + if ( raycaster.ray.intersectsSphere( _sphere ) === false ) { return; } + + // + + _inverseMatrix.getInverse( matrixWorld ); + _ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix ); + + // Check boundingBox before continuing + + if ( geometry.boundingBox !== null ) { + + if ( _ray.intersectsBox( geometry.boundingBox ) === false ) { return; } + + } + + var intersection; + + if ( geometry.isBufferGeometry ) { + + var index = geometry.index; + var position = geometry.attributes.position; + var morphPosition = geometry.morphAttributes.position; + var morphTargetsRelative = geometry.morphTargetsRelative; + var uv = geometry.attributes.uv; + var uv2 = geometry.attributes.uv2; + var groups = geometry.groups; + var drawRange = geometry.drawRange; + + if ( index !== null ) { + + // indexed buffer geometry + + if ( Array.isArray( material ) ) { + + for ( var i = 0, il = groups.length; i < il; i ++ ) { + + var group = groups[ i ]; + var groupMaterial = material[ group.materialIndex ]; + + var start = Math.max( group.start, drawRange.start ); + var end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ); + + for ( var j = start, jl = end; j < jl; j += 3 ) { + + var a = index.getX( j ); + var b = index.getX( j + 1 ); + var c = index.getX( j + 2 ); + + intersection = checkBufferGeometryIntersection( this, groupMaterial, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics + intersection.face.materialIndex = group.materialIndex; + intersects.push( intersection ); + + } + + } + + } + + } else { + + var start$1 = Math.max( 0, drawRange.start ); + var end$1 = Math.min( index.count, ( drawRange.start + drawRange.count ) ); + + for ( var i$1 = start$1, il$1 = end$1; i$1 < il$1; i$1 += 3 ) { + + var a$1 = index.getX( i$1 ); + var b$1 = index.getX( i$1 + 1 ); + var c$1 = index.getX( i$1 + 2 ); + + intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a$1, b$1, c$1 ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( i$1 / 3 ); // triangle number in indexed buffer semantics + intersects.push( intersection ); + + } + + } + + } + + } else if ( position !== undefined ) { + + // non-indexed buffer geometry + + if ( Array.isArray( material ) ) { + + for ( var i$2 = 0, il$2 = groups.length; i$2 < il$2; i$2 ++ ) { + + var group$1 = groups[ i$2 ]; + var groupMaterial$1 = material[ group$1.materialIndex ]; + + var start$2 = Math.max( group$1.start, drawRange.start ); + var end$2 = Math.min( ( group$1.start + group$1.count ), ( drawRange.start + drawRange.count ) ); + + for ( var j$1 = start$2, jl$1 = end$2; j$1 < jl$1; j$1 += 3 ) { + + var a$2 = j$1; + var b$2 = j$1 + 1; + var c$2 = j$1 + 2; + + intersection = checkBufferGeometryIntersection( this, groupMaterial$1, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a$2, b$2, c$2 ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( j$1 / 3 ); // triangle number in non-indexed buffer semantics + intersection.face.materialIndex = group$1.materialIndex; + intersects.push( intersection ); + + } + + } + + } + + } else { + + var start$3 = Math.max( 0, drawRange.start ); + var end$3 = Math.min( position.count, ( drawRange.start + drawRange.count ) ); + + for ( var i$3 = start$3, il$3 = end$3; i$3 < il$3; i$3 += 3 ) { + + var a$3 = i$3; + var b$3 = i$3 + 1; + var c$3 = i$3 + 2; + + intersection = checkBufferGeometryIntersection( this, material, raycaster, _ray, position, morphPosition, morphTargetsRelative, uv, uv2, a$3, b$3, c$3 ); + + if ( intersection ) { + + intersection.faceIndex = Math.floor( i$3 / 3 ); // triangle number in non-indexed buffer semantics + intersects.push( intersection ); + + } + + } + + } + + } + + } else if ( geometry.isGeometry ) { + + var isMultiMaterial = Array.isArray( material ); + + var vertices = geometry.vertices; + var faces = geometry.faces; + var uvs; + + var faceVertexUvs = geometry.faceVertexUvs[ 0 ]; + if ( faceVertexUvs.length > 0 ) { uvs = faceVertexUvs; } + + for ( var f = 0, fl = faces.length; f < fl; f ++ ) { + + var face = faces[ f ]; + var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material; + + if ( faceMaterial === undefined ) { continue; } + + var fvA = vertices[ face.a ]; + var fvB = vertices[ face.b ]; + var fvC = vertices[ face.c ]; + + intersection = checkIntersection( this, faceMaterial, raycaster, _ray, fvA, fvB, fvC, _intersectionPoint ); + + if ( intersection ) { + + if ( uvs && uvs[ f ] ) { + + var uvs_f = uvs[ f ]; + _uvA.copy( uvs_f[ 0 ] ); + _uvB.copy( uvs_f[ 1 ] ); + _uvC.copy( uvs_f[ 2 ] ); + + intersection.uv = Triangle.getUV( _intersectionPoint, fvA, fvB, fvC, _uvA, _uvB, _uvC, new Vector2() ); + + } + + intersection.face = face; + intersection.faceIndex = f; + intersects.push( intersection ); + + } + + } + + } + + } + + } ); + + function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) { + + var intersect; + + if ( material.side === BackSide ) { + + intersect = ray.intersectTriangle( pC, pB, pA, true, point ); + + } else { + + intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point ); + + } + + if ( intersect === null ) { return null; } + + _intersectionPointWorld.copy( point ); + _intersectionPointWorld.applyMatrix4( object.matrixWorld ); + + var distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); + + if ( distance < raycaster.near || distance > raycaster.far ) { return null; } + + return { + distance: distance, + point: _intersectionPointWorld.clone(), + object: object + }; + + } + + function checkBufferGeometryIntersection( object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c ) { + + _vA.fromBufferAttribute( position, a ); + _vB.fromBufferAttribute( position, b ); + _vC.fromBufferAttribute( position, c ); + + var morphInfluences = object.morphTargetInfluences; + + if ( material.morphTargets && morphPosition && morphInfluences ) { + + _morphA.set( 0, 0, 0 ); + _morphB.set( 0, 0, 0 ); + _morphC.set( 0, 0, 0 ); + + for ( var i = 0, il = morphPosition.length; i < il; i ++ ) { + + var influence = morphInfluences[ i ]; + var morphAttribute = morphPosition[ i ]; + + if ( influence === 0 ) { continue; } + + _tempA.fromBufferAttribute( morphAttribute, a ); + _tempB.fromBufferAttribute( morphAttribute, b ); + _tempC.fromBufferAttribute( morphAttribute, c ); + + if ( morphTargetsRelative ) { + + _morphA.addScaledVector( _tempA, influence ); + _morphB.addScaledVector( _tempB, influence ); + _morphC.addScaledVector( _tempC, influence ); + + } else { + + _morphA.addScaledVector( _tempA.sub( _vA ), influence ); + _morphB.addScaledVector( _tempB.sub( _vB ), influence ); + _morphC.addScaledVector( _tempC.sub( _vC ), influence ); + + } + + } + + _vA.add( _morphA ); + _vB.add( _morphB ); + _vC.add( _morphC ); + + } + + if ( object.isSkinnedMesh ) { + + object.boneTransform( a, _vA ); + object.boneTransform( b, _vB ); + object.boneTransform( c, _vC ); + + } + + var intersection = checkIntersection( object, material, raycaster, ray, _vA, _vB, _vC, _intersectionPoint ); + + if ( intersection ) { + + if ( uv ) { + + _uvA.fromBufferAttribute( uv, a ); + _uvB.fromBufferAttribute( uv, b ); + _uvC.fromBufferAttribute( uv, c ); + + intersection.uv = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ); + + } + + if ( uv2 ) { + + _uvA.fromBufferAttribute( uv2, a ); + _uvB.fromBufferAttribute( uv2, b ); + _uvC.fromBufferAttribute( uv2, c ); + + intersection.uv2 = Triangle.getUV( _intersectionPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ); + + } + + var face = new Face3( a, b, c ); + Triangle.getNormal( _vA, _vB, _vC, face.normal ); + + intersection.face = face; + + } + + return intersection; + + } + + var _geometryId = 0; // Geometry uses even numbers as Id + var _m1$3 = new Matrix4(); + var _obj$1 = new Object3D(); + var _offset$1 = new Vector3(); + + function Geometry() { + + Object.defineProperty( this, 'id', { value: _geometryId += 2 } ); + + this.uuid = MathUtils.generateUUID(); + + this.name = ''; + this.type = 'Geometry'; + + this.vertices = []; + this.colors = []; + this.faces = []; + this.faceVertexUvs = [[]]; + + this.morphTargets = []; + this.morphNormals = []; + + this.skinWeights = []; + this.skinIndices = []; + + this.lineDistances = []; + + this.boundingBox = null; + this.boundingSphere = null; + + // update flags + + this.elementsNeedUpdate = false; + this.verticesNeedUpdate = false; + this.uvsNeedUpdate = false; + this.normalsNeedUpdate = false; + this.colorsNeedUpdate = false; + this.lineDistancesNeedUpdate = false; + this.groupsNeedUpdate = false; + + } + + Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: Geometry, + + isGeometry: true, + + applyMatrix4: function ( matrix ) { + + var normalMatrix = new Matrix3().getNormalMatrix( matrix ); + + for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { + + var vertex = this.vertices[ i ]; + vertex.applyMatrix4( matrix ); + + } + + for ( var i$1 = 0, il$1 = this.faces.length; i$1 < il$1; i$1 ++ ) { + + var face = this.faces[ i$1 ]; + face.normal.applyMatrix3( normalMatrix ).normalize(); + + for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) { + + face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize(); + + } + + } + + if ( this.boundingBox !== null ) { + + this.computeBoundingBox(); + + } + + if ( this.boundingSphere !== null ) { + + this.computeBoundingSphere(); + + } + + this.verticesNeedUpdate = true; + this.normalsNeedUpdate = true; + + return this; + + }, + + rotateX: function ( angle ) { + + // rotate geometry around world x-axis + + _m1$3.makeRotationX( angle ); + + this.applyMatrix4( _m1$3 ); + + return this; + + }, + + rotateY: function ( angle ) { + + // rotate geometry around world y-axis + + _m1$3.makeRotationY( angle ); + + this.applyMatrix4( _m1$3 ); + + return this; + + }, + + rotateZ: function ( angle ) { + + // rotate geometry around world z-axis + + _m1$3.makeRotationZ( angle ); + + this.applyMatrix4( _m1$3 ); + + return this; + + }, + + translate: function ( x, y, z ) { + + // translate geometry + + _m1$3.makeTranslation( x, y, z ); + + this.applyMatrix4( _m1$3 ); + + return this; + + }, + + scale: function ( x, y, z ) { + + // scale geometry + + _m1$3.makeScale( x, y, z ); + + this.applyMatrix4( _m1$3 ); + + return this; + + }, + + lookAt: function ( vector ) { + + _obj$1.lookAt( vector ); + + _obj$1.updateMatrix(); + + this.applyMatrix4( _obj$1.matrix ); + + return this; + + }, + + fromBufferGeometry: function ( geometry ) { + + var scope = this; + + var index = geometry.index !== null ? geometry.index : undefined; + var attributes = geometry.attributes; + + if ( attributes.position === undefined ) { + + console.error( 'THREE.Geometry.fromBufferGeometry(): Position attribute required for conversion.' ); + return this; + + } + + var position = attributes.position; + var normal = attributes.normal; + var color = attributes.color; + var uv = attributes.uv; + var uv2 = attributes.uv2; + + if ( uv2 !== undefined ) { this.faceVertexUvs[ 1 ] = []; } + + for ( var i = 0; i < position.count; i ++ ) { + + scope.vertices.push( new Vector3().fromBufferAttribute( position, i ) ); + + if ( color !== undefined ) { + + scope.colors.push( new Color().fromBufferAttribute( color, i ) ); + + } + + } + + function addFace( a, b, c, materialIndex ) { + + var vertexColors = ( color === undefined ) ? [] : [ + scope.colors[ a ].clone(), + scope.colors[ b ].clone(), + scope.colors[ c ].clone() + ]; + + var vertexNormals = ( normal === undefined ) ? [] : [ + new Vector3().fromBufferAttribute( normal, a ), + new Vector3().fromBufferAttribute( normal, b ), + new Vector3().fromBufferAttribute( normal, c ) + ]; + + var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex ); + + scope.faces.push( face ); + + if ( uv !== undefined ) { + + scope.faceVertexUvs[ 0 ].push( [ + new Vector2().fromBufferAttribute( uv, a ), + new Vector2().fromBufferAttribute( uv, b ), + new Vector2().fromBufferAttribute( uv, c ) + ] ); + + } + + if ( uv2 !== undefined ) { + + scope.faceVertexUvs[ 1 ].push( [ + new Vector2().fromBufferAttribute( uv2, a ), + new Vector2().fromBufferAttribute( uv2, b ), + new Vector2().fromBufferAttribute( uv2, c ) + ] ); + + } + + } + + var groups = geometry.groups; + + if ( groups.length > 0 ) { + + for ( var i$1 = 0; i$1 < groups.length; i$1 ++ ) { + + var group = groups[ i$1 ]; + + var start = group.start; + var count = group.count; + + for ( var j = start, jl = start + count; j < jl; j += 3 ) { + + if ( index !== undefined ) { + + addFace( index.getX( j ), index.getX( j + 1 ), index.getX( j + 2 ), group.materialIndex ); + + } else { + + addFace( j, j + 1, j + 2, group.materialIndex ); + + } + + } + + } + + } else { + + if ( index !== undefined ) { + + for ( var i$2 = 0; i$2 < index.count; i$2 += 3 ) { + + addFace( index.getX( i$2 ), index.getX( i$2 + 1 ), index.getX( i$2 + 2 ) ); + + } + + } else { + + for ( var i$3 = 0; i$3 < position.count; i$3 += 3 ) { + + addFace( i$3, i$3 + 1, i$3 + 2 ); + + } + + } + + } + + this.computeFaceNormals(); + + if ( geometry.boundingBox !== null ) { + + this.boundingBox = geometry.boundingBox.clone(); + + } + + if ( geometry.boundingSphere !== null ) { + + this.boundingSphere = geometry.boundingSphere.clone(); + + } + + return this; + + }, + + center: function () { + + this.computeBoundingBox(); + + this.boundingBox.getCenter( _offset$1 ).negate(); + + this.translate( _offset$1.x, _offset$1.y, _offset$1.z ); + + return this; + + }, + + normalize: function () { + + this.computeBoundingSphere(); + + var center = this.boundingSphere.center; + var radius = this.boundingSphere.radius; + + var s = radius === 0 ? 1 : 1.0 / radius; + + var matrix = new Matrix4(); + matrix.set( + s, 0, 0, - s * center.x, + 0, s, 0, - s * center.y, + 0, 0, s, - s * center.z, + 0, 0, 0, 1 + ); + + this.applyMatrix4( matrix ); + + return this; + + }, + + computeFaceNormals: function () { + + var cb = new Vector3(), ab = new Vector3(); + + for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { + + var face = this.faces[ f ]; + + var vA = this.vertices[ face.a ]; + var vB = this.vertices[ face.b ]; + var vC = this.vertices[ face.c ]; + + cb.subVectors( vC, vB ); + ab.subVectors( vA, vB ); + cb.cross( ab ); + + cb.normalize(); + + face.normal.copy( cb ); + + } + + }, + + computeVertexNormals: function ( areaWeighted ) { + + if ( areaWeighted === undefined ) { areaWeighted = true; } + + var vertices = new Array( this.vertices.length ); + + for ( var v = 0, vl = this.vertices.length; v < vl; v ++ ) { + + vertices[ v ] = new Vector3(); + + } + + if ( areaWeighted ) { + + // vertex normals weighted by triangle areas + // http://www.iquilezles.org/www/articles/normals/normals.htm + + var cb = new Vector3(), ab = new Vector3(); + + for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { + + var face = this.faces[ f ]; + + var vA = this.vertices[ face.a ]; + var vB = this.vertices[ face.b ]; + var vC = this.vertices[ face.c ]; + + cb.subVectors( vC, vB ); + ab.subVectors( vA, vB ); + cb.cross( ab ); + + vertices[ face.a ].add( cb ); + vertices[ face.b ].add( cb ); + vertices[ face.c ].add( cb ); + + } + + } else { + + this.computeFaceNormals(); + + for ( var f$1 = 0, fl$1 = this.faces.length; f$1 < fl$1; f$1 ++ ) { + + var face$1 = this.faces[ f$1 ]; + + vertices[ face$1.a ].add( face$1.normal ); + vertices[ face$1.b ].add( face$1.normal ); + vertices[ face$1.c ].add( face$1.normal ); + + } + + } + + for ( var v$1 = 0, vl$1 = this.vertices.length; v$1 < vl$1; v$1 ++ ) { + + vertices[ v$1 ].normalize(); + + } + + for ( var f$2 = 0, fl$2 = this.faces.length; f$2 < fl$2; f$2 ++ ) { + + var face$2 = this.faces[ f$2 ]; + + var vertexNormals = face$2.vertexNormals; + + if ( vertexNormals.length === 3 ) { + + vertexNormals[ 0 ].copy( vertices[ face$2.a ] ); + vertexNormals[ 1 ].copy( vertices[ face$2.b ] ); + vertexNormals[ 2 ].copy( vertices[ face$2.c ] ); + + } else { + + vertexNormals[ 0 ] = vertices[ face$2.a ].clone(); + vertexNormals[ 1 ] = vertices[ face$2.b ].clone(); + vertexNormals[ 2 ] = vertices[ face$2.c ].clone(); + + } + + } + + if ( this.faces.length > 0 ) { + + this.normalsNeedUpdate = true; + + } + + }, + + computeFlatVertexNormals: function () { + + this.computeFaceNormals(); + + for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { + + var face = this.faces[ f ]; + + var vertexNormals = face.vertexNormals; + + if ( vertexNormals.length === 3 ) { + + vertexNormals[ 0 ].copy( face.normal ); + vertexNormals[ 1 ].copy( face.normal ); + vertexNormals[ 2 ].copy( face.normal ); + + } else { + + vertexNormals[ 0 ] = face.normal.clone(); + vertexNormals[ 1 ] = face.normal.clone(); + vertexNormals[ 2 ] = face.normal.clone(); + + } + + } + + if ( this.faces.length > 0 ) { + + this.normalsNeedUpdate = true; + + } + + }, + + computeMorphNormals: function () { + + // save original normals + // - create temp variables on first access + // otherwise just copy (for faster repeated calls) + + for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) { + + var face = this.faces[ f ]; + + if ( ! face.__originalFaceNormal ) { + + face.__originalFaceNormal = face.normal.clone(); + + } else { + + face.__originalFaceNormal.copy( face.normal ); + + } + + if ( ! face.__originalVertexNormals ) { face.__originalVertexNormals = []; } + + for ( var i = 0, il = face.vertexNormals.length; i < il; i ++ ) { + + if ( ! face.__originalVertexNormals[ i ] ) { + + face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone(); + + } else { + + face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] ); + + } + + } + + } + + // use temp geometry to compute face and vertex normals for each morph + + var tmpGeo = new Geometry(); + tmpGeo.faces = this.faces; + + for ( var i$1 = 0, il$1 = this.morphTargets.length; i$1 < il$1; i$1 ++ ) { + + // create on first access + + if ( ! this.morphNormals[ i$1 ] ) { + + this.morphNormals[ i$1 ] = {}; + this.morphNormals[ i$1 ].faceNormals = []; + this.morphNormals[ i$1 ].vertexNormals = []; + + var dstNormalsFace = this.morphNormals[ i$1 ].faceNormals; + var dstNormalsVertex = this.morphNormals[ i$1 ].vertexNormals; + + for ( var f$1 = 0, fl$1 = this.faces.length; f$1 < fl$1; f$1 ++ ) { + + var faceNormal = new Vector3(); + var vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() }; + + dstNormalsFace.push( faceNormal ); + dstNormalsVertex.push( vertexNormals ); + + } + + } + + var morphNormals = this.morphNormals[ i$1 ]; + + // set vertices to morph target + + tmpGeo.vertices = this.morphTargets[ i$1 ].vertices; + + // compute morph normals + + tmpGeo.computeFaceNormals(); + tmpGeo.computeVertexNormals(); + + // store morph normals + + for ( var f$2 = 0, fl$2 = this.faces.length; f$2 < fl$2; f$2 ++ ) { + + var face$1 = this.faces[ f$2 ]; + + var faceNormal$1 = morphNormals.faceNormals[ f$2 ]; + var vertexNormals$1 = morphNormals.vertexNormals[ f$2 ]; + + faceNormal$1.copy( face$1.normal ); + + vertexNormals$1.a.copy( face$1.vertexNormals[ 0 ] ); + vertexNormals$1.b.copy( face$1.vertexNormals[ 1 ] ); + vertexNormals$1.c.copy( face$1.vertexNormals[ 2 ] ); + + } + + } + + // restore original normals + + for ( var f$3 = 0, fl$3 = this.faces.length; f$3 < fl$3; f$3 ++ ) { + + var face$2 = this.faces[ f$3 ]; + + face$2.normal = face$2.__originalFaceNormal; + face$2.vertexNormals = face$2.__originalVertexNormals; + + } + + }, + + computeBoundingBox: function () { + + if ( this.boundingBox === null ) { + + this.boundingBox = new Box3(); + + } + + this.boundingBox.setFromPoints( this.vertices ); + + }, + + computeBoundingSphere: function () { + + if ( this.boundingSphere === null ) { + + this.boundingSphere = new Sphere(); + + } + + this.boundingSphere.setFromPoints( this.vertices ); + + }, + + merge: function ( geometry, matrix, materialIndexOffset ) { + + if ( ! ( geometry && geometry.isGeometry ) ) { + + console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ); + return; + + } + + var normalMatrix, + vertexOffset = this.vertices.length, + vertices1 = this.vertices, + vertices2 = geometry.vertices, + faces1 = this.faces, + faces2 = geometry.faces, + colors1 = this.colors, + colors2 = geometry.colors; + + if ( materialIndexOffset === undefined ) { materialIndexOffset = 0; } + + if ( matrix !== undefined ) { + + normalMatrix = new Matrix3().getNormalMatrix( matrix ); + + } + + // vertices + + for ( var i = 0, il = vertices2.length; i < il; i ++ ) { + + var vertex = vertices2[ i ]; + + var vertexCopy = vertex.clone(); + + if ( matrix !== undefined ) { vertexCopy.applyMatrix4( matrix ); } + + vertices1.push( vertexCopy ); + + } + + // colors + + for ( var i$1 = 0, il$1 = colors2.length; i$1 < il$1; i$1 ++ ) { + + colors1.push( colors2[ i$1 ].clone() ); + + } + + // faces + + for ( var i$2 = 0, il$2 = faces2.length; i$2 < il$2; i$2 ++ ) { + + var face = faces2[ i$2 ], faceCopy = (void 0), normal = (void 0), color = (void 0), + faceVertexNormals = face.vertexNormals, + faceVertexColors = face.vertexColors; + + faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset ); + faceCopy.normal.copy( face.normal ); + + if ( normalMatrix !== undefined ) { + + faceCopy.normal.applyMatrix3( normalMatrix ).normalize(); + + } + + for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) { + + normal = faceVertexNormals[ j ].clone(); + + if ( normalMatrix !== undefined ) { + + normal.applyMatrix3( normalMatrix ).normalize(); + + } + + faceCopy.vertexNormals.push( normal ); + + } + + faceCopy.color.copy( face.color ); + + for ( var j$1 = 0, jl$1 = faceVertexColors.length; j$1 < jl$1; j$1 ++ ) { + + color = faceVertexColors[ j$1 ]; + faceCopy.vertexColors.push( color.clone() ); + + } + + faceCopy.materialIndex = face.materialIndex + materialIndexOffset; + + faces1.push( faceCopy ); + + } + + // uvs + + for ( var i$3 = 0, il$3 = geometry.faceVertexUvs.length; i$3 < il$3; i$3 ++ ) { + + var faceVertexUvs2 = geometry.faceVertexUvs[ i$3 ]; + + if ( this.faceVertexUvs[ i$3 ] === undefined ) { this.faceVertexUvs[ i$3 ] = []; } + + for ( var j$2 = 0, jl$2 = faceVertexUvs2.length; j$2 < jl$2; j$2 ++ ) { + + var uvs2 = faceVertexUvs2[ j$2 ], uvsCopy = []; + + for ( var k = 0, kl = uvs2.length; k < kl; k ++ ) { + + uvsCopy.push( uvs2[ k ].clone() ); + + } + + this.faceVertexUvs[ i$3 ].push( uvsCopy ); + + } + + } + + }, + + mergeMesh: function ( mesh ) { + + if ( ! ( mesh && mesh.isMesh ) ) { + + console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh ); + return; + + } + + if ( mesh.matrixAutoUpdate ) { mesh.updateMatrix(); } + + this.merge( mesh.geometry, mesh.matrix ); + + }, + + /* + * Checks for duplicate vertices with hashmap. + * Duplicated vertices are removed + * and faces' vertices are updated. + */ + + mergeVertices: function () { + + var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique) + var unique = [], changes = []; + + var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001 + var precision = Math.pow( 10, precisionPoints ); + + for ( var i = 0, il = this.vertices.length; i < il; i ++ ) { + + var v = this.vertices[ i ]; + var key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision ); + + if ( verticesMap[ key ] === undefined ) { + + verticesMap[ key ] = i; + unique.push( this.vertices[ i ] ); + changes[ i ] = unique.length - 1; + + } else { + + //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); + changes[ i ] = changes[ verticesMap[ key ] ]; + + } + + } + + + // if faces are completely degenerate after merging vertices, we + // have to remove them from the geometry. + var faceIndicesToRemove = []; + + for ( var i$1 = 0, il$1 = this.faces.length; i$1 < il$1; i$1 ++ ) { + + var face = this.faces[ i$1 ]; + + face.a = changes[ face.a ]; + face.b = changes[ face.b ]; + face.c = changes[ face.c ]; + + var indices = [ face.a, face.b, face.c ]; + + // if any duplicate vertices are found in a Face3 + // we have to remove the face as nothing can be saved + for ( var n = 0; n < 3; n ++ ) { + + if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) { + + faceIndicesToRemove.push( i$1 ); + break; + + } + + } + + } + + for ( var i$2 = faceIndicesToRemove.length - 1; i$2 >= 0; i$2 -- ) { + + var idx = faceIndicesToRemove[ i$2 ]; + + this.faces.splice( idx, 1 ); + + for ( var j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) { + + this.faceVertexUvs[ j ].splice( idx, 1 ); + + } + + } + + // Use unique set of vertices + + var diff = this.vertices.length - unique.length; + this.vertices = unique; + return diff; + + }, + + setFromPoints: function ( points ) { + + this.vertices = []; + + for ( var i = 0, l = points.length; i < l; i ++ ) { + + var point = points[ i ]; + this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) ); + + } + + return this; + + }, + + sortFacesByMaterialIndex: function () { + + var faces = this.faces; + var length = faces.length; + + // tag faces + + for ( var i = 0; i < length; i ++ ) { + + faces[ i ]._id = i; + + } + + // sort faces + + function materialIndexSort( a, b ) { + + return a.materialIndex - b.materialIndex; + + } + + faces.sort( materialIndexSort ); + + // sort uvs + + var uvs1 = this.faceVertexUvs[ 0 ]; + var uvs2 = this.faceVertexUvs[ 1 ]; + + var newUvs1, newUvs2; + + if ( uvs1 && uvs1.length === length ) { newUvs1 = []; } + if ( uvs2 && uvs2.length === length ) { newUvs2 = []; } + + for ( var i$1 = 0; i$1 < length; i$1 ++ ) { + + var id = faces[ i$1 ]._id; + + if ( newUvs1 ) { newUvs1.push( uvs1[ id ] ); } + if ( newUvs2 ) { newUvs2.push( uvs2[ id ] ); } + + } + + if ( newUvs1 ) { this.faceVertexUvs[ 0 ] = newUvs1; } + if ( newUvs2 ) { this.faceVertexUvs[ 1 ] = newUvs2; } + + }, + + toJSON: function () { + + var data = { + metadata: { + version: 4.5, + type: 'Geometry', + generator: 'Geometry.toJSON' + } + }; + + // standard Geometry serialization + + data.uuid = this.uuid; + data.type = this.type; + if ( this.name !== '' ) { data.name = this.name; } + + if ( this.parameters !== undefined ) { + + var parameters = this.parameters; + + for ( var key in parameters ) { + + if ( parameters[ key ] !== undefined ) { data[ key ] = parameters[ key ]; } + + } + + return data; + + } + + var vertices = []; + + for ( var i = 0; i < this.vertices.length; i ++ ) { + + var vertex = this.vertices[ i ]; + vertices.push( vertex.x, vertex.y, vertex.z ); + + } + + var faces = []; + var normals = []; + var normalsHash = {}; + var colors = []; + var colorsHash = {}; + var uvs = []; + var uvsHash = {}; + + for ( var i$1 = 0; i$1 < this.faces.length; i$1 ++ ) { + + var face = this.faces[ i$1 ]; + + var hasMaterial = true; + var hasFaceUv = false; // deprecated + var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i$1 ] !== undefined; + var hasFaceNormal = face.normal.length() > 0; + var hasFaceVertexNormal = face.vertexNormals.length > 0; + var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1; + var hasFaceVertexColor = face.vertexColors.length > 0; + + var faceType = 0; + + faceType = setBit( faceType, 0, 0 ); // isQuad + faceType = setBit( faceType, 1, hasMaterial ); + faceType = setBit( faceType, 2, hasFaceUv ); + faceType = setBit( faceType, 3, hasFaceVertexUv ); + faceType = setBit( faceType, 4, hasFaceNormal ); + faceType = setBit( faceType, 5, hasFaceVertexNormal ); + faceType = setBit( faceType, 6, hasFaceColor ); + faceType = setBit( faceType, 7, hasFaceVertexColor ); + + faces.push( faceType ); + faces.push( face.a, face.b, face.c ); + faces.push( face.materialIndex ); + + if ( hasFaceVertexUv ) { + + var faceVertexUvs = this.faceVertexUvs[ 0 ][ i$1 ]; + + faces.push( + getUvIndex( faceVertexUvs[ 0 ] ), + getUvIndex( faceVertexUvs[ 1 ] ), + getUvIndex( faceVertexUvs[ 2 ] ) + ); + + } + + if ( hasFaceNormal ) { + + faces.push( getNormalIndex( face.normal ) ); + + } + + if ( hasFaceVertexNormal ) { + + var vertexNormals = face.vertexNormals; + + faces.push( + getNormalIndex( vertexNormals[ 0 ] ), + getNormalIndex( vertexNormals[ 1 ] ), + getNormalIndex( vertexNormals[ 2 ] ) + ); + + } + + if ( hasFaceColor ) { + + faces.push( getColorIndex( face.color ) ); + + } + + if ( hasFaceVertexColor ) { + + var vertexColors = face.vertexColors; + + faces.push( + getColorIndex( vertexColors[ 0 ] ), + getColorIndex( vertexColors[ 1 ] ), + getColorIndex( vertexColors[ 2 ] ) + ); + + } + + } + + function setBit( value, position, enabled ) { + + return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) ); + + } + + function getNormalIndex( normal ) { + + var hash = normal.x.toString() + normal.y.toString() + normal.z.toString(); + + if ( normalsHash[ hash ] !== undefined ) { + + return normalsHash[ hash ]; + + } + + normalsHash[ hash ] = normals.length / 3; + normals.push( normal.x, normal.y, normal.z ); + + return normalsHash[ hash ]; + + } + + function getColorIndex( color ) { + + var hash = color.r.toString() + color.g.toString() + color.b.toString(); + + if ( colorsHash[ hash ] !== undefined ) { + + return colorsHash[ hash ]; + + } + + colorsHash[ hash ] = colors.length; + colors.push( color.getHex() ); + + return colorsHash[ hash ]; + + } + + function getUvIndex( uv ) { + + var hash = uv.x.toString() + uv.y.toString(); + + if ( uvsHash[ hash ] !== undefined ) { + + return uvsHash[ hash ]; + + } + + uvsHash[ hash ] = uvs.length / 2; + uvs.push( uv.x, uv.y ); + + return uvsHash[ hash ]; + + } + + data.data = {}; + + data.data.vertices = vertices; + data.data.normals = normals; + if ( colors.length > 0 ) { data.data.colors = colors; } + if ( uvs.length > 0 ) { data.data.uvs = [ uvs ]; } // temporal backward compatibility + data.data.faces = faces; + + return data; + + }, + + clone: function () { + + /* + // Handle primitives + + const parameters = this.parameters; + + if ( parameters !== undefined ) { + + const values = []; + + for ( const key in parameters ) { + + values.push( parameters[ key ] ); + + } + + const geometry = Object.create( this.constructor.prototype ); + this.constructor.apply( geometry, values ); + return geometry; + + } + + return new this.constructor().copy( this ); + */ + + return new Geometry().copy( this ); + + }, + + copy: function ( source ) { + + // reset + + this.vertices = []; + this.colors = []; + this.faces = []; + this.faceVertexUvs = [[]]; + this.morphTargets = []; + this.morphNormals = []; + this.skinWeights = []; + this.skinIndices = []; + this.lineDistances = []; + this.boundingBox = null; + this.boundingSphere = null; + + // name + + this.name = source.name; + + // vertices + + var vertices = source.vertices; + + for ( var i = 0, il = vertices.length; i < il; i ++ ) { + + this.vertices.push( vertices[ i ].clone() ); + + } + + // colors + + var colors = source.colors; + + for ( var i$1 = 0, il$1 = colors.length; i$1 < il$1; i$1 ++ ) { + + this.colors.push( colors[ i$1 ].clone() ); + + } + + // faces + + var faces = source.faces; + + for ( var i$2 = 0, il$2 = faces.length; i$2 < il$2; i$2 ++ ) { + + this.faces.push( faces[ i$2 ].clone() ); + + } + + // face vertex uvs + + for ( var i$3 = 0, il$3 = source.faceVertexUvs.length; i$3 < il$3; i$3 ++ ) { + + var faceVertexUvs = source.faceVertexUvs[ i$3 ]; + + if ( this.faceVertexUvs[ i$3 ] === undefined ) { + + this.faceVertexUvs[ i$3 ] = []; + + } + + for ( var j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) { + + var uvs = faceVertexUvs[ j ], uvsCopy = []; + + for ( var k = 0, kl = uvs.length; k < kl; k ++ ) { + + var uv = uvs[ k ]; + + uvsCopy.push( uv.clone() ); + + } + + this.faceVertexUvs[ i$3 ].push( uvsCopy ); + + } + + } + + // morph targets + + var morphTargets = source.morphTargets; + + for ( var i$4 = 0, il$4 = morphTargets.length; i$4 < il$4; i$4 ++ ) { + + var morphTarget = {}; + morphTarget.name = morphTargets[ i$4 ].name; + + // vertices + + if ( morphTargets[ i$4 ].vertices !== undefined ) { + + morphTarget.vertices = []; + + for ( var j$1 = 0, jl$1 = morphTargets[ i$4 ].vertices.length; j$1 < jl$1; j$1 ++ ) { + + morphTarget.vertices.push( morphTargets[ i$4 ].vertices[ j$1 ].clone() ); + + } + + } + + // normals + + if ( morphTargets[ i$4 ].normals !== undefined ) { + + morphTarget.normals = []; + + for ( var j$2 = 0, jl$2 = morphTargets[ i$4 ].normals.length; j$2 < jl$2; j$2 ++ ) { + + morphTarget.normals.push( morphTargets[ i$4 ].normals[ j$2 ].clone() ); + + } + + } + + this.morphTargets.push( morphTarget ); + + } + + // morph normals + + var morphNormals = source.morphNormals; + + for ( var i$5 = 0, il$5 = morphNormals.length; i$5 < il$5; i$5 ++ ) { + + var morphNormal = {}; + + // vertex normals + + if ( morphNormals[ i$5 ].vertexNormals !== undefined ) { + + morphNormal.vertexNormals = []; + + for ( var j$3 = 0, jl$3 = morphNormals[ i$5 ].vertexNormals.length; j$3 < jl$3; j$3 ++ ) { + + var srcVertexNormal = morphNormals[ i$5 ].vertexNormals[ j$3 ]; + var destVertexNormal = {}; + + destVertexNormal.a = srcVertexNormal.a.clone(); + destVertexNormal.b = srcVertexNormal.b.clone(); + destVertexNormal.c = srcVertexNormal.c.clone(); + + morphNormal.vertexNormals.push( destVertexNormal ); + + } + + } + + // face normals + + if ( morphNormals[ i$5 ].faceNormals !== undefined ) { + + morphNormal.faceNormals = []; + + for ( var j$4 = 0, jl$4 = morphNormals[ i$5 ].faceNormals.length; j$4 < jl$4; j$4 ++ ) { + + morphNormal.faceNormals.push( morphNormals[ i$5 ].faceNormals[ j$4 ].clone() ); + + } + + } + + this.morphNormals.push( morphNormal ); + + } + + // skin weights + + var skinWeights = source.skinWeights; + + for ( var i$6 = 0, il$6 = skinWeights.length; i$6 < il$6; i$6 ++ ) { + + this.skinWeights.push( skinWeights[ i$6 ].clone() ); + + } + + // skin indices + + var skinIndices = source.skinIndices; + + for ( var i$7 = 0, il$7 = skinIndices.length; i$7 < il$7; i$7 ++ ) { + + this.skinIndices.push( skinIndices[ i$7 ].clone() ); + + } + + // line distances + + var lineDistances = source.lineDistances; + + for ( var i$8 = 0, il$8 = lineDistances.length; i$8 < il$8; i$8 ++ ) { + + this.lineDistances.push( lineDistances[ i$8 ] ); + + } + + // bounding box + + var boundingBox = source.boundingBox; + + if ( boundingBox !== null ) { + + this.boundingBox = boundingBox.clone(); + + } + + // bounding sphere + + var boundingSphere = source.boundingSphere; + + if ( boundingSphere !== null ) { + + this.boundingSphere = boundingSphere.clone(); + + } + + // update flags + + this.elementsNeedUpdate = source.elementsNeedUpdate; + this.verticesNeedUpdate = source.verticesNeedUpdate; + this.uvsNeedUpdate = source.uvsNeedUpdate; + this.normalsNeedUpdate = source.normalsNeedUpdate; + this.colorsNeedUpdate = source.colorsNeedUpdate; + this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate; + this.groupsNeedUpdate = source.groupsNeedUpdate; + + return this; + + }, + + dispose: function () { + + this.dispatchEvent( { type: 'dispose' } ); + + } + + } ); + + // BoxGeometry + + function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { + + Geometry.call(this); + + this.type = 'BoxGeometry'; + + this.parameters = { + width: width, + height: height, + depth: depth, + widthSegments: widthSegments, + heightSegments: heightSegments, + depthSegments: depthSegments + }; + + this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) ); + this.mergeVertices(); + + } + + BoxGeometry.prototype = Object.create( Geometry.prototype ); + BoxGeometry.prototype.constructor = BoxGeometry; + + // BoxBufferGeometry + + function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) { + if ( width === void 0 ) width = 1; + if ( height === void 0 ) height = 1; + if ( depth === void 0 ) depth = 1; + if ( widthSegments === void 0 ) widthSegments = 1; + if ( heightSegments === void 0 ) heightSegments = 1; + if ( depthSegments === void 0 ) depthSegments = 1; + + + BufferGeometry.call(this); + + this.type = 'BoxBufferGeometry'; + + this.parameters = { + width: width, + height: height, + depth: depth, + widthSegments: widthSegments, + heightSegments: heightSegments, + depthSegments: depthSegments + }; + + var scope = this; + + // segments + + widthSegments = Math.floor( widthSegments ); + heightSegments = Math.floor( heightSegments ); + depthSegments = Math.floor( depthSegments ); + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // helper variables + + var numberOfVertices = 0; + var groupStart = 0; + + // build each side of the box geometry + + buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px + buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx + buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py + buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny + buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz + buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { + + var segmentWidth = width / gridX; + var segmentHeight = height / gridY; + + var widthHalf = width / 2; + var heightHalf = height / 2; + var depthHalf = depth / 2; + + var gridX1 = gridX + 1; + var gridY1 = gridY + 1; + + var vertexCounter = 0; + var groupCount = 0; + + var vector = new Vector3(); + + // generate vertices, normals and uvs + + for ( var iy = 0; iy < gridY1; iy ++ ) { + + var y = iy * segmentHeight - heightHalf; + + for ( var ix = 0; ix < gridX1; ix ++ ) { + + var x = ix * segmentWidth - widthHalf; + + // set values to correct vector component + + vector[ u ] = x * udir; + vector[ v ] = y * vdir; + vector[ w ] = depthHalf; + + // now apply vector to vertex buffer + + vertices.push( vector.x, vector.y, vector.z ); + + // set values to correct vector component + + vector[ u ] = 0; + vector[ v ] = 0; + vector[ w ] = depth > 0 ? 1 : - 1; + + // now apply vector to normal buffer + + normals.push( vector.x, vector.y, vector.z ); + + // uvs + + uvs.push( ix / gridX ); + uvs.push( 1 - ( iy / gridY ) ); + + // counters + + vertexCounter += 1; + + } + + } + + // indices + + // 1. you need three indices to draw a single face + // 2. a single segment consists of two faces + // 3. so we need to generate six (2*3) indices per segment + + for ( var iy$1 = 0; iy$1 < gridY; iy$1 ++ ) { + + for ( var ix$1 = 0; ix$1 < gridX; ix$1 ++ ) { + + var a = numberOfVertices + ix$1 + gridX1 * iy$1; + var b = numberOfVertices + ix$1 + gridX1 * ( iy$1 + 1 ); + var c = numberOfVertices + ( ix$1 + 1 ) + gridX1 * ( iy$1 + 1 ); + var d = numberOfVertices + ( ix$1 + 1 ) + gridX1 * iy$1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + // increase counter + + groupCount += 6; + + } + + } + + // add a group to the geometry. this will ensure multi material support + + scope.addGroup( groupStart, groupCount, materialIndex ); + + // calculate new start value for groups + + groupStart += groupCount; + + // update total number of vertices + + numberOfVertices += vertexCounter; + + } + + } + + BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + BoxBufferGeometry.prototype.constructor = BoxBufferGeometry; + + /** + * Uniform Utilities + */ + + function cloneUniforms( src ) { + + var dst = {}; + + for ( var u in src ) { + + dst[ u ] = {}; + + for ( var p in src[ u ] ) { + + var property = src[ u ][ p ]; + + if ( property && ( property.isColor || + property.isMatrix3 || property.isMatrix4 || + property.isVector2 || property.isVector3 || property.isVector4 || + property.isTexture ) ) { + + dst[ u ][ p ] = property.clone(); + + } else if ( Array.isArray( property ) ) { + + dst[ u ][ p ] = property.slice(); + + } else { + + dst[ u ][ p ] = property; + + } + + } + + } + + return dst; + + } + + function mergeUniforms( uniforms ) { + + var merged = {}; + + for ( var u = 0; u < uniforms.length; u ++ ) { + + var tmp = cloneUniforms( uniforms[ u ] ); + + for ( var p in tmp ) { + + merged[ p ] = tmp[ p ]; + + } + + } + + return merged; + + } + + // Legacy + + var UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; + + var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; + + var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; + + /** + * parameters = { + * defines: { "label" : "value" }, + * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, + * + * fragmentShader: , + * vertexShader: , + * + * wireframe: , + * wireframeLinewidth: , + * + * lights: , + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function ShaderMaterial( parameters ) { + + Material.call( this ); + + this.type = 'ShaderMaterial'; + + this.defines = {}; + this.uniforms = {}; + + this.vertexShader = default_vertex; + this.fragmentShader = default_fragment; + + this.linewidth = 1; + + this.wireframe = false; + this.wireframeLinewidth = 1; + + this.fog = false; // set to use scene fog + this.lights = false; // set to use scene lights + this.clipping = false; // set to use user-defined clipping planes + + this.skinning = false; // set to use skinning attribute streams + this.morphTargets = false; // set to use morph targets + this.morphNormals = false; // set to use morph normals + + this.extensions = { + derivatives: false, // set to use derivatives + fragDepth: false, // set to use fragment depth values + drawBuffers: false, // set to use draw buffers + shaderTextureLOD: false // set to use shader texture LOD + }; + + // When rendered geometry doesn't include these attributes but the material does, + // use these default values in WebGL. This avoids errors when buffer data is missing. + this.defaultAttributeValues = { + 'color': [ 1, 1, 1 ], + 'uv': [ 0, 0 ], + 'uv2': [ 0, 0 ] + }; + + this.index0AttributeName = undefined; + this.uniformsNeedUpdate = false; + + if ( parameters !== undefined ) { + + if ( parameters.attributes !== undefined ) { + + console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ); + + } + + this.setValues( parameters ); + + } + + } + + ShaderMaterial.prototype = Object.create( Material.prototype ); + ShaderMaterial.prototype.constructor = ShaderMaterial; + + ShaderMaterial.prototype.isShaderMaterial = true; + + ShaderMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.fragmentShader = source.fragmentShader; + this.vertexShader = source.vertexShader; + + this.uniforms = cloneUniforms( source.uniforms ); + + this.defines = Object.assign( {}, source.defines ); + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + + this.lights = source.lights; + this.clipping = source.clipping; + + this.skinning = source.skinning; + + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + this.extensions = Object.assign( {}, source.extensions ); + + return this; + + }; + + ShaderMaterial.prototype.toJSON = function ( meta ) { + + var data = Material.prototype.toJSON.call( this, meta ); + + data.uniforms = {}; + + for ( var name in this.uniforms ) { + + var uniform = this.uniforms[ name ]; + var value = uniform.value; + + if ( value && value.isTexture ) { + + data.uniforms[ name ] = { + type: 't', + value: value.toJSON( meta ).uuid + }; + + } else if ( value && value.isColor ) { + + data.uniforms[ name ] = { + type: 'c', + value: value.getHex() + }; + + } else if ( value && value.isVector2 ) { + + data.uniforms[ name ] = { + type: 'v2', + value: value.toArray() + }; + + } else if ( value && value.isVector3 ) { + + data.uniforms[ name ] = { + type: 'v3', + value: value.toArray() + }; + + } else if ( value && value.isVector4 ) { + + data.uniforms[ name ] = { + type: 'v4', + value: value.toArray() + }; + + } else if ( value && value.isMatrix3 ) { + + data.uniforms[ name ] = { + type: 'm3', + value: value.toArray() + }; + + } else if ( value && value.isMatrix4 ) { + + data.uniforms[ name ] = { + type: 'm4', + value: value.toArray() + }; + + } else { + + data.uniforms[ name ] = { + value: value + }; + + // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far + + } + + } + + if ( Object.keys( this.defines ).length > 0 ) { data.defines = this.defines; } + + data.vertexShader = this.vertexShader; + data.fragmentShader = this.fragmentShader; + + var extensions = {}; + + for ( var key in this.extensions ) { + + if ( this.extensions[ key ] === true ) { extensions[ key ] = true; } + + } + + if ( Object.keys( extensions ).length > 0 ) { data.extensions = extensions; } + + return data; + + }; + + function Camera() { + + Object3D.call( this ); + + this.type = 'Camera'; + + this.matrixWorldInverse = new Matrix4(); + + this.projectionMatrix = new Matrix4(); + this.projectionMatrixInverse = new Matrix4(); + + } + + Camera.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Camera, + + isCamera: true, + + copy: function ( source, recursive ) { + + Object3D.prototype.copy.call( this, source, recursive ); + + this.matrixWorldInverse.copy( source.matrixWorldInverse ); + + this.projectionMatrix.copy( source.projectionMatrix ); + this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); + + return this; + + }, + + getWorldDirection: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Camera: .getWorldDirection() target is now required' ); + target = new Vector3(); + + } + + this.updateMatrixWorld( true ); + + var e = this.matrixWorld.elements; + + return target.set( - e[ 8 ], - e[ 9 ], - e[ 10 ] ).normalize(); + + }, + + updateMatrixWorld: function ( force ) { + + Object3D.prototype.updateMatrixWorld.call( this, force ); + + this.matrixWorldInverse.getInverse( this.matrixWorld ); + + }, + + updateWorldMatrix: function ( updateParents, updateChildren ) { + + Object3D.prototype.updateWorldMatrix.call( this, updateParents, updateChildren ); + + this.matrixWorldInverse.getInverse( this.matrixWorld ); + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + } + + } ); + + function PerspectiveCamera( fov, aspect, near, far ) { + + Camera.call( this ); + + this.type = 'PerspectiveCamera'; + + this.fov = fov !== undefined ? fov : 50; + this.zoom = 1; + + this.near = near !== undefined ? near : 0.1; + this.far = far !== undefined ? far : 2000; + this.focus = 10; + + this.aspect = aspect !== undefined ? aspect : 1; + this.view = null; + + this.filmGauge = 35; // width of the film (default in millimeters) + this.filmOffset = 0; // horizontal film offset (same unit as gauge) + + this.updateProjectionMatrix(); + + } + + PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), { + + constructor: PerspectiveCamera, + + isPerspectiveCamera: true, + + copy: function ( source, recursive ) { + + Camera.prototype.copy.call( this, source, recursive ); + + this.fov = source.fov; + this.zoom = source.zoom; + + this.near = source.near; + this.far = source.far; + this.focus = source.focus; + + this.aspect = source.aspect; + this.view = source.view === null ? null : Object.assign( {}, source.view ); + + this.filmGauge = source.filmGauge; + this.filmOffset = source.filmOffset; + + return this; + + }, + + /** + * Sets the FOV by focal length in respect to the current .filmGauge. + * + * The default film gauge is 35, so that the focal length can be specified for + * a 35mm (full frame) camera. + * + * Values for focal length and film gauge must have the same unit. + */ + setFocalLength: function ( focalLength ) { + + // see http://www.bobatkins.com/photography/technical/field_of_view.html + var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; + + this.fov = MathUtils.RAD2DEG * 2 * Math.atan( vExtentSlope ); + this.updateProjectionMatrix(); + + }, + + /** + * Calculates the focal length from the current .fov and .filmGauge. + */ + getFocalLength: function () { + + var vExtentSlope = Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ); + + return 0.5 * this.getFilmHeight() / vExtentSlope; + + }, + + getEffectiveFOV: function () { + + return MathUtils.RAD2DEG * 2 * Math.atan( + Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom ); + + }, + + getFilmWidth: function () { + + // film not completely covered in portrait format (aspect < 1) + return this.filmGauge * Math.min( this.aspect, 1 ); + + }, + + getFilmHeight: function () { + + // film not completely covered in landscape format (aspect > 1) + return this.filmGauge / Math.max( this.aspect, 1 ); + + }, + + /** + * Sets an offset in a larger frustum. This is useful for multi-window or + * multi-monitor/multi-machine setups. + * + * For example, if you have 3x2 monitors and each monitor is 1920x1080 and + * the monitors are in grid like this + * + * +---+---+---+ + * | A | B | C | + * +---+---+---+ + * | D | E | F | + * +---+---+---+ + * + * then for each monitor you would call it like this + * + * const w = 1920; + * const h = 1080; + * const fullWidth = w * 3; + * const fullHeight = h * 2; + * + * --A-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); + * --B-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); + * --C-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); + * --D-- + * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); + * --E-- + * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); + * --F-- + * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); + * + * Note there is no reason monitors have to be the same size or in a grid. + */ + setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) { + + this.aspect = fullWidth / fullHeight; + + if ( this.view === null ) { + + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + + this.updateProjectionMatrix(); + + }, + + clearViewOffset: function () { + + if ( this.view !== null ) { + + this.view.enabled = false; + + } + + this.updateProjectionMatrix(); + + }, + + updateProjectionMatrix: function () { + + var near = this.near, + top = near * Math.tan( MathUtils.DEG2RAD * 0.5 * this.fov ) / this.zoom, + height = 2 * top, + width = this.aspect * height, + left = - 0.5 * width, + view = this.view; + + if ( this.view !== null && this.view.enabled ) { + + var fullWidth = view.fullWidth, + fullHeight = view.fullHeight; + + left += view.offsetX * width / fullWidth; + top -= view.offsetY * height / fullHeight; + width *= view.width / fullWidth; + height *= view.height / fullHeight; + + } + + var skew = this.filmOffset; + if ( skew !== 0 ) { left += near * skew / this.getFilmWidth(); } + + this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far ); + + this.projectionMatrixInverse.getInverse( this.projectionMatrix ); + + }, + + toJSON: function ( meta ) { + + var data = Object3D.prototype.toJSON.call( this, meta ); + + data.object.fov = this.fov; + data.object.zoom = this.zoom; + + data.object.near = this.near; + data.object.far = this.far; + data.object.focus = this.focus; + + data.object.aspect = this.aspect; + + if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); } + + data.object.filmGauge = this.filmGauge; + data.object.filmOffset = this.filmOffset; + + return data; + + } + + } ); + + var fov = 90, aspect = 1; + + function CubeCamera( near, far, renderTarget ) { + + Object3D.call( this ); + + this.type = 'CubeCamera'; + + if ( renderTarget.isWebGLCubeRenderTarget !== true ) { + + console.error( 'THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.' ); + return; + + } + + this.renderTarget = renderTarget; + + var cameraPX = new PerspectiveCamera( fov, aspect, near, far ); + cameraPX.layers = this.layers; + cameraPX.up.set( 0, - 1, 0 ); + cameraPX.lookAt( new Vector3( 1, 0, 0 ) ); + this.add( cameraPX ); + + var cameraNX = new PerspectiveCamera( fov, aspect, near, far ); + cameraNX.layers = this.layers; + cameraNX.up.set( 0, - 1, 0 ); + cameraNX.lookAt( new Vector3( - 1, 0, 0 ) ); + this.add( cameraNX ); + + var cameraPY = new PerspectiveCamera( fov, aspect, near, far ); + cameraPY.layers = this.layers; + cameraPY.up.set( 0, 0, 1 ); + cameraPY.lookAt( new Vector3( 0, 1, 0 ) ); + this.add( cameraPY ); + + var cameraNY = new PerspectiveCamera( fov, aspect, near, far ); + cameraNY.layers = this.layers; + cameraNY.up.set( 0, 0, - 1 ); + cameraNY.lookAt( new Vector3( 0, - 1, 0 ) ); + this.add( cameraNY ); + + var cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); + cameraPZ.layers = this.layers; + cameraPZ.up.set( 0, - 1, 0 ); + cameraPZ.lookAt( new Vector3( 0, 0, 1 ) ); + this.add( cameraPZ ); + + var cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); + cameraNZ.layers = this.layers; + cameraNZ.up.set( 0, - 1, 0 ); + cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) ); + this.add( cameraNZ ); + + this.update = function ( renderer, scene ) { + + if ( this.parent === null ) { this.updateMatrixWorld(); } + + var currentXrEnabled = renderer.xr.enabled; + var currentRenderTarget = renderer.getRenderTarget(); + + renderer.xr.enabled = false; + + var generateMipmaps = renderTarget.texture.generateMipmaps; + + renderTarget.texture.generateMipmaps = false; + + renderer.setRenderTarget( renderTarget, 0 ); + renderer.render( scene, cameraPX ); + + renderer.setRenderTarget( renderTarget, 1 ); + renderer.render( scene, cameraNX ); + + renderer.setRenderTarget( renderTarget, 2 ); + renderer.render( scene, cameraPY ); + + renderer.setRenderTarget( renderTarget, 3 ); + renderer.render( scene, cameraNY ); + + renderer.setRenderTarget( renderTarget, 4 ); + renderer.render( scene, cameraPZ ); + + renderTarget.texture.generateMipmaps = generateMipmaps; + + renderer.setRenderTarget( renderTarget, 5 ); + renderer.render( scene, cameraNZ ); + + renderer.setRenderTarget( currentRenderTarget ); + + renderer.xr.enabled = currentXrEnabled; + + }; + + this.clear = function ( renderer, color, depth, stencil ) { + + var currentRenderTarget = renderer.getRenderTarget(); + + for ( var i = 0; i < 6; i ++ ) { + + renderer.setRenderTarget( renderTarget, i ); + + renderer.clear( color, depth, stencil ); + + } + + renderer.setRenderTarget( currentRenderTarget ); + + }; + + } + + CubeCamera.prototype = Object.create( Object3D.prototype ); + CubeCamera.prototype.constructor = CubeCamera; + + function WebGLCubeRenderTarget( size, options, dummy ) { + + if ( Number.isInteger( options ) ) { + + console.warn( 'THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )' ); + + options = dummy; + + } + + WebGLRenderTarget.call( this, size, size, options ); + + } + + WebGLCubeRenderTarget.prototype = Object.create( WebGLRenderTarget.prototype ); + WebGLCubeRenderTarget.prototype.constructor = WebGLCubeRenderTarget; + + WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true; + + WebGLCubeRenderTarget.prototype.fromEquirectangularTexture = function ( renderer, texture ) { + + this.texture.type = texture.type; + this.texture.format = RGBAFormat; // see #18859 + this.texture.encoding = texture.encoding; + + this.texture.generateMipmaps = texture.generateMipmaps; + this.texture.minFilter = texture.minFilter; + this.texture.magFilter = texture.magFilter; + + var scene = new Scene(); + + var shader = { + + uniforms: { + tEquirect: { value: null }, + }, + + vertexShader: /* glsl */"\n\n\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\tvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\n\t\t\t\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvWorldDirection = transformDirection( position, modelMatrix );\n\n\t\t\t\t#include \n\t\t\t\t#include \n\n\t\t\t}\n\t\t", + + fragmentShader: /* glsl */"\n\n\t\t\tuniform sampler2D tEquirect;\n\n\t\t\tvarying vec3 vWorldDirection;\n\n\t\t\t#include \n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 direction = normalize( vWorldDirection );\n\n\t\t\t\tvec2 sampleUV = equirectUv( direction );\n\n\t\t\t\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\n\t\t\t}\n\t\t" + }; + + var material = new ShaderMaterial( { + + name: 'CubemapFromEquirect', + + uniforms: cloneUniforms( shader.uniforms ), + vertexShader: shader.vertexShader, + fragmentShader: shader.fragmentShader, + side: BackSide, + blending: NoBlending + + } ); + + material.uniforms.tEquirect.value = texture; + + var mesh = new Mesh( new BoxBufferGeometry( 5, 5, 5 ), material ); + + scene.add( mesh ); + + var camera = new CubeCamera( 1, 10, this ); + camera.update( renderer, scene ); + + mesh.geometry.dispose(); + mesh.material.dispose(); + + return this; + + }; + + function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { + + Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); + + this.image = { data: data || null, width: width || 1, height: height || 1 }; + + this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; + this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; + + this.generateMipmaps = false; + this.flipY = false; + this.unpackAlignment = 1; + + this.needsUpdate = true; + + } + + DataTexture.prototype = Object.create( Texture.prototype ); + DataTexture.prototype.constructor = DataTexture; + + DataTexture.prototype.isDataTexture = true; + + var _sphere$1 = new Sphere(); + var _vector$5 = new Vector3(); + + function Frustum( p0, p1, p2, p3, p4, p5 ) { + + this.planes = [ + + ( p0 !== undefined ) ? p0 : new Plane(), + ( p1 !== undefined ) ? p1 : new Plane(), + ( p2 !== undefined ) ? p2 : new Plane(), + ( p3 !== undefined ) ? p3 : new Plane(), + ( p4 !== undefined ) ? p4 : new Plane(), + ( p5 !== undefined ) ? p5 : new Plane() + + ]; + + } + + Object.assign( Frustum.prototype, { + + set: function ( p0, p1, p2, p3, p4, p5 ) { + + var planes = this.planes; + + planes[ 0 ].copy( p0 ); + planes[ 1 ].copy( p1 ); + planes[ 2 ].copy( p2 ); + planes[ 3 ].copy( p3 ); + planes[ 4 ].copy( p4 ); + planes[ 5 ].copy( p5 ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( frustum ) { + + var planes = this.planes; + + for ( var i = 0; i < 6; i ++ ) { + + planes[ i ].copy( frustum.planes[ i ] ); + + } + + return this; + + }, + + setFromProjectionMatrix: function ( m ) { + + var planes = this.planes; + var me = m.elements; + var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; + var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; + var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; + var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; + + planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); + planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); + planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); + planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); + planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); + planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); + + return this; + + }, + + intersectsObject: function ( object ) { + + var geometry = object.geometry; + + if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } + + _sphere$1.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); + + return this.intersectsSphere( _sphere$1 ); + + }, + + intersectsSprite: function ( sprite ) { + + _sphere$1.center.set( 0, 0, 0 ); + _sphere$1.radius = 0.7071067811865476; + _sphere$1.applyMatrix4( sprite.matrixWorld ); + + return this.intersectsSphere( _sphere$1 ); + + }, + + intersectsSphere: function ( sphere ) { + + var planes = this.planes; + var center = sphere.center; + var negRadius = - sphere.radius; + + for ( var i = 0; i < 6; i ++ ) { + + var distance = planes[ i ].distanceToPoint( center ); + + if ( distance < negRadius ) { + + return false; + + } + + } + + return true; + + }, + + intersectsBox: function ( box ) { + + var planes = this.planes; + + for ( var i = 0; i < 6; i ++ ) { + + var plane = planes[ i ]; + + // corner at max distance + + _vector$5.x = plane.normal.x > 0 ? box.max.x : box.min.x; + _vector$5.y = plane.normal.y > 0 ? box.max.y : box.min.y; + _vector$5.z = plane.normal.z > 0 ? box.max.z : box.min.z; + + if ( plane.distanceToPoint( _vector$5 ) < 0 ) { + + return false; + + } + + } + + return true; + + }, + + containsPoint: function ( point ) { + + var planes = this.planes; + + for ( var i = 0; i < 6; i ++ ) { + + if ( planes[ i ].distanceToPoint( point ) < 0 ) { + + return false; + + } + + } + + return true; + + } + + } ); + + /** + * Uniforms library for shared webgl shaders + */ + + var UniformsLib = { + + common: { + + diffuse: { value: new Color( 0xeeeeee ) }, + opacity: { value: 1.0 }, + + map: { value: null }, + uvTransform: { value: new Matrix3() }, + uv2Transform: { value: new Matrix3() }, + + alphaMap: { value: null }, + + }, + + specularmap: { + + specularMap: { value: null }, + + }, + + envmap: { + + envMap: { value: null }, + flipEnvMap: { value: - 1 }, + reflectivity: { value: 1.0 }, + refractionRatio: { value: 0.98 }, + maxMipLevel: { value: 0 } + + }, + + aomap: { + + aoMap: { value: null }, + aoMapIntensity: { value: 1 } + + }, + + lightmap: { + + lightMap: { value: null }, + lightMapIntensity: { value: 1 } + + }, + + emissivemap: { + + emissiveMap: { value: null } + + }, + + bumpmap: { + + bumpMap: { value: null }, + bumpScale: { value: 1 } + + }, + + normalmap: { + + normalMap: { value: null }, + normalScale: { value: new Vector2( 1, 1 ) } + + }, + + displacementmap: { + + displacementMap: { value: null }, + displacementScale: { value: 1 }, + displacementBias: { value: 0 } + + }, + + roughnessmap: { + + roughnessMap: { value: null } + + }, + + metalnessmap: { + + metalnessMap: { value: null } + + }, + + gradientmap: { + + gradientMap: { value: null } + + }, + + fog: { + + fogDensity: { value: 0.00025 }, + fogNear: { value: 1 }, + fogFar: { value: 2000 }, + fogColor: { value: new Color( 0xffffff ) } + + }, + + lights: { + + ambientLightColor: { value: [] }, + + lightProbe: { value: [] }, + + directionalLights: { value: [], properties: { + direction: {}, + color: {} + } }, + + directionalLightShadows: { value: [], properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } }, + + directionalShadowMap: { value: [] }, + directionalShadowMatrix: { value: [] }, + + spotLights: { value: [], properties: { + color: {}, + position: {}, + direction: {}, + distance: {}, + coneCos: {}, + penumbraCos: {}, + decay: {} + } }, + + spotLightShadows: { value: [], properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {} + } }, + + spotShadowMap: { value: [] }, + spotShadowMatrix: { value: [] }, + + pointLights: { value: [], properties: { + color: {}, + position: {}, + decay: {}, + distance: {} + } }, + + pointLightShadows: { value: [], properties: { + shadowBias: {}, + shadowNormalBias: {}, + shadowRadius: {}, + shadowMapSize: {}, + shadowCameraNear: {}, + shadowCameraFar: {} + } }, + + pointShadowMap: { value: [] }, + pointShadowMatrix: { value: [] }, + + hemisphereLights: { value: [], properties: { + direction: {}, + skyColor: {}, + groundColor: {} + } }, + + // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src + rectAreaLights: { value: [], properties: { + color: {}, + position: {}, + width: {}, + height: {} + } } + + }, + + points: { + + diffuse: { value: new Color( 0xeeeeee ) }, + opacity: { value: 1.0 }, + size: { value: 1.0 }, + scale: { value: 1.0 }, + map: { value: null }, + alphaMap: { value: null }, + uvTransform: { value: new Matrix3() } + + }, + + sprite: { + + diffuse: { value: new Color( 0xeeeeee ) }, + opacity: { value: 1.0 }, + center: { value: new Vector2( 0.5, 0.5 ) }, + rotation: { value: 0.0 }, + map: { value: null }, + alphaMap: { value: null }, + uvTransform: { value: new Matrix3() } + + } + + }; + + function WebGLAnimation() { + + var context = null; + var isAnimating = false; + var animationLoop = null; + var requestId = null; + + function onAnimationFrame( time, frame ) { + + animationLoop( time, frame ); + + requestId = context.requestAnimationFrame( onAnimationFrame ); + + } + + return { + + start: function () { + + if ( isAnimating === true ) { return; } + if ( animationLoop === null ) { return; } + + requestId = context.requestAnimationFrame( onAnimationFrame ); + + isAnimating = true; + + }, + + stop: function () { + + context.cancelAnimationFrame( requestId ); + + isAnimating = false; + + }, + + setAnimationLoop: function ( callback ) { + + animationLoop = callback; + + }, + + setContext: function ( value ) { + + context = value; + + } + + }; + + } + + function WebGLAttributes( gl, capabilities ) { + + var isWebGL2 = capabilities.isWebGL2; + + var buffers = new WeakMap(); + + function createBuffer( attribute, bufferType ) { + + var array = attribute.array; + var usage = attribute.usage; + + var buffer = gl.createBuffer(); + + gl.bindBuffer( bufferType, buffer ); + gl.bufferData( bufferType, array, usage ); + + attribute.onUploadCallback(); + + var type = 5126; + + if ( array instanceof Float32Array ) { + + type = 5126; + + } else if ( array instanceof Float64Array ) { + + console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' ); + + } else if ( array instanceof Uint16Array ) { + + type = 5123; + + } else if ( array instanceof Int16Array ) { + + type = 5122; + + } else if ( array instanceof Uint32Array ) { + + type = 5125; + + } else if ( array instanceof Int32Array ) { + + type = 5124; + + } else if ( array instanceof Int8Array ) { + + type = 5120; + + } else if ( array instanceof Uint8Array ) { + + type = 5121; + + } + + return { + buffer: buffer, + type: type, + bytesPerElement: array.BYTES_PER_ELEMENT, + version: attribute.version + }; + + } + + function updateBuffer( buffer, attribute, bufferType ) { + + var array = attribute.array; + var updateRange = attribute.updateRange; + + gl.bindBuffer( bufferType, buffer ); + + if ( updateRange.count === - 1 ) { + + // Not using update ranges + + gl.bufferSubData( bufferType, 0, array ); + + } else { + + if ( isWebGL2 ) { + + gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, + array, updateRange.offset, updateRange.count ); + + } else { + + gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, + array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) ); + + } + + updateRange.count = - 1; // reset range + + } + + } + + // + + function get( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; } + + return buffers.get( attribute ); + + } + + function remove( attribute ) { + + if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; } + + var data = buffers.get( attribute ); + + if ( data ) { + + gl.deleteBuffer( data.buffer ); + + buffers.delete( attribute ); + + } + + } + + function update( attribute, bufferType ) { + + if ( attribute.isInterleavedBufferAttribute ) { attribute = attribute.data; } + + var data = buffers.get( attribute ); + + if ( data === undefined ) { + + buffers.set( attribute, createBuffer( attribute, bufferType ) ); + + } else if ( data.version < attribute.version ) { + + updateBuffer( data.buffer, attribute, bufferType ); + + data.version = attribute.version; + + } + + } + + return { + + get: get, + remove: remove, + update: update + + }; + + } + + // PlaneGeometry + + function PlaneGeometry( width, height, widthSegments, heightSegments ) { + + Geometry.call( this ); + + this.type = 'PlaneGeometry'; + + this.parameters = { + width: width, + height: height, + widthSegments: widthSegments, + heightSegments: heightSegments + }; + + this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) ); + this.mergeVertices(); + + } + + PlaneGeometry.prototype = Object.create( Geometry.prototype ); + PlaneGeometry.prototype.constructor = PlaneGeometry; + + // PlaneBufferGeometry + + function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) { + + BufferGeometry.call( this ); + + this.type = 'PlaneBufferGeometry'; + + this.parameters = { + width: width, + height: height, + widthSegments: widthSegments, + heightSegments: heightSegments + }; + + width = width || 1; + height = height || 1; + + var width_half = width / 2; + var height_half = height / 2; + + var gridX = Math.floor( widthSegments ) || 1; + var gridY = Math.floor( heightSegments ) || 1; + + var gridX1 = gridX + 1; + var gridY1 = gridY + 1; + + var segment_width = width / gridX; + var segment_height = height / gridY; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // generate vertices, normals and uvs + + for ( var iy = 0; iy < gridY1; iy ++ ) { + + var y = iy * segment_height - height_half; + + for ( var ix = 0; ix < gridX1; ix ++ ) { + + var x = ix * segment_width - width_half; + + vertices.push( x, - y, 0 ); + + normals.push( 0, 0, 1 ); + + uvs.push( ix / gridX ); + uvs.push( 1 - ( iy / gridY ) ); + + } + + } + + // indices + + for ( var iy$1 = 0; iy$1 < gridY; iy$1 ++ ) { + + for ( var ix$1 = 0; ix$1 < gridX; ix$1 ++ ) { + + var a = ix$1 + gridX1 * iy$1; + var b = ix$1 + gridX1 * ( iy$1 + 1 ); + var c = ( ix$1 + 1 ) + gridX1 * ( iy$1 + 1 ); + var d = ( ix$1 + 1 ) + gridX1 * iy$1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry; + + var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif"; + + var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; + + var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif"; + + var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif"; + + var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; + + var begin_vertex = "vec3 transformed = vec3( position );"; + + var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; + + var bsdfs = "vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\n}\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n#else\n\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t}\n\treturn 1.0;\n#endif\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\n\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\n\treturn Fr * fresnel + F0;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + viewDir );\n\tfloat dotNL = saturate( dot( normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\treturn specularColor * brdf.x + brdf.y;\n}\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\n\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\n\tvec3 FssEss = F * brdf.x + brdf.y;\n\tfloat Ess = brdf.x + brdf.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie(float roughness, float NoH) {\n\tfloat invAlpha = 1.0 / roughness;\n\tfloat cos2h = NoH * NoH;\n\tfloat sin2h = max(1.0 - cos2h, 0.0078125);\treturn (2.0 + invAlpha) * pow(sin2h, invAlpha * 0.5) / (2.0 * PI);\n}\nfloat V_Neubelt(float NoV, float NoL) {\n\treturn saturate(1.0 / (4.0 * (NoL + NoV - NoL * NoV)));\n}\nvec3 BRDF_Specular_Sheen( const in float roughness, const in vec3 L, const in GeometricContext geometry, vec3 specularColor ) {\n\tvec3 N = geometry.normal;\n\tvec3 V = geometry.viewDir;\n\tvec3 H = normalize( V + L );\n\tfloat dotNH = saturate( dot( N, H ) );\n\treturn specularColor * D_Charlie( roughness, dotNH ) * V_Neubelt( dot(N, V), dot(N, L) );\n}\n#endif"; + + var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; + + var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif"; + + var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; + + var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; + + var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; + + var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif"; + + var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif"; + + var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif"; + + var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif"; + + var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat max3( vec3 v ) { return max( max( v.x, v.y ), v.z ); }\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}"; + + var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_maxMipLevel 8.0\n#define cubeUV_minMipLevel 4.0\n#define cubeUV_maxTileSize 256.0\n#define cubeUV_minTileSize 16.0\nfloat getFace(vec3 direction) {\n vec3 absDirection = abs(direction);\n float face = -1.0;\n if (absDirection.x > absDirection.z) {\n if (absDirection.x > absDirection.y)\n face = direction.x > 0.0 ? 0.0 : 3.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n } else {\n if (absDirection.z > absDirection.y)\n face = direction.z > 0.0 ? 2.0 : 5.0;\n else\n face = direction.y > 0.0 ? 1.0 : 4.0;\n }\n return face;\n}\nvec2 getUV(vec3 direction, float face) {\n vec2 uv;\n if (face == 0.0) {\n uv = vec2(direction.z, direction.y) / abs(direction.x); } else if (face == 1.0) {\n uv = vec2(-direction.x, -direction.z) / abs(direction.y); } else if (face == 2.0) {\n uv = vec2(-direction.x, direction.y) / abs(direction.z); } else if (face == 3.0) {\n uv = vec2(-direction.z, direction.y) / abs(direction.x); } else if (face == 4.0) {\n uv = vec2(-direction.x, direction.z) / abs(direction.y); } else {\n uv = vec2(direction.x, direction.y) / abs(direction.z); }\n return 0.5 * (uv + 1.0);\n}\nvec3 bilinearCubeUV(sampler2D envMap, vec3 direction, float mipInt) {\n float face = getFace(direction);\n float filterInt = max(cubeUV_minMipLevel - mipInt, 0.0);\n mipInt = max(mipInt, cubeUV_minMipLevel);\n float faceSize = exp2(mipInt);\n float texelSize = 1.0 / (3.0 * cubeUV_maxTileSize);\n vec2 uv = getUV(direction, face) * (faceSize - 1.0);\n vec2 f = fract(uv);\n uv += 0.5 - f;\n if (face > 2.0) {\n uv.y += faceSize;\n face -= 3.0;\n }\n uv.x += face * faceSize;\n if(mipInt < cubeUV_maxMipLevel){\n uv.y += 2.0 * cubeUV_maxTileSize;\n }\n uv.y += filterInt * 2.0 * cubeUV_minTileSize;\n uv.x += 3.0 * max(0.0, cubeUV_maxTileSize - 2.0 * faceSize);\n uv *= texelSize;\n vec3 tl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.x += texelSize;\n vec3 tr = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.y += texelSize;\n vec3 br = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n uv.x -= texelSize;\n vec3 bl = envMapTexelToLinear(texture2D(envMap, uv)).rgb;\n vec3 tm = mix(tl, tr, f.x);\n vec3 bm = mix(bl, br, f.x);\n return mix(tm, bm, f.y);\n}\n#define r0 1.0\n#define v0 0.339\n#define m0 -2.0\n#define r1 0.8\n#define v1 0.276\n#define m1 -1.0\n#define r4 0.4\n#define v4 0.046\n#define m4 2.0\n#define r5 0.305\n#define v5 0.016\n#define m5 3.0\n#define r6 0.21\n#define v6 0.0038\n#define m6 4.0\nfloat roughnessToMip(float roughness) {\n float mip = 0.0;\n if (roughness >= r1) {\n mip = (r0 - roughness) * (m1 - m0) / (r0 - r1) + m0;\n } else if (roughness >= r4) {\n mip = (r1 - roughness) * (m4 - m1) / (r1 - r4) + m1;\n } else if (roughness >= r5) {\n mip = (r4 - roughness) * (m5 - m4) / (r4 - r5) + m4;\n } else if (roughness >= r6) {\n mip = (r5 - roughness) * (m6 - m5) / (r5 - r6) + m5;\n } else {\n mip = -2.0 * log2(1.16 * roughness); }\n return mip;\n}\nvec4 textureCubeUV(sampler2D envMap, vec3 sampleDir, float roughness) {\n float mip = clamp(roughnessToMip(roughness), m0, cubeUV_maxMipLevel);\n float mipF = fract(mip);\n float mipInt = floor(mip);\n vec3 color0 = bilinearCubeUV(envMap, sampleDir, mipInt);\n if (mipF == 0.0) {\n return vec4(color0, 1.0);\n } else {\n vec3 color1 = bilinearCubeUV(envMap, sampleDir, mipInt + 1.0);\n return vec4(mix(color0, color1, mipF), 1.0);\n }\n}\n#endif"; + + var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; + + var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; + + var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif"; + + var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; + + var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; + + var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; + + var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}"; + + var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\t\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec2 sampleUV = equirectUv( reflectVec );\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifndef ENVMAP_TYPE_CUBE_UV\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; + + var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; + + var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; + + var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; + + var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; + + var fog_vertex = "#ifdef USE_FOG\n\tfogDepth = - mvPosition.z;\n#endif"; + + var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float fogDepth;\n#endif"; + + var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * fogDepth * fogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; + + var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; + + var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}"; + + var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\treflectedLight.indirectDiffuse += PI * lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n#endif"; + + var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; + + var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif"; + + var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\n\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif"; + + var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float roughness, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat sigma = PI * roughness * roughness / ( 1.0 + roughness );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + log2( sigma );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t vec3 reflectVec = reflect( -viewDir, normal );\n\t\t reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t#else\n\t\t vec3 reflectVec = refract( -viewDir, normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( roughness, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV = equirectUv( reflectVec );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif"; + + var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; + + var lights_toon_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)"; + + var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; + + var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)"; + + var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.specularRoughness = max( roughnessFactor, 0.0525 );material.specularRoughness += geometryRoughness;\nmaterial.specularRoughness = min( material.specularRoughness, 1.0 );\n#ifdef REFLECTIVITY\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#endif\n#ifdef CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheen;\n#endif"; + + var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat specularRoughness;\n\tvec3 specularColor;\n#ifdef CLEARCOAT\n\tfloat clearcoat;\n\tfloat clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tvec3 sheenColor;\n#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearcoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNL = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = ccDotNL * directLight.color;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tccIrradiance *= PI;\n\t\t#endif\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t\treflectedLight.directSpecular += ccIrradiance * material.clearcoat * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_Sheen(\n\t\t\tmaterial.specularRoughness,\n\t\t\tdirectLight.direction,\n\t\t\tgeometry,\n\t\t\tmaterial.sheenColor\n\t\t);\n\t#else\n\t\treflectedLight.directSpecular += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry.viewDir, geometry.normal, material.specularColor, material.specularRoughness);\n\t#endif\n\treflectedLight.directDiffuse += ( 1.0 - clearcoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef CLEARCOAT\n\t\tfloat ccDotNV = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular += clearcoatRadiance * material.clearcoat * BRDF_Specular_GGX_Environment( geometry.viewDir, geometry.clearcoatNormal, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearcoatRoughness );\n\t\tfloat ccDotNL = ccDotNV;\n\t\tfloat clearcoatDHR = material.clearcoat * clearcoatDHRApprox( material.clearcoatRoughness, ccDotNL );\n\t#else\n\t\tfloat clearcoatDHR = 0.0;\n\t#endif\n\tfloat clearcoatInv = 1.0 - clearcoatDHR;\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += clearcoatInv * radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; + + var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; + + var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.normal, material.specularRoughness, maxMipLevel );\n\t#ifdef CLEARCOAT\n\t\tclearcoatRadiance += getLightProbeIndirectRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness, maxMipLevel );\n\t#endif\n#endif"; + + var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif"; + + var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; + + var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; + + var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif"; + + var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif"; + + var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif"; + + var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif"; + + var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; + + var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; + + var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; + + var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; + + var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n#endif"; + + var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifndef USE_MORPHNORMALS\n\t\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\t\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif"; + + var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t#endif\n#endif"; + + var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;"; + + var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( -vViewPosition, normal, mapN );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif"; + + var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif"; + + var clearcoat_normal_fragment_begin = "#ifdef CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif"; + + var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN );\n\t#endif\n#endif"; + + var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif"; + + var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}"; + + var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; + + var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; + + var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; + + var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; + + var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; + + var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; + + var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif"; + + var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; + + var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif"; + + var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; + + var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; + + var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif"; + + var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; + + var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; + + var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; + + var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; + + var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; + + var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; + + var transmissionmap_fragment = "#ifdef USE_TRANSMISSIONMAP\n\ttotalTransmission *= texture2D( transmissionMap, vUv ).r;\n#endif"; + + var transmissionmap_pars_fragment = "#ifdef USE_TRANSMISSIONMAP\n\tuniform sampler2D transmissionMap;\n#endif"; + + var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif"; + + var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif"; + + var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif"; + + var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif"; + + var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif"; + + var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif"; + + var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; + + var background_frag = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; + + var background_vert = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; + + var cube_frag = "#include \nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include \n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; + + var cube_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; + + var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}"; + + var depth_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; + + var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; + + var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; + + var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include \n\t#include \n}"; + + var equirect_vert = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; + + var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshbasic_vert = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshmatcap_frag = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshmatcap_vert = "#define MATCAP\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifndef FLAT_SHADED\n\t\tvNormal = normalize( transformedNormal );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; + + var meshtoon_frag = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshtoon_vert = "#define TOON\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; + + var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshphysical_frag = "#define STANDARD\n#ifdef PHYSICAL\n\t#define REFLECTIVITY\n\t#define CLEARCOAT\n\t#define TRANSMISSION\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef TRANSMISSION\n\tuniform float transmission;\n#endif\n#ifdef REFLECTIVITY\n\tuniform float reflectivity;\n#endif\n#ifdef CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheen;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#ifdef TRANSMISSION\n\t\tfloat totalTransmission = transmission;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#ifdef TRANSMISSION\n\t\tdiffuseColor.a *= saturate( 1. - totalTransmission + linearToRelativeLuminance( reflectedLight.directSpecular + reflectedLight.indirectSpecular ) );\n\t#endif\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var meshphysical_vert = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; + + var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}"; + + var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; + + var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var points_vert = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; + + var shadow_vert = "#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; + + var sprite_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n}"; + + var sprite_vert = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; + + var ShaderChunk = { + alphamap_fragment: alphamap_fragment, + alphamap_pars_fragment: alphamap_pars_fragment, + alphatest_fragment: alphatest_fragment, + aomap_fragment: aomap_fragment, + aomap_pars_fragment: aomap_pars_fragment, + begin_vertex: begin_vertex, + beginnormal_vertex: beginnormal_vertex, + bsdfs: bsdfs, + bumpmap_pars_fragment: bumpmap_pars_fragment, + clipping_planes_fragment: clipping_planes_fragment, + clipping_planes_pars_fragment: clipping_planes_pars_fragment, + clipping_planes_pars_vertex: clipping_planes_pars_vertex, + clipping_planes_vertex: clipping_planes_vertex, + color_fragment: color_fragment, + color_pars_fragment: color_pars_fragment, + color_pars_vertex: color_pars_vertex, + color_vertex: color_vertex, + common: common, + cube_uv_reflection_fragment: cube_uv_reflection_fragment, + defaultnormal_vertex: defaultnormal_vertex, + displacementmap_pars_vertex: displacementmap_pars_vertex, + displacementmap_vertex: displacementmap_vertex, + emissivemap_fragment: emissivemap_fragment, + emissivemap_pars_fragment: emissivemap_pars_fragment, + encodings_fragment: encodings_fragment, + encodings_pars_fragment: encodings_pars_fragment, + envmap_fragment: envmap_fragment, + envmap_common_pars_fragment: envmap_common_pars_fragment, + envmap_pars_fragment: envmap_pars_fragment, + envmap_pars_vertex: envmap_pars_vertex, + envmap_physical_pars_fragment: envmap_physical_pars_fragment, + envmap_vertex: envmap_vertex, + fog_vertex: fog_vertex, + fog_pars_vertex: fog_pars_vertex, + fog_fragment: fog_fragment, + fog_pars_fragment: fog_pars_fragment, + gradientmap_pars_fragment: gradientmap_pars_fragment, + lightmap_fragment: lightmap_fragment, + lightmap_pars_fragment: lightmap_pars_fragment, + lights_lambert_vertex: lights_lambert_vertex, + lights_pars_begin: lights_pars_begin, + lights_toon_fragment: lights_toon_fragment, + lights_toon_pars_fragment: lights_toon_pars_fragment, + lights_phong_fragment: lights_phong_fragment, + lights_phong_pars_fragment: lights_phong_pars_fragment, + lights_physical_fragment: lights_physical_fragment, + lights_physical_pars_fragment: lights_physical_pars_fragment, + lights_fragment_begin: lights_fragment_begin, + lights_fragment_maps: lights_fragment_maps, + lights_fragment_end: lights_fragment_end, + logdepthbuf_fragment: logdepthbuf_fragment, + logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, + logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, + logdepthbuf_vertex: logdepthbuf_vertex, + map_fragment: map_fragment, + map_pars_fragment: map_pars_fragment, + map_particle_fragment: map_particle_fragment, + map_particle_pars_fragment: map_particle_pars_fragment, + metalnessmap_fragment: metalnessmap_fragment, + metalnessmap_pars_fragment: metalnessmap_pars_fragment, + morphnormal_vertex: morphnormal_vertex, + morphtarget_pars_vertex: morphtarget_pars_vertex, + morphtarget_vertex: morphtarget_vertex, + normal_fragment_begin: normal_fragment_begin, + normal_fragment_maps: normal_fragment_maps, + normalmap_pars_fragment: normalmap_pars_fragment, + clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, + clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, + clearcoat_pars_fragment: clearcoat_pars_fragment, + packing: packing, + premultiplied_alpha_fragment: premultiplied_alpha_fragment, + project_vertex: project_vertex, + dithering_fragment: dithering_fragment, + dithering_pars_fragment: dithering_pars_fragment, + roughnessmap_fragment: roughnessmap_fragment, + roughnessmap_pars_fragment: roughnessmap_pars_fragment, + shadowmap_pars_fragment: shadowmap_pars_fragment, + shadowmap_pars_vertex: shadowmap_pars_vertex, + shadowmap_vertex: shadowmap_vertex, + shadowmask_pars_fragment: shadowmask_pars_fragment, + skinbase_vertex: skinbase_vertex, + skinning_pars_vertex: skinning_pars_vertex, + skinning_vertex: skinning_vertex, + skinnormal_vertex: skinnormal_vertex, + specularmap_fragment: specularmap_fragment, + specularmap_pars_fragment: specularmap_pars_fragment, + tonemapping_fragment: tonemapping_fragment, + tonemapping_pars_fragment: tonemapping_pars_fragment, + transmissionmap_fragment: transmissionmap_fragment, + transmissionmap_pars_fragment: transmissionmap_pars_fragment, + uv_pars_fragment: uv_pars_fragment, + uv_pars_vertex: uv_pars_vertex, + uv_vertex: uv_vertex, + uv2_pars_fragment: uv2_pars_fragment, + uv2_pars_vertex: uv2_pars_vertex, + uv2_vertex: uv2_vertex, + worldpos_vertex: worldpos_vertex, + + background_frag: background_frag, + background_vert: background_vert, + cube_frag: cube_frag, + cube_vert: cube_vert, + depth_frag: depth_frag, + depth_vert: depth_vert, + distanceRGBA_frag: distanceRGBA_frag, + distanceRGBA_vert: distanceRGBA_vert, + equirect_frag: equirect_frag, + equirect_vert: equirect_vert, + linedashed_frag: linedashed_frag, + linedashed_vert: linedashed_vert, + meshbasic_frag: meshbasic_frag, + meshbasic_vert: meshbasic_vert, + meshlambert_frag: meshlambert_frag, + meshlambert_vert: meshlambert_vert, + meshmatcap_frag: meshmatcap_frag, + meshmatcap_vert: meshmatcap_vert, + meshtoon_frag: meshtoon_frag, + meshtoon_vert: meshtoon_vert, + meshphong_frag: meshphong_frag, + meshphong_vert: meshphong_vert, + meshphysical_frag: meshphysical_frag, + meshphysical_vert: meshphysical_vert, + normal_frag: normal_frag, + normal_vert: normal_vert, + points_frag: points_frag, + points_vert: points_vert, + shadow_frag: shadow_frag, + shadow_vert: shadow_vert, + sprite_frag: sprite_frag, + sprite_vert: sprite_vert + }; + + var ShaderLib = { + + basic: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.specularmap, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.fog + ] ), + + vertexShader: ShaderChunk.meshbasic_vert, + fragmentShader: ShaderChunk.meshbasic_frag + + }, + + lambert: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.specularmap, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: new Color( 0x000000 ) } + } + ] ), + + vertexShader: ShaderChunk.meshlambert_vert, + fragmentShader: ShaderChunk.meshlambert_frag + + }, + + phong: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.specularmap, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: new Color( 0x000000 ) }, + specular: { value: new Color( 0x111111 ) }, + shininess: { value: 30 } + } + ] ), + + vertexShader: ShaderChunk.meshphong_vert, + fragmentShader: ShaderChunk.meshphong_frag + + }, + + standard: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.envmap, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.roughnessmap, + UniformsLib.metalnessmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: new Color( 0x000000 ) }, + roughness: { value: 1.0 }, + metalness: { value: 0.0 }, + envMapIntensity: { value: 1 } // temporary + } + ] ), + + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + + }, + + toon: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.aomap, + UniformsLib.lightmap, + UniformsLib.emissivemap, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.gradientmap, + UniformsLib.fog, + UniformsLib.lights, + { + emissive: { value: new Color( 0x000000 ) } + } + ] ), + + vertexShader: ShaderChunk.meshtoon_vert, + fragmentShader: ShaderChunk.meshtoon_frag + + }, + + matcap: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + UniformsLib.fog, + { + matcap: { value: null } + } + ] ), + + vertexShader: ShaderChunk.meshmatcap_vert, + fragmentShader: ShaderChunk.meshmatcap_frag + + }, + + points: { + + uniforms: mergeUniforms( [ + UniformsLib.points, + UniformsLib.fog + ] ), + + vertexShader: ShaderChunk.points_vert, + fragmentShader: ShaderChunk.points_frag + + }, + + dashed: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.fog, + { + scale: { value: 1 }, + dashSize: { value: 1 }, + totalSize: { value: 2 } + } + ] ), + + vertexShader: ShaderChunk.linedashed_vert, + fragmentShader: ShaderChunk.linedashed_frag + + }, + + depth: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.displacementmap + ] ), + + vertexShader: ShaderChunk.depth_vert, + fragmentShader: ShaderChunk.depth_frag + + }, + + normal: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.bumpmap, + UniformsLib.normalmap, + UniformsLib.displacementmap, + { + opacity: { value: 1.0 } + } + ] ), + + vertexShader: ShaderChunk.normal_vert, + fragmentShader: ShaderChunk.normal_frag + + }, + + sprite: { + + uniforms: mergeUniforms( [ + UniformsLib.sprite, + UniformsLib.fog + ] ), + + vertexShader: ShaderChunk.sprite_vert, + fragmentShader: ShaderChunk.sprite_frag + + }, + + background: { + + uniforms: { + uvTransform: { value: new Matrix3() }, + t2D: { value: null }, + }, + + vertexShader: ShaderChunk.background_vert, + fragmentShader: ShaderChunk.background_frag + + }, + /* ------------------------------------------------------------------------- + // Cube map shader + ------------------------------------------------------------------------- */ + + cube: { + + uniforms: mergeUniforms( [ + UniformsLib.envmap, + { + opacity: { value: 1.0 } + } + ] ), + + vertexShader: ShaderChunk.cube_vert, + fragmentShader: ShaderChunk.cube_frag + + }, + + equirect: { + + uniforms: { + tEquirect: { value: null }, + }, + + vertexShader: ShaderChunk.equirect_vert, + fragmentShader: ShaderChunk.equirect_frag + + }, + + distanceRGBA: { + + uniforms: mergeUniforms( [ + UniformsLib.common, + UniformsLib.displacementmap, + { + referencePosition: { value: new Vector3() }, + nearDistance: { value: 1 }, + farDistance: { value: 1000 } + } + ] ), + + vertexShader: ShaderChunk.distanceRGBA_vert, + fragmentShader: ShaderChunk.distanceRGBA_frag + + }, + + shadow: { + + uniforms: mergeUniforms( [ + UniformsLib.lights, + UniformsLib.fog, + { + color: { value: new Color( 0x00000 ) }, + opacity: { value: 1.0 } + } ] ), + + vertexShader: ShaderChunk.shadow_vert, + fragmentShader: ShaderChunk.shadow_frag + + } + + }; + + ShaderLib.physical = { + + uniforms: mergeUniforms( [ + ShaderLib.standard.uniforms, + { + clearcoat: { value: 0 }, + clearcoatMap: { value: null }, + clearcoatRoughness: { value: 0 }, + clearcoatRoughnessMap: { value: null }, + clearcoatNormalScale: { value: new Vector2( 1, 1 ) }, + clearcoatNormalMap: { value: null }, + sheen: { value: new Color( 0x000000 ) }, + transmission: { value: 0 }, + transmissionMap: { value: null }, + } + ] ), + + vertexShader: ShaderChunk.meshphysical_vert, + fragmentShader: ShaderChunk.meshphysical_frag + + }; + + function WebGLBackground( renderer, state, objects, premultipliedAlpha ) { + + var clearColor = new Color( 0x000000 ); + var clearAlpha = 0; + + var planeMesh; + var boxMesh; + + var currentBackground = null; + var currentBackgroundVersion = 0; + var currentTonemapping = null; + + function render( renderList, scene, camera, forceClear ) { + + var background = scene.isScene === true ? scene.background : null; + + // Ignore background in AR + // TODO: Reconsider this. + + var xr = renderer.xr; + var session = xr.getSession && xr.getSession(); + + if ( session && session.environmentBlendMode === 'additive' ) { + + background = null; + + } + + if ( background === null ) { + + setClear( clearColor, clearAlpha ); + + } else if ( background && background.isColor ) { + + setClear( background, 1 ); + forceClear = true; + + } + + if ( renderer.autoClear || forceClear ) { + + renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); + + } + + if ( background && ( background.isCubeTexture || background.isWebGLCubeRenderTarget || background.mapping === CubeUVReflectionMapping ) ) { + + if ( boxMesh === undefined ) { + + boxMesh = new Mesh( + new BoxBufferGeometry( 1, 1, 1 ), + new ShaderMaterial( { + name: 'BackgroundCubeMaterial', + uniforms: cloneUniforms( ShaderLib.cube.uniforms ), + vertexShader: ShaderLib.cube.vertexShader, + fragmentShader: ShaderLib.cube.fragmentShader, + side: BackSide, + depthTest: false, + depthWrite: false, + fog: false + } ) + ); + + boxMesh.geometry.deleteAttribute( 'normal' ); + boxMesh.geometry.deleteAttribute( 'uv' ); + + boxMesh.onBeforeRender = function ( renderer, scene, camera ) { + + this.matrixWorld.copyPosition( camera.matrixWorld ); + + }; + + // enable code injection for non-built-in material + Object.defineProperty( boxMesh.material, 'envMap', { + + get: function () { + + return this.uniforms.envMap.value; + + } + + } ); + + objects.update( boxMesh ); + + } + + var texture = background.isWebGLCubeRenderTarget ? background.texture : background; + + boxMesh.material.uniforms.envMap.value = texture; + boxMesh.material.uniforms.flipEnvMap.value = texture.isCubeTexture ? - 1 : 1; + + if ( currentBackground !== background || + currentBackgroundVersion !== texture.version || + currentTonemapping !== renderer.toneMapping ) { + + boxMesh.material.needsUpdate = true; + + currentBackground = background; + currentBackgroundVersion = texture.version; + currentTonemapping = renderer.toneMapping; + + } + + // push to the pre-sorted opaque render list + renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); + + } else if ( background && background.isTexture ) { + + if ( planeMesh === undefined ) { + + planeMesh = new Mesh( + new PlaneBufferGeometry( 2, 2 ), + new ShaderMaterial( { + name: 'BackgroundMaterial', + uniforms: cloneUniforms( ShaderLib.background.uniforms ), + vertexShader: ShaderLib.background.vertexShader, + fragmentShader: ShaderLib.background.fragmentShader, + side: FrontSide, + depthTest: false, + depthWrite: false, + fog: false + } ) + ); + + planeMesh.geometry.deleteAttribute( 'normal' ); + + // enable code injection for non-built-in material + Object.defineProperty( planeMesh.material, 'map', { + + get: function () { + + return this.uniforms.t2D.value; + + } + + } ); + + objects.update( planeMesh ); + + } + + planeMesh.material.uniforms.t2D.value = background; + + if ( background.matrixAutoUpdate === true ) { + + background.updateMatrix(); + + } + + planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); + + if ( currentBackground !== background || + currentBackgroundVersion !== background.version || + currentTonemapping !== renderer.toneMapping ) { + + planeMesh.material.needsUpdate = true; + + currentBackground = background; + currentBackgroundVersion = background.version; + currentTonemapping = renderer.toneMapping; + + } + + + // push to the pre-sorted opaque render list + renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); + + } + + } + + function setClear( color, alpha ) { + + state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha ); + + } + + return { + + getClearColor: function () { + + return clearColor; + + }, + setClearColor: function ( color, alpha ) { + + clearColor.set( color ); + clearAlpha = alpha !== undefined ? alpha : 1; + setClear( clearColor, clearAlpha ); + + }, + getClearAlpha: function () { + + return clearAlpha; + + }, + setClearAlpha: function ( alpha ) { + + clearAlpha = alpha; + setClear( clearColor, clearAlpha ); + + }, + render: render + + }; + + } + + function WebGLBindingStates( gl, extensions, attributes, capabilities ) { + + var maxVertexAttributes = gl.getParameter( 34921 ); + + var extension = capabilities.isWebGL2 ? null : extensions.get( 'OES_vertex_array_object' ); + var vaoAvailable = capabilities.isWebGL2 || extension !== null; + + var bindingStates = {}; + + var defaultState = createBindingState( null ); + var currentState = defaultState; + + function setup( object, material, program, geometry, index ) { + + var updateBuffers = false; + + if ( vaoAvailable ) { + + var state = getBindingState( geometry, program, material ); + + if ( currentState !== state ) { + + currentState = state; + bindVertexArrayObject( currentState.object ); + + } + + updateBuffers = needsUpdate( geometry ); + + if ( updateBuffers ) { saveCache( geometry ); } + + } else { + + var wireframe = ( material.wireframe === true ); + + if ( currentState.geometry !== geometry.id || + currentState.program !== program.id || + currentState.wireframe !== wireframe ) { + + currentState.geometry = geometry.id; + currentState.program = program.id; + currentState.wireframe = wireframe; + + updateBuffers = true; + + } + + } + + if ( object.isInstancedMesh === true ) { + + updateBuffers = true; + + } + + if ( index !== null ) { + + attributes.update( index, 34963 ); + + } + + if ( updateBuffers ) { + + setupVertexAttributes( object, material, program, geometry ); + + if ( index !== null ) { + + gl.bindBuffer( 34963, attributes.get( index ).buffer ); + + } + + } + + } + + function createVertexArrayObject() { + + if ( capabilities.isWebGL2 ) { return gl.createVertexArray(); } + + return extension.createVertexArrayOES(); + + } + + function bindVertexArrayObject( vao ) { + + if ( capabilities.isWebGL2 ) { return gl.bindVertexArray( vao ); } + + return extension.bindVertexArrayOES( vao ); + + } + + function deleteVertexArrayObject( vao ) { + + if ( capabilities.isWebGL2 ) { return gl.deleteVertexArray( vao ); } + + return extension.deleteVertexArrayOES( vao ); + + } + + function getBindingState( geometry, program, material ) { + + var wireframe = ( material.wireframe === true ); + + var programMap = bindingStates[ geometry.id ]; + + if ( programMap === undefined ) { + + programMap = {}; + bindingStates[ geometry.id ] = programMap; + + } + + var stateMap = programMap[ program.id ]; + + if ( stateMap === undefined ) { + + stateMap = {}; + programMap[ program.id ] = stateMap; + + } + + var state = stateMap[ wireframe ]; + + if ( state === undefined ) { + + state = createBindingState( createVertexArrayObject() ); + stateMap[ wireframe ] = state; + + } + + return state; + + } + + function createBindingState( vao ) { + + var newAttributes = []; + var enabledAttributes = []; + var attributeDivisors = []; + + for ( var i = 0; i < maxVertexAttributes; i ++ ) { + + newAttributes[ i ] = 0; + enabledAttributes[ i ] = 0; + attributeDivisors[ i ] = 0; + + } + + return { + + // for backward compatibility on non-VAO support browser + geometry: null, + program: null, + wireframe: false, + + newAttributes: newAttributes, + enabledAttributes: enabledAttributes, + attributeDivisors: attributeDivisors, + object: vao, + attributes: {} + + }; + + } + + function needsUpdate( geometry ) { + + var cachedAttributes = currentState.attributes; + var geometryAttributes = geometry.attributes; + + if ( Object.keys( cachedAttributes ).length !== Object.keys( geometryAttributes ).length ) { return true; } + + for ( var key in geometryAttributes ) { + + var cachedAttribute = cachedAttributes[ key ]; + var geometryAttribute = geometryAttributes[ key ]; + + if ( cachedAttribute.attribute !== geometryAttribute ) { return true; } + + if ( cachedAttribute.data !== geometryAttribute.data ) { return true; } + + } + + return false; + + } + + function saveCache( geometry ) { + + var cache = {}; + var attributes = geometry.attributes; + + for ( var key in attributes ) { + + var attribute = attributes[ key ]; + + var data = {}; + data.attribute = attribute; + + if ( attribute.data ) { + + data.data = attribute.data; + + } + + cache[ key ] = data; + + } + + currentState.attributes = cache; + + } + + function initAttributes() { + + var newAttributes = currentState.newAttributes; + + for ( var i = 0, il = newAttributes.length; i < il; i ++ ) { + + newAttributes[ i ] = 0; + + } + + } + + function enableAttribute( attribute ) { + + enableAttributeAndDivisor( attribute, 0 ); + + } + + function enableAttributeAndDivisor( attribute, meshPerAttribute ) { + + var newAttributes = currentState.newAttributes; + var enabledAttributes = currentState.enabledAttributes; + var attributeDivisors = currentState.attributeDivisors; + + newAttributes[ attribute ] = 1; + + if ( enabledAttributes[ attribute ] === 0 ) { + + gl.enableVertexAttribArray( attribute ); + enabledAttributes[ attribute ] = 1; + + } + + if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { + + var extension = capabilities.isWebGL2 ? gl : extensions.get( 'ANGLE_instanced_arrays' ); + + extension[ capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE' ]( attribute, meshPerAttribute ); + attributeDivisors[ attribute ] = meshPerAttribute; + + } + + } + + function disableUnusedAttributes() { + + var newAttributes = currentState.newAttributes; + var enabledAttributes = currentState.enabledAttributes; + + for ( var i = 0, il = enabledAttributes.length; i < il; i ++ ) { + + if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { + + gl.disableVertexAttribArray( i ); + enabledAttributes[ i ] = 0; + + } + + } + + } + + function vertexAttribPointer( index, size, type, normalized, stride, offset ) { + + if ( capabilities.isWebGL2 === true && ( type === 5124 || type === 5125 ) ) { + + gl.vertexAttribIPointer( index, size, type, stride, offset ); + + } else { + + gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); + + } + + } + + function setupVertexAttributes( object, material, program, geometry ) { + + if ( capabilities.isWebGL2 === false && ( object.isInstancedMesh || geometry.isInstancedBufferGeometry ) ) { + + if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) { return; } + + } + + initAttributes(); + + var geometryAttributes = geometry.attributes; + + var programAttributes = program.getAttributes(); + + var materialDefaultAttributeValues = material.defaultAttributeValues; + + for ( var name in programAttributes ) { + + var programAttribute = programAttributes[ name ]; + + if ( programAttribute >= 0 ) { + + var geometryAttribute = geometryAttributes[ name ]; + + if ( geometryAttribute !== undefined ) { + + var normalized = geometryAttribute.normalized; + var size = geometryAttribute.itemSize; + + var attribute = attributes.get( geometryAttribute ); + + // TODO Attribute may not be available on context restore + + if ( attribute === undefined ) { continue; } + + var buffer = attribute.buffer; + var type = attribute.type; + var bytesPerElement = attribute.bytesPerElement; + + if ( geometryAttribute.isInterleavedBufferAttribute ) { + + var data = geometryAttribute.data; + var stride = data.stride; + var offset = geometryAttribute.offset; + + if ( data && data.isInstancedInterleavedBuffer ) { + + enableAttributeAndDivisor( programAttribute, data.meshPerAttribute ); + + if ( geometry._maxInstanceCount === undefined ) { + + geometry._maxInstanceCount = data.meshPerAttribute * data.count; + + } + + } else { + + enableAttribute( programAttribute ); + + } + + gl.bindBuffer( 34962, buffer ); + vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement ); + + } else { + + if ( geometryAttribute.isInstancedBufferAttribute ) { + + enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute ); + + if ( geometry._maxInstanceCount === undefined ) { + + geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; + + } + + } else { + + enableAttribute( programAttribute ); + + } + + gl.bindBuffer( 34962, buffer ); + vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 ); + + } + + } else if ( name === 'instanceMatrix' ) { + + var attribute$1 = attributes.get( object.instanceMatrix ); + + // TODO Attribute may not be available on context restore + + if ( attribute$1 === undefined ) { continue; } + + var buffer$1 = attribute$1.buffer; + var type$1 = attribute$1.type; + + enableAttributeAndDivisor( programAttribute + 0, 1 ); + enableAttributeAndDivisor( programAttribute + 1, 1 ); + enableAttributeAndDivisor( programAttribute + 2, 1 ); + enableAttributeAndDivisor( programAttribute + 3, 1 ); + + gl.bindBuffer( 34962, buffer$1 ); + + gl.vertexAttribPointer( programAttribute + 0, 4, type$1, false, 64, 0 ); + gl.vertexAttribPointer( programAttribute + 1, 4, type$1, false, 64, 16 ); + gl.vertexAttribPointer( programAttribute + 2, 4, type$1, false, 64, 32 ); + gl.vertexAttribPointer( programAttribute + 3, 4, type$1, false, 64, 48 ); + + } else if ( materialDefaultAttributeValues !== undefined ) { + + var value = materialDefaultAttributeValues[ name ]; + + if ( value !== undefined ) { + + switch ( value.length ) { + + case 2: + gl.vertexAttrib2fv( programAttribute, value ); + break; + + case 3: + gl.vertexAttrib3fv( programAttribute, value ); + break; + + case 4: + gl.vertexAttrib4fv( programAttribute, value ); + break; + + default: + gl.vertexAttrib1fv( programAttribute, value ); + + } + + } + + } + + } + + } + + disableUnusedAttributes(); + + } + + function dispose() { + + reset(); + + for ( var geometryId in bindingStates ) { + + var programMap = bindingStates[ geometryId ]; + + for ( var programId in programMap ) { + + var stateMap = programMap[ programId ]; + + for ( var wireframe in stateMap ) { + + deleteVertexArrayObject( stateMap[ wireframe ].object ); + + delete stateMap[ wireframe ]; + + } + + delete programMap[ programId ]; + + } + + delete bindingStates[ geometryId ]; + + } + + } + + function releaseStatesOfGeometry( geometry ) { + + if ( bindingStates[ geometry.id ] === undefined ) { return; } + + var programMap = bindingStates[ geometry.id ]; + + for ( var programId in programMap ) { + + var stateMap = programMap[ programId ]; + + for ( var wireframe in stateMap ) { + + deleteVertexArrayObject( stateMap[ wireframe ].object ); + + delete stateMap[ wireframe ]; + + } + + delete programMap[ programId ]; + + } + + delete bindingStates[ geometry.id ]; + + } + + function releaseStatesOfProgram( program ) { + + for ( var geometryId in bindingStates ) { + + var programMap = bindingStates[ geometryId ]; + + if ( programMap[ program.id ] === undefined ) { continue; } + + var stateMap = programMap[ program.id ]; + + for ( var wireframe in stateMap ) { + + deleteVertexArrayObject( stateMap[ wireframe ].object ); + + delete stateMap[ wireframe ]; + + } + + delete programMap[ program.id ]; + + } + + } + + function reset() { + + resetDefaultState(); + + if ( currentState === defaultState ) { return; } + + currentState = defaultState; + bindVertexArrayObject( currentState.object ); + + } + + // for backward-compatilibity + + function resetDefaultState() { + + defaultState.geometry = null; + defaultState.program = null; + defaultState.wireframe = false; + + } + + return { + + setup: setup, + reset: reset, + resetDefaultState: resetDefaultState, + dispose: dispose, + releaseStatesOfGeometry: releaseStatesOfGeometry, + releaseStatesOfProgram: releaseStatesOfProgram, + + initAttributes: initAttributes, + enableAttribute: enableAttribute, + disableUnusedAttributes: disableUnusedAttributes + + }; + + } + + function WebGLBufferRenderer( gl, extensions, info, capabilities ) { + + var isWebGL2 = capabilities.isWebGL2; + + var mode; + + function setMode( value ) { + + mode = value; + + } + + function render( start, count ) { + + gl.drawArrays( mode, start, count ); + + info.update( count, mode, 1 ); + + } + + function renderInstances( start, count, primcount ) { + + if ( primcount === 0 ) { return; } + + var extension, methodName; + + if ( isWebGL2 ) { + + extension = gl; + methodName = 'drawArraysInstanced'; + + } else { + + extension = extensions.get( 'ANGLE_instanced_arrays' ); + methodName = 'drawArraysInstancedANGLE'; + + if ( extension === null ) { + + console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); + return; + + } + + } + + extension[ methodName ]( mode, start, count, primcount ); + + info.update( count, mode, primcount ); + + } + + // + + this.setMode = setMode; + this.render = render; + this.renderInstances = renderInstances; + + } + + function WebGLCapabilities( gl, extensions, parameters ) { + + var maxAnisotropy; + + function getMaxAnisotropy() { + + if ( maxAnisotropy !== undefined ) { return maxAnisotropy; } + + var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + + if ( extension !== null ) { + + maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); + + } else { + + maxAnisotropy = 0; + + } + + return maxAnisotropy; + + } + + function getMaxPrecision( precision ) { + + if ( precision === 'highp' ) { + + if ( gl.getShaderPrecisionFormat( 35633, 36338 ).precision > 0 && + gl.getShaderPrecisionFormat( 35632, 36338 ).precision > 0 ) { + + return 'highp'; + + } + + precision = 'mediump'; + + } + + if ( precision === 'mediump' ) { + + if ( gl.getShaderPrecisionFormat( 35633, 36337 ).precision > 0 && + gl.getShaderPrecisionFormat( 35632, 36337 ).precision > 0 ) { + + return 'mediump'; + + } + + } + + return 'lowp'; + + } + + /* eslint-disable no-undef */ + var isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext ) || + ( typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext ); + /* eslint-enable no-undef */ + + var precision = parameters.precision !== undefined ? parameters.precision : 'highp'; + var maxPrecision = getMaxPrecision( precision ); + + if ( maxPrecision !== precision ) { + + console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); + precision = maxPrecision; + + } + + var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; + + var maxTextures = gl.getParameter( 34930 ); + var maxVertexTextures = gl.getParameter( 35660 ); + var maxTextureSize = gl.getParameter( 3379 ); + var maxCubemapSize = gl.getParameter( 34076 ); + + var maxAttributes = gl.getParameter( 34921 ); + var maxVertexUniforms = gl.getParameter( 36347 ); + var maxVaryings = gl.getParameter( 36348 ); + var maxFragmentUniforms = gl.getParameter( 36349 ); + + var vertexTextures = maxVertexTextures > 0; + var floatFragmentTextures = isWebGL2 || !! extensions.get( 'OES_texture_float' ); + var floatVertexTextures = vertexTextures && floatFragmentTextures; + + var maxSamples = isWebGL2 ? gl.getParameter( 36183 ) : 0; + + return { + + isWebGL2: isWebGL2, + + getMaxAnisotropy: getMaxAnisotropy, + getMaxPrecision: getMaxPrecision, + + precision: precision, + logarithmicDepthBuffer: logarithmicDepthBuffer, + + maxTextures: maxTextures, + maxVertexTextures: maxVertexTextures, + maxTextureSize: maxTextureSize, + maxCubemapSize: maxCubemapSize, + + maxAttributes: maxAttributes, + maxVertexUniforms: maxVertexUniforms, + maxVaryings: maxVaryings, + maxFragmentUniforms: maxFragmentUniforms, + + vertexTextures: vertexTextures, + floatFragmentTextures: floatFragmentTextures, + floatVertexTextures: floatVertexTextures, + + maxSamples: maxSamples + + }; + + } + + function WebGLClipping() { + + var scope = this; + + var globalState = null, + numGlobalPlanes = 0, + localClippingEnabled = false, + renderingShadows = false; + + var plane = new Plane(), + viewNormalMatrix = new Matrix3(), + + uniform = { value: null, needsUpdate: false }; + + this.uniform = uniform; + this.numPlanes = 0; + this.numIntersection = 0; + + this.init = function ( planes, enableLocalClipping, camera ) { + + var enabled = + planes.length !== 0 || + enableLocalClipping || + // enable state of previous frame - the clipping code has to + // run another frame in order to reset the state: + numGlobalPlanes !== 0 || + localClippingEnabled; + + localClippingEnabled = enableLocalClipping; + + globalState = projectPlanes( planes, camera, 0 ); + numGlobalPlanes = planes.length; + + return enabled; + + }; + + this.beginShadows = function () { + + renderingShadows = true; + projectPlanes( null ); + + }; + + this.endShadows = function () { + + renderingShadows = false; + resetGlobalState(); + + }; + + this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) { + + if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { + + // there's no local clipping + + if ( renderingShadows ) { + + // there's no global clipping + + projectPlanes( null ); + + } else { + + resetGlobalState(); + + } + + } else { + + var nGlobal = renderingShadows ? 0 : numGlobalPlanes, + lGlobal = nGlobal * 4; + + var dstArray = cache.clippingState || null; + + uniform.value = dstArray; // ensure unique state + + dstArray = projectPlanes( planes, camera, lGlobal, fromCache ); + + for ( var i = 0; i !== lGlobal; ++ i ) { + + dstArray[ i ] = globalState[ i ]; + + } + + cache.clippingState = dstArray; + this.numIntersection = clipIntersection ? this.numPlanes : 0; + this.numPlanes += nGlobal; + + } + + + }; + + function resetGlobalState() { + + if ( uniform.value !== globalState ) { + + uniform.value = globalState; + uniform.needsUpdate = numGlobalPlanes > 0; + + } + + scope.numPlanes = numGlobalPlanes; + scope.numIntersection = 0; + + } + + function projectPlanes( planes, camera, dstOffset, skipTransform ) { + + var nPlanes = planes !== null ? planes.length : 0, + dstArray = null; + + if ( nPlanes !== 0 ) { + + dstArray = uniform.value; + + if ( skipTransform !== true || dstArray === null ) { + + var flatSize = dstOffset + nPlanes * 4, + viewMatrix = camera.matrixWorldInverse; + + viewNormalMatrix.getNormalMatrix( viewMatrix ); + + if ( dstArray === null || dstArray.length < flatSize ) { + + dstArray = new Float32Array( flatSize ); + + } + + for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { + + plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); + + plane.normal.toArray( dstArray, i4 ); + dstArray[ i4 + 3 ] = plane.constant; + + } + + } + + uniform.value = dstArray; + uniform.needsUpdate = true; + + } + + scope.numPlanes = nPlanes; + scope.numIntersection = 0; + + return dstArray; + + } + + } + + function WebGLExtensions( gl ) { + + var extensions = {}; + + return { + + has: function ( name ) { + + if ( extensions[ name ] !== undefined ) { + + return extensions[ name ]; + + } + + var extension; + + switch ( name ) { + + case 'WEBGL_depth_texture': + extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); + break; + + case 'EXT_texture_filter_anisotropic': + extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); + break; + + case 'WEBGL_compressed_texture_s3tc': + extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); + break; + + case 'WEBGL_compressed_texture_pvrtc': + extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); + break; + + default: + extension = gl.getExtension( name ); + + } + + extensions[ name ] = extension; + + return !! extension; + + }, + + get: function ( name ) { + + if ( ! this.has( name ) ) { + + console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); + + } + + return extensions[ name ]; + + } + + }; + + } + + function WebGLGeometries( gl, attributes, info, bindingStates ) { + + var geometries = new WeakMap(); + var wireframeAttributes = new WeakMap(); + + function onGeometryDispose( event ) { + + var geometry = event.target; + var buffergeometry = geometries.get( geometry ); + + if ( buffergeometry.index !== null ) { + + attributes.remove( buffergeometry.index ); + + } + + for ( var name in buffergeometry.attributes ) { + + attributes.remove( buffergeometry.attributes[ name ] ); + + } + + geometry.removeEventListener( 'dispose', onGeometryDispose ); + + geometries.delete( geometry ); + + var attribute = wireframeAttributes.get( buffergeometry ); + + if ( attribute ) { + + attributes.remove( attribute ); + wireframeAttributes.delete( buffergeometry ); + + } + + bindingStates.releaseStatesOfGeometry( geometry ); + + if ( geometry.isInstancedBufferGeometry === true ) { + + delete geometry._maxInstanceCount; + + } + + // + + info.memory.geometries --; + + } + + function get( object, geometry ) { + + var buffergeometry = geometries.get( geometry ); + + if ( buffergeometry ) { return buffergeometry; } + + geometry.addEventListener( 'dispose', onGeometryDispose ); + + if ( geometry.isBufferGeometry ) { + + buffergeometry = geometry; + + } else if ( geometry.isGeometry ) { + + if ( geometry._bufferGeometry === undefined ) { + + geometry._bufferGeometry = new BufferGeometry().setFromObject( object ); + + } + + buffergeometry = geometry._bufferGeometry; + + } + + geometries.set( geometry, buffergeometry ); + + info.memory.geometries ++; + + return buffergeometry; + + } + + function update( geometry ) { + + var geometryAttributes = geometry.attributes; + + // Updating index buffer in VAO now. See WebGLBindingStates. + + for ( var name in geometryAttributes ) { + + attributes.update( geometryAttributes[ name ], 34962 ); + + } + + // morph targets + + var morphAttributes = geometry.morphAttributes; + + for ( var name$1 in morphAttributes ) { + + var array = morphAttributes[ name$1 ]; + + for ( var i = 0, l = array.length; i < l; i ++ ) { + + attributes.update( array[ i ], 34962 ); + + } + + } + + } + + function updateWireframeAttribute( geometry ) { + + var indices = []; + + var geometryIndex = geometry.index; + var geometryPosition = geometry.attributes.position; + var version = 0; + + if ( geometryIndex !== null ) { + + var array = geometryIndex.array; + version = geometryIndex.version; + + for ( var i = 0, l = array.length; i < l; i += 3 ) { + + var a = array[ i + 0 ]; + var b = array[ i + 1 ]; + var c = array[ i + 2 ]; + + indices.push( a, b, b, c, c, a ); + + } + + } else { + + var array$1 = geometryPosition.array; + version = geometryPosition.version; + + for ( var i$1 = 0, l$1 = ( array$1.length / 3 ) - 1; i$1 < l$1; i$1 += 3 ) { + + var a$1 = i$1 + 0; + var b$1 = i$1 + 1; + var c$1 = i$1 + 2; + + indices.push( a$1, b$1, b$1, c$1, c$1, a$1 ); + + } + + } + + var attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); + attribute.version = version; + + // Updating index buffer in VAO now. See WebGLBindingStates + + // + + var previousAttribute = wireframeAttributes.get( geometry ); + + if ( previousAttribute ) { attributes.remove( previousAttribute ); } + + // + + wireframeAttributes.set( geometry, attribute ); + + } + + function getWireframeAttribute( geometry ) { + + var currentAttribute = wireframeAttributes.get( geometry ); + + if ( currentAttribute ) { + + var geometryIndex = geometry.index; + + if ( geometryIndex !== null ) { + + // if the attribute is obsolete, create a new one + + if ( currentAttribute.version < geometryIndex.version ) { + + updateWireframeAttribute( geometry ); + + } + + } + + } else { + + updateWireframeAttribute( geometry ); + + } + + return wireframeAttributes.get( geometry ); + + } + + return { + + get: get, + update: update, + + getWireframeAttribute: getWireframeAttribute + + }; + + } + + function WebGLIndexedBufferRenderer( gl, extensions, info, capabilities ) { + + var isWebGL2 = capabilities.isWebGL2; + + var mode; + + function setMode( value ) { + + mode = value; + + } + + var type, bytesPerElement; + + function setIndex( value ) { + + type = value.type; + bytesPerElement = value.bytesPerElement; + + } + + function render( start, count ) { + + gl.drawElements( mode, count, type, start * bytesPerElement ); + + info.update( count, mode, 1 ); + + } + + function renderInstances( start, count, primcount ) { + + if ( primcount === 0 ) { return; } + + var extension, methodName; + + if ( isWebGL2 ) { + + extension = gl; + methodName = 'drawElementsInstanced'; + + } else { + + extension = extensions.get( 'ANGLE_instanced_arrays' ); + methodName = 'drawElementsInstancedANGLE'; + + if ( extension === null ) { + + console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ); + return; + + } + + } + + extension[ methodName ]( mode, count, type, start * bytesPerElement, primcount ); + + info.update( count, mode, primcount ); + + } + + // + + this.setMode = setMode; + this.setIndex = setIndex; + this.render = render; + this.renderInstances = renderInstances; + + } + + function WebGLInfo( gl ) { + + var memory = { + geometries: 0, + textures: 0 + }; + + var render = { + frame: 0, + calls: 0, + triangles: 0, + points: 0, + lines: 0 + }; + + function update( count, mode, instanceCount ) { + + render.calls ++; + + switch ( mode ) { + + case 4: + render.triangles += instanceCount * ( count / 3 ); + break; + + case 1: + render.lines += instanceCount * ( count / 2 ); + break; + + case 3: + render.lines += instanceCount * ( count - 1 ); + break; + + case 2: + render.lines += instanceCount * count; + break; + + case 0: + render.points += instanceCount * count; + break; + + default: + console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); + break; + + } + + } + + function reset() { + + render.frame ++; + render.calls = 0; + render.triangles = 0; + render.points = 0; + render.lines = 0; + + } + + return { + memory: memory, + render: render, + programs: null, + autoReset: true, + reset: reset, + update: update + }; + + } + + function numericalSort( a, b ) { + + return a[ 0 ] - b[ 0 ]; + + } + + function absNumericalSort( a, b ) { + + return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] ); + + } + + function WebGLMorphtargets( gl ) { + + var influencesList = {}; + var morphInfluences = new Float32Array( 8 ); + + var workInfluences = []; + + for ( var i = 0; i < 8; i ++ ) { + + workInfluences[ i ] = [ i, 0 ]; + + } + + function update( object, geometry, material, program ) { + + var objectInfluences = object.morphTargetInfluences; + + // When object doesn't have morph target influences defined, we treat it as a 0-length array + // This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences + + var length = objectInfluences === undefined ? 0 : objectInfluences.length; + + var influences = influencesList[ geometry.id ]; + + if ( influences === undefined ) { + + // initialise list + + influences = []; + + for ( var i = 0; i < length; i ++ ) { + + influences[ i ] = [ i, 0 ]; + + } + + influencesList[ geometry.id ] = influences; + + } + + // Collect influences + + for ( var i$1 = 0; i$1 < length; i$1 ++ ) { + + var influence = influences[ i$1 ]; + + influence[ 0 ] = i$1; + influence[ 1 ] = objectInfluences[ i$1 ]; + + } + + influences.sort( absNumericalSort ); + + for ( var i$2 = 0; i$2 < 8; i$2 ++ ) { + + if ( i$2 < length && influences[ i$2 ][ 1 ] ) { + + workInfluences[ i$2 ][ 0 ] = influences[ i$2 ][ 0 ]; + workInfluences[ i$2 ][ 1 ] = influences[ i$2 ][ 1 ]; + + } else { + + workInfluences[ i$2 ][ 0 ] = Number.MAX_SAFE_INTEGER; + workInfluences[ i$2 ][ 1 ] = 0; + + } + + } + + workInfluences.sort( numericalSort ); + + var morphTargets = material.morphTargets && geometry.morphAttributes.position; + var morphNormals = material.morphNormals && geometry.morphAttributes.normal; + + var morphInfluencesSum = 0; + + for ( var i$3 = 0; i$3 < 8; i$3 ++ ) { + + var influence$1 = workInfluences[ i$3 ]; + var index = influence$1[ 0 ]; + var value = influence$1[ 1 ]; + + if ( index !== Number.MAX_SAFE_INTEGER && value ) { + + if ( morphTargets && geometry.getAttribute( 'morphTarget' + i$3 ) !== morphTargets[ index ] ) { + + geometry.setAttribute( 'morphTarget' + i$3, morphTargets[ index ] ); + + } + + if ( morphNormals && geometry.getAttribute( 'morphNormal' + i$3 ) !== morphNormals[ index ] ) { + + geometry.setAttribute( 'morphNormal' + i$3, morphNormals[ index ] ); + + } + + morphInfluences[ i$3 ] = value; + morphInfluencesSum += value; + + } else { + + if ( morphTargets && geometry.getAttribute( 'morphTarget' + i$3 ) !== undefined ) { + + geometry.deleteAttribute( 'morphTarget' + i$3 ); + + } + + if ( morphNormals && geometry.getAttribute( 'morphNormal' + i$3 ) !== undefined ) { + + geometry.deleteAttribute( 'morphNormal' + i$3 ); + + } + + morphInfluences[ i$3 ] = 0; + + } + + } + + // GLSL shader uses formula baseinfluence * base + sum(target * influence) + // This allows us to switch between absolute morphs and relative morphs without changing shader code + // When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence) + var morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; + + program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); + program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences ); + + } + + return { + + update: update + + }; + + } + + function WebGLObjects( gl, geometries, attributes, info ) { + + var updateMap = new WeakMap(); + + function update( object ) { + + var frame = info.render.frame; + + var geometry = object.geometry; + var buffergeometry = geometries.get( object, geometry ); + + // Update once per frame + + if ( updateMap.get( buffergeometry ) !== frame ) { + + if ( geometry.isGeometry ) { + + buffergeometry.updateFromObject( object ); + + } + + geometries.update( buffergeometry ); + + updateMap.set( buffergeometry, frame ); + + } + + if ( object.isInstancedMesh ) { + + attributes.update( object.instanceMatrix, 34962 ); + + } + + return buffergeometry; + + } + + function dispose() { + + updateMap = new WeakMap(); + + } + + return { + + update: update, + dispose: dispose + + }; + + } + + function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { + + images = images !== undefined ? images : []; + mapping = mapping !== undefined ? mapping : CubeReflectionMapping; + format = format !== undefined ? format : RGBFormat; + + Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); + + this.flipY = false; + + } + + CubeTexture.prototype = Object.create( Texture.prototype ); + CubeTexture.prototype.constructor = CubeTexture; + + CubeTexture.prototype.isCubeTexture = true; + + Object.defineProperty( CubeTexture.prototype, 'images', { + + get: function () { + + return this.image; + + }, + + set: function ( value ) { + + this.image = value; + + } + + } ); + + function DataTexture2DArray( data, width, height, depth ) { + + Texture.call( this, null ); + + this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 }; + + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + + this.wrapR = ClampToEdgeWrapping; + + this.generateMipmaps = false; + this.flipY = false; + + this.needsUpdate = true; + + } + + DataTexture2DArray.prototype = Object.create( Texture.prototype ); + DataTexture2DArray.prototype.constructor = DataTexture2DArray; + DataTexture2DArray.prototype.isDataTexture2DArray = true; + + function DataTexture3D( data, width, height, depth ) { + + // We're going to add .setXXX() methods for setting properties later. + // Users can still set in DataTexture3D directly. + // + // const texture = new THREE.DataTexture3D( data, width, height, depth ); + // texture.anisotropy = 16; + // + // See #14839 + + Texture.call( this, null ); + + this.image = { data: data || null, width: width || 1, height: height || 1, depth: depth || 1 }; + + this.magFilter = NearestFilter; + this.minFilter = NearestFilter; + + this.wrapR = ClampToEdgeWrapping; + + this.generateMipmaps = false; + this.flipY = false; + + this.needsUpdate = true; + + + } + + DataTexture3D.prototype = Object.create( Texture.prototype ); + DataTexture3D.prototype.constructor = DataTexture3D; + DataTexture3D.prototype.isDataTexture3D = true; + + /** + * Uniforms of a program. + * Those form a tree structure with a special top-level container for the root, + * which you get by calling 'new WebGLUniforms( gl, program )'. + * + * + * Properties of inner nodes including the top-level container: + * + * .seq - array of nested uniforms + * .map - nested uniforms by name + * + * + * Methods of all nodes except the top-level container: + * + * .setValue( gl, value, [textures] ) + * + * uploads a uniform value(s) + * the 'textures' parameter is needed for sampler uniforms + * + * + * Static methods of the top-level container (textures factorizations): + * + * .upload( gl, seq, values, textures ) + * + * sets uniforms in 'seq' to 'values[id].value' + * + * .seqWithValue( seq, values ) : filteredSeq + * + * filters 'seq' entries with corresponding entry in values + * + * + * Methods of the top-level container (textures factorizations): + * + * .setValue( gl, name, value, textures ) + * + * sets uniform with name 'name' to 'value' + * + * .setOptional( gl, obj, prop ) + * + * like .set for an optional property of the object + * + */ + + var emptyTexture = new Texture(); + var emptyTexture2dArray = new DataTexture2DArray(); + var emptyTexture3d = new DataTexture3D(); + var emptyCubeTexture = new CubeTexture(); + + // --- Utilities --- + + // Array Caches (provide typed arrays for temporary by size) + + var arrayCacheF32 = []; + var arrayCacheI32 = []; + + // Float32Array caches used for uploading Matrix uniforms + + var mat4array = new Float32Array( 16 ); + var mat3array = new Float32Array( 9 ); + var mat2array = new Float32Array( 4 ); + + // Flattening for arrays of vectors and matrices + + function flatten( array, nBlocks, blockSize ) { + + var firstElem = array[ 0 ]; + + if ( firstElem <= 0 || firstElem > 0 ) { return array; } + // unoptimized: ! isNaN( firstElem ) + // see http://jacksondunstan.com/articles/983 + + var n = nBlocks * blockSize, + r = arrayCacheF32[ n ]; + + if ( r === undefined ) { + + r = new Float32Array( n ); + arrayCacheF32[ n ] = r; + + } + + if ( nBlocks !== 0 ) { + + firstElem.toArray( r, 0 ); + + for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) { + + offset += blockSize; + array[ i ].toArray( r, offset ); + + } + + } + + return r; + + } + + function arraysEqual( a, b ) { + + if ( a.length !== b.length ) { return false; } + + for ( var i = 0, l = a.length; i < l; i ++ ) { + + if ( a[ i ] !== b[ i ] ) { return false; } + + } + + return true; + + } + + function copyArray( a, b ) { + + for ( var i = 0, l = b.length; i < l; i ++ ) { + + a[ i ] = b[ i ]; + + } + + } + + // Texture unit allocation + + function allocTexUnits( textures, n ) { + + var r = arrayCacheI32[ n ]; + + if ( r === undefined ) { + + r = new Int32Array( n ); + arrayCacheI32[ n ] = r; + + } + + for ( var i = 0; i !== n; ++ i ) { + + r[ i ] = textures.allocateTextureUnit(); + + } + + return r; + + } + + // --- Setters --- + + // Note: Defining these methods externally, because they come in a bunch + // and this way their names minify. + + // Single scalar + + function setValueV1f( gl, v ) { + + var cache = this.cache; + + if ( cache[ 0 ] === v ) { return; } + + gl.uniform1f( this.addr, v ); + + cache[ 0 ] = v; + + } + + // Single float vector (from flat array or THREE.VectorN) + + function setValueV2f( gl, v ) { + + var cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { + + gl.uniform2f( this.addr, v.x, v.y ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + + } + + } else { + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniform2fv( this.addr, v ); + + copyArray( cache, v ); + + } + + } + + function setValueV3f( gl, v ) { + + var cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { + + gl.uniform3f( this.addr, v.x, v.y, v.z ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + + } + + } else if ( v.r !== undefined ) { + + if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { + + gl.uniform3f( this.addr, v.r, v.g, v.b ); + + cache[ 0 ] = v.r; + cache[ 1 ] = v.g; + cache[ 2 ] = v.b; + + } + + } else { + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniform3fv( this.addr, v ); + + copyArray( cache, v ); + + } + + } + + function setValueV4f( gl, v ) { + + var cache = this.cache; + + if ( v.x !== undefined ) { + + if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { + + gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); + + cache[ 0 ] = v.x; + cache[ 1 ] = v.y; + cache[ 2 ] = v.z; + cache[ 3 ] = v.w; + + } + + } else { + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniform4fv( this.addr, v ); + + copyArray( cache, v ); + + } + + } + + // Single matrix (from flat array or MatrixN) + + function setValueM2( gl, v ) { + + var cache = this.cache; + var elements = v.elements; + + if ( elements === undefined ) { + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniformMatrix2fv( this.addr, false, v ); + + copyArray( cache, v ); + + } else { + + if ( arraysEqual( cache, elements ) ) { return; } + + mat2array.set( elements ); + + gl.uniformMatrix2fv( this.addr, false, mat2array ); + + copyArray( cache, elements ); + + } + + } + + function setValueM3( gl, v ) { + + var cache = this.cache; + var elements = v.elements; + + if ( elements === undefined ) { + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniformMatrix3fv( this.addr, false, v ); + + copyArray( cache, v ); + + } else { + + if ( arraysEqual( cache, elements ) ) { return; } + + mat3array.set( elements ); + + gl.uniformMatrix3fv( this.addr, false, mat3array ); + + copyArray( cache, elements ); + + } + + } + + function setValueM4( gl, v ) { + + var cache = this.cache; + var elements = v.elements; + + if ( elements === undefined ) { + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniformMatrix4fv( this.addr, false, v ); + + copyArray( cache, v ); + + } else { + + if ( arraysEqual( cache, elements ) ) { return; } + + mat4array.set( elements ); + + gl.uniformMatrix4fv( this.addr, false, mat4array ); + + copyArray( cache, elements ); + + } + + } + + // Single texture (2D / Cube) + + function setValueT1( gl, v, textures ) { + + var cache = this.cache; + var unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.safeSetTexture2D( v || emptyTexture, unit ); + + } + + function setValueT2DArray1( gl, v, textures ) { + + var cache = this.cache; + var unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.setTexture2DArray( v || emptyTexture2dArray, unit ); + + } + + function setValueT3D1( gl, v, textures ) { + + var cache = this.cache; + var unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.setTexture3D( v || emptyTexture3d, unit ); + + } + + function setValueT6( gl, v, textures ) { + + var cache = this.cache; + var unit = textures.allocateTextureUnit(); + + if ( cache[ 0 ] !== unit ) { + + gl.uniform1i( this.addr, unit ); + cache[ 0 ] = unit; + + } + + textures.safeSetTextureCube( v || emptyCubeTexture, unit ); + + } + + // Integer / Boolean vectors or arrays thereof (always flat arrays) + + function setValueV1i( gl, v ) { + + var cache = this.cache; + + if ( cache[ 0 ] === v ) { return; } + + gl.uniform1i( this.addr, v ); + + cache[ 0 ] = v; + + } + + function setValueV2i( gl, v ) { + + var cache = this.cache; + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniform2iv( this.addr, v ); + + copyArray( cache, v ); + + } + + function setValueV3i( gl, v ) { + + var cache = this.cache; + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniform3iv( this.addr, v ); + + copyArray( cache, v ); + + } + + function setValueV4i( gl, v ) { + + var cache = this.cache; + + if ( arraysEqual( cache, v ) ) { return; } + + gl.uniform4iv( this.addr, v ); + + copyArray( cache, v ); + + } + + // uint + + function setValueV1ui( gl, v ) { + + var cache = this.cache; + + if ( cache[ 0 ] === v ) { return; } + + gl.uniform1ui( this.addr, v ); + + cache[ 0 ] = v; + + } + + // Helper to pick the right setter for the singular case + + function getSingularSetter( type ) { + + switch ( type ) { + + case 0x1406: return setValueV1f; // FLOAT + case 0x8b50: return setValueV2f; // _VEC2 + case 0x8b51: return setValueV3f; // _VEC3 + case 0x8b52: return setValueV4f; // _VEC4 + + case 0x8b5a: return setValueM2; // _MAT2 + case 0x8b5b: return setValueM3; // _MAT3 + case 0x8b5c: return setValueM4; // _MAT4 + + case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL + case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 + case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 + case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 + + case 0x1405: return setValueV1ui; // UINT + + case 0x8b5e: // SAMPLER_2D + case 0x8d66: // SAMPLER_EXTERNAL_OES + case 0x8dca: // INT_SAMPLER_2D + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + case 0x8b62: // SAMPLER_2D_SHADOW + return setValueT1; + + case 0x8b5f: // SAMPLER_3D + case 0x8dcb: // INT_SAMPLER_3D + case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D + return setValueT3D1; + + case 0x8b60: // SAMPLER_CUBE + case 0x8dcc: // INT_SAMPLER_CUBE + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + case 0x8dc5: // SAMPLER_CUBE_SHADOW + return setValueT6; + + case 0x8dc1: // SAMPLER_2D_ARRAY + case 0x8dcf: // INT_SAMPLER_2D_ARRAY + case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY + case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW + return setValueT2DArray1; + + } + + } + + // Array of scalars + function setValueV1fArray( gl, v ) { + + gl.uniform1fv( this.addr, v ); + + } + + // Integer / Boolean vectors or arrays thereof (always flat arrays) + function setValueV1iArray( gl, v ) { + + gl.uniform1iv( this.addr, v ); + + } + + function setValueV2iArray( gl, v ) { + + gl.uniform2iv( this.addr, v ); + + } + + function setValueV3iArray( gl, v ) { + + gl.uniform3iv( this.addr, v ); + + } + + function setValueV4iArray( gl, v ) { + + gl.uniform4iv( this.addr, v ); + + } + + + // Array of vectors (flat or from THREE classes) + + function setValueV2fArray( gl, v ) { + + var data = flatten( v, this.size, 2 ); + + gl.uniform2fv( this.addr, data ); + + } + + function setValueV3fArray( gl, v ) { + + var data = flatten( v, this.size, 3 ); + + gl.uniform3fv( this.addr, data ); + + } + + function setValueV4fArray( gl, v ) { + + var data = flatten( v, this.size, 4 ); + + gl.uniform4fv( this.addr, data ); + + } + + // Array of matrices (flat or from THREE clases) + + function setValueM2Array( gl, v ) { + + var data = flatten( v, this.size, 4 ); + + gl.uniformMatrix2fv( this.addr, false, data ); + + } + + function setValueM3Array( gl, v ) { + + var data = flatten( v, this.size, 9 ); + + gl.uniformMatrix3fv( this.addr, false, data ); + + } + + function setValueM4Array( gl, v ) { + + var data = flatten( v, this.size, 16 ); + + gl.uniformMatrix4fv( this.addr, false, data ); + + } + + // Array of textures (2D / Cube) + + function setValueT1Array( gl, v, textures ) { + + var n = v.length; + + var units = allocTexUnits( textures, n ); + + gl.uniform1iv( this.addr, units ); + + for ( var i = 0; i !== n; ++ i ) { + + textures.safeSetTexture2D( v[ i ] || emptyTexture, units[ i ] ); + + } + + } + + function setValueT6Array( gl, v, textures ) { + + var n = v.length; + + var units = allocTexUnits( textures, n ); + + gl.uniform1iv( this.addr, units ); + + for ( var i = 0; i !== n; ++ i ) { + + textures.safeSetTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); + + } + + } + + // Helper to pick the right setter for a pure (bottom-level) array + + function getPureArraySetter( type ) { + + switch ( type ) { + + case 0x1406: return setValueV1fArray; // FLOAT + case 0x8b50: return setValueV2fArray; // _VEC2 + case 0x8b51: return setValueV3fArray; // _VEC3 + case 0x8b52: return setValueV4fArray; // _VEC4 + + case 0x8b5a: return setValueM2Array; // _MAT2 + case 0x8b5b: return setValueM3Array; // _MAT3 + case 0x8b5c: return setValueM4Array; // _MAT4 + + case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL + case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 + case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 + case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 + + case 0x8b5e: // SAMPLER_2D + case 0x8d66: // SAMPLER_EXTERNAL_OES + case 0x8dca: // INT_SAMPLER_2D + case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D + case 0x8b62: // SAMPLER_2D_SHADOW + return setValueT1Array; + + case 0x8b60: // SAMPLER_CUBE + case 0x8dcc: // INT_SAMPLER_CUBE + case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE + case 0x8dc5: // SAMPLER_CUBE_SHADOW + return setValueT6Array; + + } + + } + + // --- Uniform Classes --- + + function SingleUniform( id, activeInfo, addr ) { + + this.id = id; + this.addr = addr; + this.cache = []; + this.setValue = getSingularSetter( activeInfo.type ); + + // this.path = activeInfo.name; // DEBUG + + } + + function PureArrayUniform( id, activeInfo, addr ) { + + this.id = id; + this.addr = addr; + this.cache = []; + this.size = activeInfo.size; + this.setValue = getPureArraySetter( activeInfo.type ); + + // this.path = activeInfo.name; // DEBUG + + } + + PureArrayUniform.prototype.updateCache = function ( data ) { + + var cache = this.cache; + + if ( data instanceof Float32Array && cache.length !== data.length ) { + + this.cache = new Float32Array( data.length ); + + } + + copyArray( cache, data ); + + }; + + function StructuredUniform( id ) { + + this.id = id; + + this.seq = []; + this.map = {}; + + } + + StructuredUniform.prototype.setValue = function ( gl, value, textures ) { + + var seq = this.seq; + + for ( var i = 0, n = seq.length; i !== n; ++ i ) { + + var u = seq[ i ]; + u.setValue( gl, value[ u.id ], textures ); + + } + + }; + + // --- Top-level --- + + // Parser - builds up the property tree from the path strings + + var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g; + + // extracts + // - the identifier (member name or array index) + // - followed by an optional right bracket (found when array index) + // - followed by an optional left bracket or dot (type of subscript) + // + // Note: These portions can be read in a non-overlapping fashion and + // allow straightforward parsing of the hierarchy that WebGL encodes + // in the uniform names. + + function addUniform( container, uniformObject ) { + + container.seq.push( uniformObject ); + container.map[ uniformObject.id ] = uniformObject; + + } + + function parseUniform( activeInfo, addr, container ) { + + var path = activeInfo.name, + pathLength = path.length; + + // reset RegExp object, because of the early exit of a previous run + RePathPart.lastIndex = 0; + + while ( true ) { + + var match = RePathPart.exec( path ), + matchEnd = RePathPart.lastIndex; + + var id = match[ 1 ], + idIsIndex = match[ 2 ] === ']', + subscript = match[ 3 ]; + + if ( idIsIndex ) { id = id | 0; } // convert to integer + + if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { + + // bare name or "pure" bottom-level array "[0]" suffix + + addUniform( container, subscript === undefined ? + new SingleUniform( id, activeInfo, addr ) : + new PureArrayUniform( id, activeInfo, addr ) ); + + break; + + } else { + + // step into inner node / create it in case it doesn't exist + + var map = container.map; + var next = map[ id ]; + + if ( next === undefined ) { + + next = new StructuredUniform( id ); + addUniform( container, next ); + + } + + container = next; + + } + + } + + } + + // Root Container + + function WebGLUniforms( gl, program ) { + + this.seq = []; + this.map = {}; + + var n = gl.getProgramParameter( program, 35718 ); + + for ( var i = 0; i < n; ++ i ) { + + var info = gl.getActiveUniform( program, i ), + addr = gl.getUniformLocation( program, info.name ); + + parseUniform( info, addr, this ); + + } + + } + + WebGLUniforms.prototype.setValue = function ( gl, name, value, textures ) { + + var u = this.map[ name ]; + + if ( u !== undefined ) { u.setValue( gl, value, textures ); } + + }; + + WebGLUniforms.prototype.setOptional = function ( gl, object, name ) { + + var v = object[ name ]; + + if ( v !== undefined ) { this.setValue( gl, name, v ); } + + }; + + + // Static interface + + WebGLUniforms.upload = function ( gl, seq, values, textures ) { + + for ( var i = 0, n = seq.length; i !== n; ++ i ) { + + var u = seq[ i ], + v = values[ u.id ]; + + if ( v.needsUpdate !== false ) { + + // note: always updating when .needsUpdate is undefined + u.setValue( gl, v.value, textures ); + + } + + } + + }; + + WebGLUniforms.seqWithValue = function ( seq, values ) { + + var r = []; + + for ( var i = 0, n = seq.length; i !== n; ++ i ) { + + var u = seq[ i ]; + if ( u.id in values ) { r.push( u ); } + + } + + return r; + + }; + + function WebGLShader( gl, type, string ) { + + var shader = gl.createShader( type ); + + gl.shaderSource( shader, string ); + gl.compileShader( shader ); + + return shader; + + } + + var programIdCount = 0; + + function addLineNumbers( string ) { + + var lines = string.split( '\n' ); + + for ( var i = 0; i < lines.length; i ++ ) { + + lines[ i ] = ( i + 1 ) + ': ' + lines[ i ]; + + } + + return lines.join( '\n' ); + + } + + function getEncodingComponents( encoding ) { + + switch ( encoding ) { + + case LinearEncoding: + return [ 'Linear', '( value )' ]; + case sRGBEncoding: + return [ 'sRGB', '( value )' ]; + case RGBEEncoding: + return [ 'RGBE', '( value )' ]; + case RGBM7Encoding: + return [ 'RGBM', '( value, 7.0 )' ]; + case RGBM16Encoding: + return [ 'RGBM', '( value, 16.0 )' ]; + case RGBDEncoding: + return [ 'RGBD', '( value, 256.0 )' ]; + case GammaEncoding: + return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ]; + case LogLuvEncoding: + return [ 'LogLuv', '( value )' ]; + default: + console.warn( 'THREE.WebGLProgram: Unsupported encoding:', encoding ); + return [ 'Linear', '( value )' ]; + + } + + } + + function getShaderErrors( gl, shader, type ) { + + var status = gl.getShaderParameter( shader, 35713 ); + var log = gl.getShaderInfoLog( shader ).trim(); + + if ( status && log === '' ) { return ''; } + + // --enable-privileged-webgl-extension + // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); + + var source = gl.getShaderSource( shader ); + + return 'THREE.WebGLShader: gl.getShaderInfoLog() ' + type + '\n' + log + addLineNumbers( source ); + + } + + function getTexelDecodingFunction( functionName, encoding ) { + + var components = getEncodingComponents( encoding ); + return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }'; + + } + + function getTexelEncodingFunction( functionName, encoding ) { + + var components = getEncodingComponents( encoding ); + return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }'; + + } + + function getToneMappingFunction( functionName, toneMapping ) { + + var toneMappingName; + + switch ( toneMapping ) { + + case LinearToneMapping: + toneMappingName = 'Linear'; + break; + + case ReinhardToneMapping: + toneMappingName = 'Reinhard'; + break; + + case CineonToneMapping: + toneMappingName = 'OptimizedCineon'; + break; + + case ACESFilmicToneMapping: + toneMappingName = 'ACESFilmic'; + break; + + case CustomToneMapping: + toneMappingName = 'Custom'; + break; + + default: + console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); + toneMappingName = 'Linear'; + + } + + return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; + + } + + function generateExtensions( parameters ) { + + var chunks = [ + ( parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ) ? '#extension GL_OES_standard_derivatives : enable' : '', + ( parameters.extensionFragDepth || parameters.logarithmicDepthBuffer ) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', + ( parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ) ? '#extension GL_EXT_draw_buffers : require' : '', + ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : '' + ]; + + return chunks.filter( filterEmptyLine ).join( '\n' ); + + } + + function generateDefines( defines ) { + + var chunks = []; + + for ( var name in defines ) { + + var value = defines[ name ]; + + if ( value === false ) { continue; } + + chunks.push( '#define ' + name + ' ' + value ); + + } + + return chunks.join( '\n' ); + + } + + function fetchAttributeLocations( gl, program ) { + + var attributes = {}; + + var n = gl.getProgramParameter( program, 35721 ); + + for ( var i = 0; i < n; i ++ ) { + + var info = gl.getActiveAttrib( program, i ); + var name = info.name; + + // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); + + attributes[ name ] = gl.getAttribLocation( program, name ); + + } + + return attributes; + + } + + function filterEmptyLine( string ) { + + return string !== ''; + + } + + function replaceLightNums( string, parameters ) { + + return string + .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) + .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) + .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) + .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) + .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) + .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) + .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) + .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); + + } + + function replaceClippingPlaneNums( string, parameters ) { + + return string + .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) + .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); + + } + + // Resolve Includes + + var includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; + + function resolveIncludes( string ) { + + return string.replace( includePattern, includeReplacer ); + + } + + function includeReplacer( match, include ) { + + var string = ShaderChunk[ include ]; + + if ( string === undefined ) { + + throw new Error( 'Can not resolve #include <' + include + '>' ); + + } + + return resolveIncludes( string ); + + } + + // Unroll Loops + + var deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g; + var unrollLoopPattern = /#pragma unroll_loop_start[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}[\s]+?#pragma unroll_loop_end/g; + + function unrollLoops( string ) { + + return string + .replace( unrollLoopPattern, loopReplacer ) + .replace( deprecatedUnrollLoopPattern, deprecatedLoopReplacer ); + + } + + function deprecatedLoopReplacer( match, start, end, snippet ) { + + console.warn( 'WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.' ); + return loopReplacer( match, start, end, snippet ); + + } + + function loopReplacer( match, start, end, snippet ) { + + var string = ''; + + for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) { + + string += snippet + .replace( /\[ i \]/g, '[ ' + i + ' ]' ) + .replace( /UNROLLED_LOOP_INDEX/g, i ); + + } + + return string; + + } + + // + + function generatePrecision( parameters ) { + + var precisionstring = "precision " + parameters.precision + " float;\nprecision " + parameters.precision + " int;"; + + if ( parameters.precision === "highp" ) { + + precisionstring += "\n#define HIGH_PRECISION"; + + } else if ( parameters.precision === "mediump" ) { + + precisionstring += "\n#define MEDIUM_PRECISION"; + + } else if ( parameters.precision === "lowp" ) { + + precisionstring += "\n#define LOW_PRECISION"; + + } + + return precisionstring; + + } + + function generateShadowMapTypeDefine( parameters ) { + + var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; + + if ( parameters.shadowMapType === PCFShadowMap ) { + + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; + + } else if ( parameters.shadowMapType === PCFSoftShadowMap ) { + + shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; + + } else if ( parameters.shadowMapType === VSMShadowMap ) { + + shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; + + } + + return shadowMapTypeDefine; + + } + + function generateEnvMapTypeDefine( parameters ) { + + var envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + + if ( parameters.envMap ) { + + switch ( parameters.envMapMode ) { + + case CubeReflectionMapping: + case CubeRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; + break; + + case CubeUVReflectionMapping: + case CubeUVRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; + break; + + case EquirectangularReflectionMapping: + case EquirectangularRefractionMapping: + envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC'; + break; + + } + + } + + return envMapTypeDefine; + + } + + function generateEnvMapModeDefine( parameters ) { + + var envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; + + if ( parameters.envMap ) { + + switch ( parameters.envMapMode ) { + + case CubeRefractionMapping: + case EquirectangularRefractionMapping: + case CubeUVRefractionMapping: + + envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; + break; + + } + + } + + return envMapModeDefine; + + } + + function generateEnvMapBlendingDefine( parameters ) { + + var envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; + + if ( parameters.envMap ) { + + switch ( parameters.combine ) { + + case MultiplyOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; + break; + + case MixOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; + break; + + case AddOperation: + envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; + break; + + } + + } + + return envMapBlendingDefine; + + } + + function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { + + var gl = renderer.getContext(); + + var defines = parameters.defines; + + var vertexShader = parameters.vertexShader; + var fragmentShader = parameters.fragmentShader; + + var shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); + var envMapTypeDefine = generateEnvMapTypeDefine( parameters ); + var envMapModeDefine = generateEnvMapModeDefine( parameters ); + var envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); + + + var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0; + + var customExtensions = parameters.isWebGL2 ? '' : generateExtensions( parameters ); + + var customDefines = generateDefines( defines ); + + var program = gl.createProgram(); + + var prefixVertex, prefixFragment; + + if ( parameters.isRawShaderMaterial ) { + + prefixVertex = [ + + customDefines + + ].filter( filterEmptyLine ).join( '\n' ); + + if ( prefixVertex.length > 0 ) { + + prefixVertex += '\n'; + + } + + prefixFragment = [ + + customExtensions, + customDefines + + ].filter( filterEmptyLine ).join( '\n' ); + + if ( prefixFragment.length > 0 ) { + + prefixFragment += '\n'; + + } + + } else { + + prefixVertex = [ + + generatePrecision( parameters ), + + '#define SHADER_NAME ' + parameters.shaderName, + + customDefines, + + parameters.instancing ? '#define USE_INSTANCING' : '', + parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', + + '#define GAMMA_FACTOR ' + gammaFactorDefine, + + '#define MAX_BONES ' + parameters.maxBones, + ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', + ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', + + parameters.map ? '#define USE_MAP' : '', + parameters.envMap ? '#define USE_ENVMAP' : '', + parameters.envMap ? '#define ' + envMapModeDefine : '', + parameters.lightMap ? '#define USE_LIGHTMAP' : '', + parameters.aoMap ? '#define USE_AOMAP' : '', + parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', + parameters.bumpMap ? '#define USE_BUMPMAP' : '', + parameters.normalMap ? '#define USE_NORMALMAP' : '', + ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', + ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', + + parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', + parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', + parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', + parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', + parameters.specularMap ? '#define USE_SPECULARMAP' : '', + parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', + parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', + parameters.alphaMap ? '#define USE_ALPHAMAP' : '', + parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', + + parameters.vertexTangents ? '#define USE_TANGENT' : '', + parameters.vertexColors ? '#define USE_COLOR' : '', + parameters.vertexUvs ? '#define USE_UV' : '', + parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', + + parameters.flatShading ? '#define FLAT_SHADED' : '', + + parameters.skinning ? '#define USE_SKINNING' : '', + parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', + + parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', + parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', + parameters.doubleSided ? '#define DOUBLE_SIDED' : '', + parameters.flipSided ? '#define FLIP_SIDED' : '', + + parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', + parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', + + parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', + + parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', + ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', + + 'uniform mat4 modelMatrix;', + 'uniform mat4 modelViewMatrix;', + 'uniform mat4 projectionMatrix;', + 'uniform mat4 viewMatrix;', + 'uniform mat3 normalMatrix;', + 'uniform vec3 cameraPosition;', + 'uniform bool isOrthographic;', + + '#ifdef USE_INSTANCING', + + ' attribute mat4 instanceMatrix;', + + '#endif', + + 'attribute vec3 position;', + 'attribute vec3 normal;', + 'attribute vec2 uv;', + + '#ifdef USE_TANGENT', + + ' attribute vec4 tangent;', + + '#endif', + + '#ifdef USE_COLOR', + + ' attribute vec3 color;', + + '#endif', + + '#ifdef USE_MORPHTARGETS', + + ' attribute vec3 morphTarget0;', + ' attribute vec3 morphTarget1;', + ' attribute vec3 morphTarget2;', + ' attribute vec3 morphTarget3;', + + ' #ifdef USE_MORPHNORMALS', + + ' attribute vec3 morphNormal0;', + ' attribute vec3 morphNormal1;', + ' attribute vec3 morphNormal2;', + ' attribute vec3 morphNormal3;', + + ' #else', + + ' attribute vec3 morphTarget4;', + ' attribute vec3 morphTarget5;', + ' attribute vec3 morphTarget6;', + ' attribute vec3 morphTarget7;', + + ' #endif', + + '#endif', + + '#ifdef USE_SKINNING', + + ' attribute vec4 skinIndex;', + ' attribute vec4 skinWeight;', + + '#endif', + + '\n' + + ].filter( filterEmptyLine ).join( '\n' ); + + prefixFragment = [ + + customExtensions, + + generatePrecision( parameters ), + + '#define SHADER_NAME ' + parameters.shaderName, + + customDefines, + + parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer + + '#define GAMMA_FACTOR ' + gammaFactorDefine, + + ( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '', + ( parameters.useFog && parameters.fogExp2 ) ? '#define FOG_EXP2' : '', + + parameters.map ? '#define USE_MAP' : '', + parameters.matcap ? '#define USE_MATCAP' : '', + parameters.envMap ? '#define USE_ENVMAP' : '', + parameters.envMap ? '#define ' + envMapTypeDefine : '', + parameters.envMap ? '#define ' + envMapModeDefine : '', + parameters.envMap ? '#define ' + envMapBlendingDefine : '', + parameters.lightMap ? '#define USE_LIGHTMAP' : '', + parameters.aoMap ? '#define USE_AOMAP' : '', + parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', + parameters.bumpMap ? '#define USE_BUMPMAP' : '', + parameters.normalMap ? '#define USE_NORMALMAP' : '', + ( parameters.normalMap && parameters.objectSpaceNormalMap ) ? '#define OBJECTSPACE_NORMALMAP' : '', + ( parameters.normalMap && parameters.tangentSpaceNormalMap ) ? '#define TANGENTSPACE_NORMALMAP' : '', + parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', + parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', + parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', + parameters.specularMap ? '#define USE_SPECULARMAP' : '', + parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', + parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', + parameters.alphaMap ? '#define USE_ALPHAMAP' : '', + + parameters.sheen ? '#define USE_SHEEN' : '', + parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', + + parameters.vertexTangents ? '#define USE_TANGENT' : '', + parameters.vertexColors ? '#define USE_COLOR' : '', + parameters.vertexUvs ? '#define USE_UV' : '', + parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', + + parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', + + parameters.flatShading ? '#define FLAT_SHADED' : '', + + parameters.doubleSided ? '#define DOUBLE_SIDED' : '', + parameters.flipSided ? '#define FLIP_SIDED' : '', + + parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', + parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', + + parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', + + parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', + + parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', + ( parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ) ? '#define USE_LOGDEPTHBUF_EXT' : '', + + ( ( parameters.extensionShaderTextureLOD || parameters.envMap ) && parameters.rendererExtensionShaderTextureLod ) ? '#define TEXTURE_LOD_EXT' : '', + + 'uniform mat4 viewMatrix;', + 'uniform vec3 cameraPosition;', + 'uniform bool isOrthographic;', + + ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', + ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below + ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', + + parameters.dithering ? '#define DITHERING' : '', + + ShaderChunk[ 'encodings_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below + parameters.map ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '', + parameters.matcap ? getTexelDecodingFunction( 'matcapTexelToLinear', parameters.matcapEncoding ) : '', + parameters.envMap ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '', + parameters.emissiveMap ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '', + parameters.lightMap ? getTexelDecodingFunction( 'lightMapTexelToLinear', parameters.lightMapEncoding ) : '', + getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ), + + parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', + + '\n' + + ].filter( filterEmptyLine ).join( '\n' ); + + } + + vertexShader = resolveIncludes( vertexShader ); + vertexShader = replaceLightNums( vertexShader, parameters ); + vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); + + fragmentShader = resolveIncludes( fragmentShader ); + fragmentShader = replaceLightNums( fragmentShader, parameters ); + fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); + + vertexShader = unrollLoops( vertexShader ); + fragmentShader = unrollLoops( fragmentShader ); + + if ( parameters.isWebGL2 && ! parameters.isRawShaderMaterial ) { + + // GLSL 3.0 conversion + + prefixVertex = [ + '#version 300 es\n', + '#define attribute in', + '#define varying out', + '#define texture2D texture' + ].join( '\n' ) + '\n' + prefixVertex; + + prefixFragment = [ + '#version 300 es\n', + '#define varying in', + 'out highp vec4 pc_fragColor;', + '#define gl_FragColor pc_fragColor', + '#define gl_FragDepthEXT gl_FragDepth', + '#define texture2D texture', + '#define textureCube texture', + '#define texture2DProj textureProj', + '#define texture2DLodEXT textureLod', + '#define texture2DProjLodEXT textureProjLod', + '#define textureCubeLodEXT textureLod', + '#define texture2DGradEXT textureGrad', + '#define texture2DProjGradEXT textureProjGrad', + '#define textureCubeGradEXT textureGrad' + ].join( '\n' ) + '\n' + prefixFragment; + + } + + var vertexGlsl = prefixVertex + vertexShader; + var fragmentGlsl = prefixFragment + fragmentShader; + + // console.log( '*VERTEX*', vertexGlsl ); + // console.log( '*FRAGMENT*', fragmentGlsl ); + + var glVertexShader = WebGLShader( gl, 35633, vertexGlsl ); + var glFragmentShader = WebGLShader( gl, 35632, fragmentGlsl ); + + gl.attachShader( program, glVertexShader ); + gl.attachShader( program, glFragmentShader ); + + // Force a particular attribute to index 0. + + if ( parameters.index0AttributeName !== undefined ) { + + gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); + + } else if ( parameters.morphTargets === true ) { + + // programs with morphTargets displace position out of attribute 0 + gl.bindAttribLocation( program, 0, 'position' ); + + } + + gl.linkProgram( program ); + + // check for link errors + if ( renderer.debug.checkShaderErrors ) { + + var programLog = gl.getProgramInfoLog( program ).trim(); + var vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); + var fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); + + var runnable = true; + var haveDiagnostics = true; + + if ( gl.getProgramParameter( program, 35714 ) === false ) { + + runnable = false; + + var vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); + var fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); + + console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), '35715', gl.getProgramParameter( program, 35715 ), 'gl.getProgramInfoLog', programLog, vertexErrors, fragmentErrors ); + + } else if ( programLog !== '' ) { + + console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog ); + + } else if ( vertexLog === '' || fragmentLog === '' ) { + + haveDiagnostics = false; + + } + + if ( haveDiagnostics ) { + + this.diagnostics = { + + runnable: runnable, + + programLog: programLog, + + vertexShader: { + + log: vertexLog, + prefix: prefixVertex + + }, + + fragmentShader: { + + log: fragmentLog, + prefix: prefixFragment + + } + + }; + + } + + } + + // Clean up + + // Crashes in iOS9 and iOS10. #18402 + // gl.detachShader( program, glVertexShader ); + // gl.detachShader( program, glFragmentShader ); + + gl.deleteShader( glVertexShader ); + gl.deleteShader( glFragmentShader ); + + // set up caching for uniform locations + + var cachedUniforms; + + this.getUniforms = function () { + + if ( cachedUniforms === undefined ) { + + cachedUniforms = new WebGLUniforms( gl, program ); + + } + + return cachedUniforms; + + }; + + // set up caching for attribute locations + + var cachedAttributes; + + this.getAttributes = function () { + + if ( cachedAttributes === undefined ) { + + cachedAttributes = fetchAttributeLocations( gl, program ); + + } + + return cachedAttributes; + + }; + + // free resource + + this.destroy = function () { + + bindingStates.releaseStatesOfProgram( this ); + + gl.deleteProgram( program ); + this.program = undefined; + + }; + + // + + this.name = parameters.shaderName; + this.id = programIdCount ++; + this.cacheKey = cacheKey; + this.usedTimes = 1; + this.program = program; + this.vertexShader = glVertexShader; + this.fragmentShader = glFragmentShader; + + return this; + + } + + function WebGLPrograms( renderer, extensions, capabilities, bindingStates ) { + + var programs = []; + + var isWebGL2 = capabilities.isWebGL2; + var logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; + var floatVertexTextures = capabilities.floatVertexTextures; + var maxVertexUniforms = capabilities.maxVertexUniforms; + var vertexTextures = capabilities.vertexTextures; + + var precision = capabilities.precision; + + var shaderIDs = { + MeshDepthMaterial: 'depth', + MeshDistanceMaterial: 'distanceRGBA', + MeshNormalMaterial: 'normal', + MeshBasicMaterial: 'basic', + MeshLambertMaterial: 'lambert', + MeshPhongMaterial: 'phong', + MeshToonMaterial: 'toon', + MeshStandardMaterial: 'physical', + MeshPhysicalMaterial: 'physical', + MeshMatcapMaterial: 'matcap', + LineBasicMaterial: 'basic', + LineDashedMaterial: 'dashed', + PointsMaterial: 'points', + ShadowMaterial: 'shadow', + SpriteMaterial: 'sprite' + }; + + var parameterNames = [ + "precision", "isWebGL2", "supportsVertexTextures", "outputEncoding", "instancing", + "map", "mapEncoding", "matcap", "matcapEncoding", "envMap", "envMapMode", "envMapEncoding", "envMapCubeUV", + "lightMap", "lightMapEncoding", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "objectSpaceNormalMap", "tangentSpaceNormalMap", "clearcoatMap", "clearcoatRoughnessMap", "clearcoatNormalMap", "displacementMap", "specularMap", + "roughnessMap", "metalnessMap", "gradientMap", + "alphaMap", "combine", "vertexColors", "vertexTangents", "vertexUvs", "uvsVertexOnly", "fog", "useFog", "fogExp2", + "flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning", + "maxBones", "useVertexTexture", "morphTargets", "morphNormals", + "maxMorphTargets", "maxMorphNormals", "premultipliedAlpha", + "numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights", + "numDirLightShadows", "numPointLightShadows", "numSpotLightShadows", + "shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights', + "alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering", + "sheen", "transmissionMap" + ]; + + function allocateBones( object ) { + + var skeleton = object.skeleton; + var bones = skeleton.bones; + + if ( floatVertexTextures ) { + + return 1024; + + } else { + + // default for when object is not specified + // ( for example when prebuilding shader to be used with multiple objects ) + // + // - leave some extra space for other uniforms + // - limit here is ANGLE's 254 max uniform vectors + // (up to 54 should be safe) + + var nVertexUniforms = maxVertexUniforms; + var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 ); + + var maxBones = Math.min( nVertexMatrices, bones.length ); + + if ( maxBones < bones.length ) { + + console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' ); + return 0; + + } + + return maxBones; + + } + + } + + function getTextureEncodingFromMap( map ) { + + var encoding; + + if ( ! map ) { + + encoding = LinearEncoding; + + } else if ( map.isTexture ) { + + encoding = map.encoding; + + } else if ( map.isWebGLRenderTarget ) { + + console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." ); + encoding = map.texture.encoding; + + } + + return encoding; + + } + + function getParameters( material, lights, shadows, scene, nClipPlanes, nClipIntersection, object ) { + + var fog = scene.fog; + var environment = material.isMeshStandardMaterial ? scene.environment : null; + + var envMap = material.envMap || environment; + + var shaderID = shaderIDs[ material.type ]; + + // heuristics to create shader parameters according to lights in the scene + // (not to blow over maxLights budget) + + var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0; + + if ( material.precision !== null ) { + + precision = capabilities.getMaxPrecision( material.precision ); + + if ( precision !== material.precision ) { + + console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); + + } + + } + + var vertexShader, fragmentShader; + + if ( shaderID ) { + + var shader = ShaderLib[ shaderID ]; + + vertexShader = shader.vertexShader; + fragmentShader = shader.fragmentShader; + + } else { + + vertexShader = material.vertexShader; + fragmentShader = material.fragmentShader; + + } + + var currentRenderTarget = renderer.getRenderTarget(); + + var parameters = { + + isWebGL2: isWebGL2, + + shaderID: shaderID, + shaderName: material.type, + + vertexShader: vertexShader, + fragmentShader: fragmentShader, + defines: material.defines, + + isRawShaderMaterial: material.isRawShaderMaterial, + isShaderMaterial: material.isShaderMaterial, + + precision: precision, + + instancing: object.isInstancedMesh === true, + + supportsVertexTextures: vertexTextures, + outputEncoding: ( currentRenderTarget !== null ) ? getTextureEncodingFromMap( currentRenderTarget.texture ) : renderer.outputEncoding, + map: !! material.map, + mapEncoding: getTextureEncodingFromMap( material.map ), + matcap: !! material.matcap, + matcapEncoding: getTextureEncodingFromMap( material.matcap ), + envMap: !! envMap, + envMapMode: envMap && envMap.mapping, + envMapEncoding: getTextureEncodingFromMap( envMap ), + envMapCubeUV: ( !! envMap ) && ( ( envMap.mapping === CubeUVReflectionMapping ) || ( envMap.mapping === CubeUVRefractionMapping ) ), + lightMap: !! material.lightMap, + lightMapEncoding: getTextureEncodingFromMap( material.lightMap ), + aoMap: !! material.aoMap, + emissiveMap: !! material.emissiveMap, + emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap ), + bumpMap: !! material.bumpMap, + normalMap: !! material.normalMap, + objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap, + tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap, + clearcoatMap: !! material.clearcoatMap, + clearcoatRoughnessMap: !! material.clearcoatRoughnessMap, + clearcoatNormalMap: !! material.clearcoatNormalMap, + displacementMap: !! material.displacementMap, + roughnessMap: !! material.roughnessMap, + metalnessMap: !! material.metalnessMap, + specularMap: !! material.specularMap, + alphaMap: !! material.alphaMap, + + gradientMap: !! material.gradientMap, + + sheen: !! material.sheen, + + transmissionMap: !! material.transmissionMap, + + combine: material.combine, + + vertexTangents: ( material.normalMap && material.vertexTangents ), + vertexColors: material.vertexColors, + vertexUvs: !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatMap || !! material.clearcoatRoughnessMap || !! material.clearcoatNormalMap || !! material.displacementMap || !! material.transmissionMap, + uvsVertexOnly: ! ( !! material.map || !! material.bumpMap || !! material.normalMap || !! material.specularMap || !! material.alphaMap || !! material.emissiveMap || !! material.roughnessMap || !! material.metalnessMap || !! material.clearcoatNormalMap || !! material.transmissionMap ) && !! material.displacementMap, + + fog: !! fog, + useFog: material.fog, + fogExp2: ( fog && fog.isFogExp2 ), + + flatShading: material.flatShading, + + sizeAttenuation: material.sizeAttenuation, + logarithmicDepthBuffer: logarithmicDepthBuffer, + + skinning: material.skinning && maxBones > 0, + maxBones: maxBones, + useVertexTexture: floatVertexTextures, + + morphTargets: material.morphTargets, + morphNormals: material.morphNormals, + maxMorphTargets: renderer.maxMorphTargets, + maxMorphNormals: renderer.maxMorphNormals, + + numDirLights: lights.directional.length, + numPointLights: lights.point.length, + numSpotLights: lights.spot.length, + numRectAreaLights: lights.rectArea.length, + numHemiLights: lights.hemi.length, + + numDirLightShadows: lights.directionalShadowMap.length, + numPointLightShadows: lights.pointShadowMap.length, + numSpotLightShadows: lights.spotShadowMap.length, + + numClippingPlanes: nClipPlanes, + numClipIntersection: nClipIntersection, + + dithering: material.dithering, + + shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, + shadowMapType: renderer.shadowMap.type, + + toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping, + physicallyCorrectLights: renderer.physicallyCorrectLights, + + premultipliedAlpha: material.premultipliedAlpha, + + alphaTest: material.alphaTest, + doubleSided: material.side === DoubleSide, + flipSided: material.side === BackSide, + + depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false, + + index0AttributeName: material.index0AttributeName, + + extensionDerivatives: material.extensions && material.extensions.derivatives, + extensionFragDepth: material.extensions && material.extensions.fragDepth, + extensionDrawBuffers: material.extensions && material.extensions.drawBuffers, + extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD, + + rendererExtensionFragDepth: isWebGL2 || extensions.get( 'EXT_frag_depth' ) !== null, + rendererExtensionDrawBuffers: isWebGL2 || extensions.get( 'WEBGL_draw_buffers' ) !== null, + rendererExtensionShaderTextureLod: isWebGL2 || extensions.get( 'EXT_shader_texture_lod' ) !== null, + + customProgramCacheKey: material.customProgramCacheKey() + + }; + + return parameters; + + } + + function getProgramCacheKey( parameters ) { + + var array = []; + + if ( parameters.shaderID ) { + + array.push( parameters.shaderID ); + + } else { + + array.push( parameters.fragmentShader ); + array.push( parameters.vertexShader ); + + } + + if ( parameters.defines !== undefined ) { + + for ( var name in parameters.defines ) { + + array.push( name ); + array.push( parameters.defines[ name ] ); + + } + + } + + if ( parameters.isRawShaderMaterial === undefined ) { + + for ( var i = 0; i < parameterNames.length; i ++ ) { + + array.push( parameters[ parameterNames[ i ] ] ); + + } + + array.push( renderer.outputEncoding ); + array.push( renderer.gammaFactor ); + + } + + array.push( parameters.customProgramCacheKey ); + + return array.join(); + + } + + function getUniforms( material ) { + + var shaderID = shaderIDs[ material.type ]; + var uniforms; + + if ( shaderID ) { + + var shader = ShaderLib[ shaderID ]; + uniforms = UniformsUtils.clone( shader.uniforms ); + + } else { + + uniforms = material.uniforms; + + } + + return uniforms; + + } + + function acquireProgram( parameters, cacheKey ) { + + var program; + + // Check if code has been already compiled + for ( var p = 0, pl = programs.length; p < pl; p ++ ) { + + var preexistingProgram = programs[ p ]; + + if ( preexistingProgram.cacheKey === cacheKey ) { + + program = preexistingProgram; + ++ program.usedTimes; + + break; + + } + + } + + if ( program === undefined ) { + + program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); + programs.push( program ); + + } + + return program; + + } + + function releaseProgram( program ) { + + if ( -- program.usedTimes === 0 ) { + + // Remove from unordered set + var i = programs.indexOf( program ); + programs[ i ] = programs[ programs.length - 1 ]; + programs.pop(); + + // Free WebGL resources + program.destroy(); + + } + + } + + return { + getParameters: getParameters, + getProgramCacheKey: getProgramCacheKey, + getUniforms: getUniforms, + acquireProgram: acquireProgram, + releaseProgram: releaseProgram, + // Exposed for resource monitoring & error feedback via renderer.info: + programs: programs + }; + + } + + function WebGLProperties() { + + var properties = new WeakMap(); + + function get( object ) { + + var map = properties.get( object ); + + if ( map === undefined ) { + + map = {}; + properties.set( object, map ); + + } + + return map; + + } + + function remove( object ) { + + properties.delete( object ); + + } + + function update( object, key, value ) { + + properties.get( object )[ key ] = value; + + } + + function dispose() { + + properties = new WeakMap(); + + } + + return { + get: get, + remove: remove, + update: update, + dispose: dispose + }; + + } + + function painterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.program !== b.program ) { + + return a.program.id - b.program.id; + + } else if ( a.material.id !== b.material.id ) { + + return a.material.id - b.material.id; + + } else if ( a.z !== b.z ) { + + return a.z - b.z; + + } else { + + return a.id - b.id; + + } + + } + + function reversePainterSortStable( a, b ) { + + if ( a.groupOrder !== b.groupOrder ) { + + return a.groupOrder - b.groupOrder; + + } else if ( a.renderOrder !== b.renderOrder ) { + + return a.renderOrder - b.renderOrder; + + } else if ( a.z !== b.z ) { + + return b.z - a.z; + + } else { + + return a.id - b.id; + + } + + } + + + function WebGLRenderList( properties ) { + + var renderItems = []; + var renderItemsIndex = 0; + + var opaque = []; + var transparent = []; + + var defaultProgram = { id: - 1 }; + + function init() { + + renderItemsIndex = 0; + + opaque.length = 0; + transparent.length = 0; + + } + + function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { + + var renderItem = renderItems[ renderItemsIndex ]; + var materialProperties = properties.get( material ); + + if ( renderItem === undefined ) { + + renderItem = { + id: object.id, + object: object, + geometry: geometry, + material: material, + program: materialProperties.program || defaultProgram, + groupOrder: groupOrder, + renderOrder: object.renderOrder, + z: z, + group: group + }; + + renderItems[ renderItemsIndex ] = renderItem; + + } else { + + renderItem.id = object.id; + renderItem.object = object; + renderItem.geometry = geometry; + renderItem.material = material; + renderItem.program = materialProperties.program || defaultProgram; + renderItem.groupOrder = groupOrder; + renderItem.renderOrder = object.renderOrder; + renderItem.z = z; + renderItem.group = group; + + } + + renderItemsIndex ++; + + return renderItem; + + } + + function push( object, geometry, material, groupOrder, z, group ) { + + var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); + + ( material.transparent === true ? transparent : opaque ).push( renderItem ); + + } + + function unshift( object, geometry, material, groupOrder, z, group ) { + + var renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); + + ( material.transparent === true ? transparent : opaque ).unshift( renderItem ); + + } + + function sort( customOpaqueSort, customTransparentSort ) { + + if ( opaque.length > 1 ) { opaque.sort( customOpaqueSort || painterSortStable ); } + if ( transparent.length > 1 ) { transparent.sort( customTransparentSort || reversePainterSortStable ); } + + } + + function finish() { + + // Clear references from inactive renderItems in the list + + for ( var i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { + + var renderItem = renderItems[ i ]; + + if ( renderItem.id === null ) { break; } + + renderItem.id = null; + renderItem.object = null; + renderItem.geometry = null; + renderItem.material = null; + renderItem.program = null; + renderItem.group = null; + + } + + } + + return { + + opaque: opaque, + transparent: transparent, + + init: init, + push: push, + unshift: unshift, + finish: finish, + + sort: sort + }; + + } + + function WebGLRenderLists( properties ) { + + var lists = new WeakMap(); + + function onSceneDispose( event ) { + + var scene = event.target; + + scene.removeEventListener( 'dispose', onSceneDispose ); + + lists.delete( scene ); + + } + + function get( scene, camera ) { + + var cameras = lists.get( scene ); + var list; + + if ( cameras === undefined ) { + + list = new WebGLRenderList( properties ); + lists.set( scene, new WeakMap() ); + lists.get( scene ).set( camera, list ); + + scene.addEventListener( 'dispose', onSceneDispose ); + + } else { + + list = cameras.get( camera ); + if ( list === undefined ) { + + list = new WebGLRenderList( properties ); + cameras.set( camera, list ); + + } + + } + + return list; + + } + + function dispose() { + + lists = new WeakMap(); + + } + + return { + get: get, + dispose: dispose + }; + + } + + function UniformsCache() { + + var lights = {}; + + return { + + get: function ( light ) { + + if ( lights[ light.id ] !== undefined ) { + + return lights[ light.id ]; + + } + + var uniforms; + + switch ( light.type ) { + + case 'DirectionalLight': + uniforms = { + direction: new Vector3(), + color: new Color() + }; + break; + + case 'SpotLight': + uniforms = { + position: new Vector3(), + direction: new Vector3(), + color: new Color(), + distance: 0, + coneCos: 0, + penumbraCos: 0, + decay: 0 + }; + break; + + case 'PointLight': + uniforms = { + position: new Vector3(), + color: new Color(), + distance: 0, + decay: 0 + }; + break; + + case 'HemisphereLight': + uniforms = { + direction: new Vector3(), + skyColor: new Color(), + groundColor: new Color() + }; + break; + + case 'RectAreaLight': + uniforms = { + color: new Color(), + position: new Vector3(), + halfWidth: new Vector3(), + halfHeight: new Vector3() + }; + break; + + } + + lights[ light.id ] = uniforms; + + return uniforms; + + } + + }; + + } + + function ShadowUniformsCache() { + + var lights = {}; + + return { + + get: function ( light ) { + + if ( lights[ light.id ] !== undefined ) { + + return lights[ light.id ]; + + } + + var uniforms; + + switch ( light.type ) { + + case 'DirectionalLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'SpotLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2() + }; + break; + + case 'PointLight': + uniforms = { + shadowBias: 0, + shadowNormalBias: 0, + shadowRadius: 1, + shadowMapSize: new Vector2(), + shadowCameraNear: 1, + shadowCameraFar: 1000 + }; + break; + + // TODO (abelnation): set RectAreaLight shadow uniforms + + } + + lights[ light.id ] = uniforms; + + return uniforms; + + } + + }; + + } + + + + var nextVersion = 0; + + function shadowCastingLightsFirst( lightA, lightB ) { + + return ( lightB.castShadow ? 1 : 0 ) - ( lightA.castShadow ? 1 : 0 ); + + } + + function WebGLLights() { + + var cache = new UniformsCache(); + + var shadowCache = ShadowUniformsCache(); + + var state = { + + version: 0, + + hash: { + directionalLength: - 1, + pointLength: - 1, + spotLength: - 1, + rectAreaLength: - 1, + hemiLength: - 1, + + numDirectionalShadows: - 1, + numPointShadows: - 1, + numSpotShadows: - 1 + }, + + ambient: [ 0, 0, 0 ], + probe: [], + directional: [], + directionalShadow: [], + directionalShadowMap: [], + directionalShadowMatrix: [], + spot: [], + spotShadow: [], + spotShadowMap: [], + spotShadowMatrix: [], + rectArea: [], + point: [], + pointShadow: [], + pointShadowMap: [], + pointShadowMatrix: [], + hemi: [] + + }; + + for ( var i = 0; i < 9; i ++ ) { state.probe.push( new Vector3() ); } + + var vector3 = new Vector3(); + var matrix4 = new Matrix4(); + var matrix42 = new Matrix4(); + + function setup( lights, shadows, camera ) { + + var r = 0, g = 0, b = 0; + + for ( var i = 0; i < 9; i ++ ) { state.probe[ i ].set( 0, 0, 0 ); } + + var directionalLength = 0; + var pointLength = 0; + var spotLength = 0; + var rectAreaLength = 0; + var hemiLength = 0; + + var numDirectionalShadows = 0; + var numPointShadows = 0; + var numSpotShadows = 0; + + var viewMatrix = camera.matrixWorldInverse; + + lights.sort( shadowCastingLightsFirst ); + + for ( var i$1 = 0, l = lights.length; i$1 < l; i$1 ++ ) { + + var light = lights[ i$1 ]; + + var color = light.color; + var intensity = light.intensity; + var distance = light.distance; + + var shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; + + if ( light.isAmbientLight ) { + + r += color.r * intensity; + g += color.g * intensity; + b += color.b * intensity; + + } else if ( light.isLightProbe ) { + + for ( var j = 0; j < 9; j ++ ) { + + state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); + + } + + } else if ( light.isDirectionalLight ) { + + var uniforms = cache.get( light ); + + uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); + uniforms.direction.setFromMatrixPosition( light.matrixWorld ); + vector3.setFromMatrixPosition( light.target.matrixWorld ); + uniforms.direction.sub( vector3 ); + uniforms.direction.transformDirection( viewMatrix ); + + if ( light.castShadow ) { + + var shadow = light.shadow; + + var shadowUniforms = shadowCache.get( light ); + + shadowUniforms.shadowBias = shadow.bias; + shadowUniforms.shadowNormalBias = shadow.normalBias; + shadowUniforms.shadowRadius = shadow.radius; + shadowUniforms.shadowMapSize = shadow.mapSize; + + state.directionalShadow[ directionalLength ] = shadowUniforms; + state.directionalShadowMap[ directionalLength ] = shadowMap; + state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; + + numDirectionalShadows ++; + + } + + state.directional[ directionalLength ] = uniforms; + + directionalLength ++; + + } else if ( light.isSpotLight ) { + + var uniforms$1 = cache.get( light ); + + uniforms$1.position.setFromMatrixPosition( light.matrixWorld ); + uniforms$1.position.applyMatrix4( viewMatrix ); + + uniforms$1.color.copy( color ).multiplyScalar( intensity ); + uniforms$1.distance = distance; + + uniforms$1.direction.setFromMatrixPosition( light.matrixWorld ); + vector3.setFromMatrixPosition( light.target.matrixWorld ); + uniforms$1.direction.sub( vector3 ); + uniforms$1.direction.transformDirection( viewMatrix ); + + uniforms$1.coneCos = Math.cos( light.angle ); + uniforms$1.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); + uniforms$1.decay = light.decay; + + if ( light.castShadow ) { + + var shadow$1 = light.shadow; + + var shadowUniforms$1 = shadowCache.get( light ); + + shadowUniforms$1.shadowBias = shadow$1.bias; + shadowUniforms$1.shadowNormalBias = shadow$1.normalBias; + shadowUniforms$1.shadowRadius = shadow$1.radius; + shadowUniforms$1.shadowMapSize = shadow$1.mapSize; + + state.spotShadow[ spotLength ] = shadowUniforms$1; + state.spotShadowMap[ spotLength ] = shadowMap; + state.spotShadowMatrix[ spotLength ] = light.shadow.matrix; + + numSpotShadows ++; + + } + + state.spot[ spotLength ] = uniforms$1; + + spotLength ++; + + } else if ( light.isRectAreaLight ) { + + var uniforms$2 = cache.get( light ); + + // (a) intensity is the total visible light emitted + //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); + + // (b) intensity is the brightness of the light + uniforms$2.color.copy( color ).multiplyScalar( intensity ); + + uniforms$2.position.setFromMatrixPosition( light.matrixWorld ); + uniforms$2.position.applyMatrix4( viewMatrix ); + + // extract local rotation of light to derive width/height half vectors + matrix42.identity(); + matrix4.copy( light.matrixWorld ); + matrix4.premultiply( viewMatrix ); + matrix42.extractRotation( matrix4 ); + + uniforms$2.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); + uniforms$2.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); + + uniforms$2.halfWidth.applyMatrix4( matrix42 ); + uniforms$2.halfHeight.applyMatrix4( matrix42 ); + + // TODO (abelnation): RectAreaLight distance? + // uniforms.distance = distance; + + state.rectArea[ rectAreaLength ] = uniforms$2; + + rectAreaLength ++; + + } else if ( light.isPointLight ) { + + var uniforms$3 = cache.get( light ); + + uniforms$3.position.setFromMatrixPosition( light.matrixWorld ); + uniforms$3.position.applyMatrix4( viewMatrix ); + + uniforms$3.color.copy( light.color ).multiplyScalar( light.intensity ); + uniforms$3.distance = light.distance; + uniforms$3.decay = light.decay; + + if ( light.castShadow ) { + + var shadow$2 = light.shadow; + + var shadowUniforms$2 = shadowCache.get( light ); + + shadowUniforms$2.shadowBias = shadow$2.bias; + shadowUniforms$2.shadowNormalBias = shadow$2.normalBias; + shadowUniforms$2.shadowRadius = shadow$2.radius; + shadowUniforms$2.shadowMapSize = shadow$2.mapSize; + shadowUniforms$2.shadowCameraNear = shadow$2.camera.near; + shadowUniforms$2.shadowCameraFar = shadow$2.camera.far; + + state.pointShadow[ pointLength ] = shadowUniforms$2; + state.pointShadowMap[ pointLength ] = shadowMap; + state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; + + numPointShadows ++; + + } + + state.point[ pointLength ] = uniforms$3; + + pointLength ++; + + } else if ( light.isHemisphereLight ) { + + var uniforms$4 = cache.get( light ); + + uniforms$4.direction.setFromMatrixPosition( light.matrixWorld ); + uniforms$4.direction.transformDirection( viewMatrix ); + uniforms$4.direction.normalize(); + + uniforms$4.skyColor.copy( light.color ).multiplyScalar( intensity ); + uniforms$4.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); + + state.hemi[ hemiLength ] = uniforms$4; + + hemiLength ++; + + } + + } + + state.ambient[ 0 ] = r; + state.ambient[ 1 ] = g; + state.ambient[ 2 ] = b; + + var hash = state.hash; + + if ( hash.directionalLength !== directionalLength || + hash.pointLength !== pointLength || + hash.spotLength !== spotLength || + hash.rectAreaLength !== rectAreaLength || + hash.hemiLength !== hemiLength || + hash.numDirectionalShadows !== numDirectionalShadows || + hash.numPointShadows !== numPointShadows || + hash.numSpotShadows !== numSpotShadows ) { + + state.directional.length = directionalLength; + state.spot.length = spotLength; + state.rectArea.length = rectAreaLength; + state.point.length = pointLength; + state.hemi.length = hemiLength; + + state.directionalShadow.length = numDirectionalShadows; + state.directionalShadowMap.length = numDirectionalShadows; + state.pointShadow.length = numPointShadows; + state.pointShadowMap.length = numPointShadows; + state.spotShadow.length = numSpotShadows; + state.spotShadowMap.length = numSpotShadows; + state.directionalShadowMatrix.length = numDirectionalShadows; + state.pointShadowMatrix.length = numPointShadows; + state.spotShadowMatrix.length = numSpotShadows; + + hash.directionalLength = directionalLength; + hash.pointLength = pointLength; + hash.spotLength = spotLength; + hash.rectAreaLength = rectAreaLength; + hash.hemiLength = hemiLength; + + hash.numDirectionalShadows = numDirectionalShadows; + hash.numPointShadows = numPointShadows; + hash.numSpotShadows = numSpotShadows; + + state.version = nextVersion ++; + + } + + } + + return { + setup: setup, + state: state + }; + + } + + function WebGLRenderState() { + + var lights = new WebGLLights(); + + var lightsArray = []; + var shadowsArray = []; + + function init() { + + lightsArray.length = 0; + shadowsArray.length = 0; + + } + + function pushLight( light ) { + + lightsArray.push( light ); + + } + + function pushShadow( shadowLight ) { + + shadowsArray.push( shadowLight ); + + } + + function setupLights( camera ) { + + lights.setup( lightsArray, shadowsArray, camera ); + + } + + var state = { + lightsArray: lightsArray, + shadowsArray: shadowsArray, + + lights: lights + }; + + return { + init: init, + state: state, + setupLights: setupLights, + + pushLight: pushLight, + pushShadow: pushShadow + }; + + } + + function WebGLRenderStates() { + + var renderStates = new WeakMap(); + + function onSceneDispose( event ) { + + var scene = event.target; + + scene.removeEventListener( 'dispose', onSceneDispose ); + + renderStates.delete( scene ); + + } + + function get( scene, camera ) { + + var renderState; + + if ( renderStates.has( scene ) === false ) { + + renderState = new WebGLRenderState(); + renderStates.set( scene, new WeakMap() ); + renderStates.get( scene ).set( camera, renderState ); + + scene.addEventListener( 'dispose', onSceneDispose ); + + } else { + + if ( renderStates.get( scene ).has( camera ) === false ) { + + renderState = new WebGLRenderState(); + renderStates.get( scene ).set( camera, renderState ); + + } else { + + renderState = renderStates.get( scene ).get( camera ); + + } + + } + + return renderState; + + } + + function dispose() { + + renderStates = new WeakMap(); + + } + + return { + get: get, + dispose: dispose + }; + + } + + /** + * parameters = { + * + * opacity: , + * + * map: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * wireframe: , + * wireframeLinewidth: + * } + */ + + function MeshDepthMaterial( parameters ) { + + Material.call( this ); + + this.type = 'MeshDepthMaterial'; + + this.depthPacking = BasicDepthPacking; + + this.skinning = false; + this.morphTargets = false; + + this.map = null; + + this.alphaMap = null; + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.wireframe = false; + this.wireframeLinewidth = 1; + + this.fog = false; + + this.setValues( parameters ); + + } + + MeshDepthMaterial.prototype = Object.create( Material.prototype ); + MeshDepthMaterial.prototype.constructor = MeshDepthMaterial; + + MeshDepthMaterial.prototype.isMeshDepthMaterial = true; + + MeshDepthMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.depthPacking = source.depthPacking; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + + return this; + + }; + + /** + * parameters = { + * + * referencePosition: , + * nearDistance: , + * farDistance: , + * + * skinning: , + * morphTargets: , + * + * map: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: + * + * } + */ + + function MeshDistanceMaterial( parameters ) { + + Material.call( this ); + + this.type = 'MeshDistanceMaterial'; + + this.referencePosition = new Vector3(); + this.nearDistance = 1; + this.farDistance = 1000; + + this.skinning = false; + this.morphTargets = false; + + this.map = null; + + this.alphaMap = null; + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.fog = false; + + this.setValues( parameters ); + + } + + MeshDistanceMaterial.prototype = Object.create( Material.prototype ); + MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial; + + MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true; + + MeshDistanceMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.referencePosition.copy( source.referencePosition ); + this.nearDistance = source.nearDistance; + this.farDistance = source.farDistance; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + return this; + + }; + + var vsm_frag = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n float mean = 0.0;\n float squared_mean = 0.0;\n\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy ) / resolution ) );\n for ( float i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {\n #ifdef HORIZONAL_PASS\n vec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );\n mean += distribution.x;\n squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n #else\n float depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );\n mean += depth;\n squared_mean += depth * depth;\n #endif\n }\n mean = mean * HALF_SAMPLE_RATE;\n squared_mean = squared_mean * HALF_SAMPLE_RATE;\n float std_dev = sqrt( squared_mean - mean * mean );\n gl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; + + var vsm_vert = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; + + function WebGLShadowMap( _renderer, _objects, maxTextureSize ) { + + var _frustum = new Frustum(); + + var _shadowMapSize = new Vector2(), + _viewportSize = new Vector2(), + + _viewport = new Vector4(), + + _depthMaterials = [], + _distanceMaterials = [], + + _materialCache = {}; + + var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide }; + + var shadowMaterialVertical = new ShaderMaterial( { + + defines: { + SAMPLE_RATE: 2.0 / 8.0, + HALF_SAMPLE_RATE: 1.0 / 8.0 + }, + + uniforms: { + shadow_pass: { value: null }, + resolution: { value: new Vector2() }, + radius: { value: 4.0 } + }, + + vertexShader: vsm_vert, + + fragmentShader: vsm_frag + + } ); + + var shadowMaterialHorizonal = shadowMaterialVertical.clone(); + shadowMaterialHorizonal.defines.HORIZONAL_PASS = 1; + + var fullScreenTri = new BufferGeometry(); + fullScreenTri.setAttribute( + "position", + new BufferAttribute( + new Float32Array( [ - 1, - 1, 0.5, 3, - 1, 0.5, - 1, 3, 0.5 ] ), + 3 + ) + ); + + var fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); + + var scope = this; + + this.enabled = false; + + this.autoUpdate = true; + this.needsUpdate = false; + + this.type = PCFShadowMap; + + this.render = function ( lights, scene, camera ) { + + if ( scope.enabled === false ) { return; } + if ( scope.autoUpdate === false && scope.needsUpdate === false ) { return; } + + if ( lights.length === 0 ) { return; } + + var currentRenderTarget = _renderer.getRenderTarget(); + var activeCubeFace = _renderer.getActiveCubeFace(); + var activeMipmapLevel = _renderer.getActiveMipmapLevel(); + + var _state = _renderer.state; + + // Set GL state for depth map. + _state.setBlending( NoBlending ); + _state.buffers.color.setClear( 1, 1, 1, 1 ); + _state.buffers.depth.setTest( true ); + _state.setScissorTest( false ); + + // render depth map + + for ( var i = 0, il = lights.length; i < il; i ++ ) { + + var light = lights[ i ]; + var shadow = light.shadow; + + if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) { continue; } + + if ( shadow === undefined ) { + + console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); + continue; + + } + + _shadowMapSize.copy( shadow.mapSize ); + + var shadowFrameExtents = shadow.getFrameExtents(); + + _shadowMapSize.multiply( shadowFrameExtents ); + + _viewportSize.copy( shadow.mapSize ); + + if ( _shadowMapSize.x > maxTextureSize || _shadowMapSize.y > maxTextureSize ) { + + if ( _shadowMapSize.x > maxTextureSize ) { + + _viewportSize.x = Math.floor( maxTextureSize / shadowFrameExtents.x ); + _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; + shadow.mapSize.x = _viewportSize.x; + + } + + if ( _shadowMapSize.y > maxTextureSize ) { + + _viewportSize.y = Math.floor( maxTextureSize / shadowFrameExtents.y ); + _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; + shadow.mapSize.y = _viewportSize.y; + + } + + } + + if ( shadow.map === null && ! shadow.isPointLightShadow && this.type === VSMShadowMap ) { + + var pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat, stencilBuffer: false }; + + shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); + shadow.map.texture.name = light.name + ".shadowMap"; + + shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); + + shadow.camera.updateProjectionMatrix(); + + } + + if ( shadow.map === null ) { + + var pars$1 = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat, stencilBuffer: false }; + + shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars$1 ); + shadow.map.texture.name = light.name + ".shadowMap"; + + shadow.camera.updateProjectionMatrix(); + + } + + _renderer.setRenderTarget( shadow.map ); + _renderer.clear(); + + var viewportCount = shadow.getViewportCount(); + + for ( var vp = 0; vp < viewportCount; vp ++ ) { + + var viewport = shadow.getViewport( vp ); + + _viewport.set( + _viewportSize.x * viewport.x, + _viewportSize.y * viewport.y, + _viewportSize.x * viewport.z, + _viewportSize.y * viewport.w + ); + + _state.viewport( _viewport ); + + shadow.updateMatrices( light, vp ); + + _frustum = shadow.getFrustum(); + + renderObject( scene, camera, shadow.camera, light, this.type ); + + } + + // do blur pass for VSM + + if ( ! shadow.isPointLightShadow && this.type === VSMShadowMap ) { + + VSMPass( shadow, camera ); + + } + + shadow.needsUpdate = false; + + } + + scope.needsUpdate = false; + + _renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); + + }; + + function VSMPass( shadow, camera ) { + + var geometry = _objects.update( fullScreenMesh ); + + // vertical pass + + shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; + shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; + shadowMaterialVertical.uniforms.radius.value = shadow.radius; + _renderer.setRenderTarget( shadow.mapPass ); + _renderer.clear(); + _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); + + // horizonal pass + + shadowMaterialHorizonal.uniforms.shadow_pass.value = shadow.mapPass.texture; + shadowMaterialHorizonal.uniforms.resolution.value = shadow.mapSize; + shadowMaterialHorizonal.uniforms.radius.value = shadow.radius; + _renderer.setRenderTarget( shadow.map ); + _renderer.clear(); + _renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizonal, fullScreenMesh, null ); + + } + + function getDepthMaterialVariant( useMorphing, useSkinning, useInstancing ) { + + var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2; + + var material = _depthMaterials[ index ]; + + if ( material === undefined ) { + + material = new MeshDepthMaterial( { + + depthPacking: RGBADepthPacking, + + morphTargets: useMorphing, + skinning: useSkinning + + } ); + + _depthMaterials[ index ] = material; + + } + + return material; + + } + + function getDistanceMaterialVariant( useMorphing, useSkinning, useInstancing ) { + + var index = useMorphing << 0 | useSkinning << 1 | useInstancing << 2; + + var material = _distanceMaterials[ index ]; + + if ( material === undefined ) { + + material = new MeshDistanceMaterial( { + + morphTargets: useMorphing, + skinning: useSkinning + + } ); + + _distanceMaterials[ index ] = material; + + } + + return material; + + } + + function getDepthMaterial( object, geometry, material, light, shadowCameraNear, shadowCameraFar, type ) { + + var result = null; + + var getMaterialVariant = getDepthMaterialVariant; + var customMaterial = object.customDepthMaterial; + + if ( light.isPointLight === true ) { + + getMaterialVariant = getDistanceMaterialVariant; + customMaterial = object.customDistanceMaterial; + + } + + if ( customMaterial === undefined ) { + + var useMorphing = false; + + if ( material.morphTargets === true ) { + + useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0; + + } + + var useSkinning = false; + + if ( object.isSkinnedMesh === true ) { + + if ( material.skinning === true ) { + + useSkinning = true; + + } else { + + console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object ); + + } + + } + + var useInstancing = object.isInstancedMesh === true; + + result = getMaterialVariant( useMorphing, useSkinning, useInstancing ); + + } else { + + result = customMaterial; + + } + + if ( _renderer.localClippingEnabled && + material.clipShadows === true && + material.clippingPlanes.length !== 0 ) { + + // in this case we need a unique material instance reflecting the + // appropriate state + + var keyA = result.uuid, keyB = material.uuid; + + var materialsForVariant = _materialCache[ keyA ]; + + if ( materialsForVariant === undefined ) { + + materialsForVariant = {}; + _materialCache[ keyA ] = materialsForVariant; + + } + + var cachedMaterial = materialsForVariant[ keyB ]; + + if ( cachedMaterial === undefined ) { + + cachedMaterial = result.clone(); + materialsForVariant[ keyB ] = cachedMaterial; + + } + + result = cachedMaterial; + + } + + result.visible = material.visible; + result.wireframe = material.wireframe; + + if ( type === VSMShadowMap ) { + + result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; + + } else { + + result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; + + } + + result.clipShadows = material.clipShadows; + result.clippingPlanes = material.clippingPlanes; + result.clipIntersection = material.clipIntersection; + + result.wireframeLinewidth = material.wireframeLinewidth; + result.linewidth = material.linewidth; + + if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { + + result.referencePosition.setFromMatrixPosition( light.matrixWorld ); + result.nearDistance = shadowCameraNear; + result.farDistance = shadowCameraFar; + + } + + return result; + + } + + function renderObject( object, camera, shadowCamera, light, type ) { + + if ( object.visible === false ) { return; } + + var visible = object.layers.test( camera.layers ); + + if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { + + if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { + + object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); + + var geometry = _objects.update( object ); + var material = object.material; + + if ( Array.isArray( material ) ) { + + var groups = geometry.groups; + + for ( var k = 0, kl = groups.length; k < kl; k ++ ) { + + var group = groups[ k ]; + var groupMaterial = material[ group.materialIndex ]; + + if ( groupMaterial && groupMaterial.visible ) { + + var depthMaterial = getDepthMaterial( object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type ); + + _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); + + } + + } + + } else if ( material.visible ) { + + var depthMaterial$1 = getDepthMaterial( object, geometry, material, light, shadowCamera.near, shadowCamera.far, type ); + + _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial$1, object, null ); + + } + + } + + } + + var children = object.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + renderObject( children[ i ], camera, shadowCamera, light, type ); + + } + + } + + } + + function WebGLState( gl, extensions, capabilities ) { + + var isWebGL2 = capabilities.isWebGL2; + + function ColorBuffer() { + + var locked = false; + + var color = new Vector4(); + var currentColorMask = null; + var currentColorClear = new Vector4( 0, 0, 0, 0 ); + + return { + + setMask: function ( colorMask ) { + + if ( currentColorMask !== colorMask && ! locked ) { + + gl.colorMask( colorMask, colorMask, colorMask, colorMask ); + currentColorMask = colorMask; + + } + + }, + + setLocked: function ( lock ) { + + locked = lock; + + }, + + setClear: function ( r, g, b, a, premultipliedAlpha ) { + + if ( premultipliedAlpha === true ) { + + r *= a; g *= a; b *= a; + + } + + color.set( r, g, b, a ); + + if ( currentColorClear.equals( color ) === false ) { + + gl.clearColor( r, g, b, a ); + currentColorClear.copy( color ); + + } + + }, + + reset: function () { + + locked = false; + + currentColorMask = null; + currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state + + } + + }; + + } + + function DepthBuffer() { + + var locked = false; + + var currentDepthMask = null; + var currentDepthFunc = null; + var currentDepthClear = null; + + return { + + setTest: function ( depthTest ) { + + if ( depthTest ) { + + enable( 2929 ); + + } else { + + disable( 2929 ); + + } + + }, + + setMask: function ( depthMask ) { + + if ( currentDepthMask !== depthMask && ! locked ) { + + gl.depthMask( depthMask ); + currentDepthMask = depthMask; + + } + + }, + + setFunc: function ( depthFunc ) { + + if ( currentDepthFunc !== depthFunc ) { + + if ( depthFunc ) { + + switch ( depthFunc ) { + + case NeverDepth: + + gl.depthFunc( 512 ); + break; + + case AlwaysDepth: + + gl.depthFunc( 519 ); + break; + + case LessDepth: + + gl.depthFunc( 513 ); + break; + + case LessEqualDepth: + + gl.depthFunc( 515 ); + break; + + case EqualDepth: + + gl.depthFunc( 514 ); + break; + + case GreaterEqualDepth: + + gl.depthFunc( 518 ); + break; + + case GreaterDepth: + + gl.depthFunc( 516 ); + break; + + case NotEqualDepth: + + gl.depthFunc( 517 ); + break; + + default: + + gl.depthFunc( 515 ); + + } + + } else { + + gl.depthFunc( 515 ); + + } + + currentDepthFunc = depthFunc; + + } + + }, + + setLocked: function ( lock ) { + + locked = lock; + + }, + + setClear: function ( depth ) { + + if ( currentDepthClear !== depth ) { + + gl.clearDepth( depth ); + currentDepthClear = depth; + + } + + }, + + reset: function () { + + locked = false; + + currentDepthMask = null; + currentDepthFunc = null; + currentDepthClear = null; + + } + + }; + + } + + function StencilBuffer() { + + var locked = false; + + var currentStencilMask = null; + var currentStencilFunc = null; + var currentStencilRef = null; + var currentStencilFuncMask = null; + var currentStencilFail = null; + var currentStencilZFail = null; + var currentStencilZPass = null; + var currentStencilClear = null; + + return { + + setTest: function ( stencilTest ) { + + if ( ! locked ) { + + if ( stencilTest ) { + + enable( 2960 ); + + } else { + + disable( 2960 ); + + } + + } + + }, + + setMask: function ( stencilMask ) { + + if ( currentStencilMask !== stencilMask && ! locked ) { + + gl.stencilMask( stencilMask ); + currentStencilMask = stencilMask; + + } + + }, + + setFunc: function ( stencilFunc, stencilRef, stencilMask ) { + + if ( currentStencilFunc !== stencilFunc || + currentStencilRef !== stencilRef || + currentStencilFuncMask !== stencilMask ) { + + gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); + + currentStencilFunc = stencilFunc; + currentStencilRef = stencilRef; + currentStencilFuncMask = stencilMask; + + } + + }, + + setOp: function ( stencilFail, stencilZFail, stencilZPass ) { + + if ( currentStencilFail !== stencilFail || + currentStencilZFail !== stencilZFail || + currentStencilZPass !== stencilZPass ) { + + gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); + + currentStencilFail = stencilFail; + currentStencilZFail = stencilZFail; + currentStencilZPass = stencilZPass; + + } + + }, + + setLocked: function ( lock ) { + + locked = lock; + + }, + + setClear: function ( stencil ) { + + if ( currentStencilClear !== stencil ) { + + gl.clearStencil( stencil ); + currentStencilClear = stencil; + + } + + }, + + reset: function () { + + locked = false; + + currentStencilMask = null; + currentStencilFunc = null; + currentStencilRef = null; + currentStencilFuncMask = null; + currentStencilFail = null; + currentStencilZFail = null; + currentStencilZPass = null; + currentStencilClear = null; + + } + + }; + + } + + // + + var colorBuffer = new ColorBuffer(); + var depthBuffer = new DepthBuffer(); + var stencilBuffer = new StencilBuffer(); + + var enabledCapabilities = {}; + + var currentProgram = null; + + var currentBlendingEnabled = null; + var currentBlending = null; + var currentBlendEquation = null; + var currentBlendSrc = null; + var currentBlendDst = null; + var currentBlendEquationAlpha = null; + var currentBlendSrcAlpha = null; + var currentBlendDstAlpha = null; + var currentPremultipledAlpha = false; + + var currentFlipSided = null; + var currentCullFace = null; + + var currentLineWidth = null; + + var currentPolygonOffsetFactor = null; + var currentPolygonOffsetUnits = null; + + var maxTextures = gl.getParameter( 35661 ); + + var lineWidthAvailable = false; + var version = 0; + var glVersion = gl.getParameter( 7938 ); + + if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) { + + version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] ); + lineWidthAvailable = ( version >= 1.0 ); + + } else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) { + + version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] ); + lineWidthAvailable = ( version >= 2.0 ); + + } + + var currentTextureSlot = null; + var currentBoundTextures = {}; + + var currentScissor = new Vector4(); + var currentViewport = new Vector4(); + + function createTexture( type, target, count ) { + + var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. + var texture = gl.createTexture(); + + gl.bindTexture( type, texture ); + gl.texParameteri( type, 10241, 9728 ); + gl.texParameteri( type, 10240, 9728 ); + + for ( var i = 0; i < count; i ++ ) { + + gl.texImage2D( target + i, 0, 6408, 1, 1, 0, 6408, 5121, data ); + + } + + return texture; + + } + + var emptyTextures = {}; + emptyTextures[ 3553 ] = createTexture( 3553, 3553, 1 ); + emptyTextures[ 34067 ] = createTexture( 34067, 34069, 6 ); + + // init + + colorBuffer.setClear( 0, 0, 0, 1 ); + depthBuffer.setClear( 1 ); + stencilBuffer.setClear( 0 ); + + enable( 2929 ); + depthBuffer.setFunc( LessEqualDepth ); + + setFlipSided( false ); + setCullFace( CullFaceBack ); + enable( 2884 ); + + setBlending( NoBlending ); + + // + + function enable( id ) { + + if ( enabledCapabilities[ id ] !== true ) { + + gl.enable( id ); + enabledCapabilities[ id ] = true; + + } + + } + + function disable( id ) { + + if ( enabledCapabilities[ id ] !== false ) { + + gl.disable( id ); + enabledCapabilities[ id ] = false; + + } + + } + + function useProgram( program ) { + + if ( currentProgram !== program ) { + + gl.useProgram( program ); + + currentProgram = program; + + return true; + + } + + return false; + + } + + var equationToGL = {}; + equationToGL[ AddEquation ] = 32774; + equationToGL[ SubtractEquation ] = 32778; + equationToGL[ ReverseSubtractEquation ] = 32779; + + if ( isWebGL2 ) { + + equationToGL[ MinEquation ] = 32775; + equationToGL[ MaxEquation ] = 32776; + + } else { + + var extension = extensions.get( 'EXT_blend_minmax' ); + + if ( extension !== null ) { + + equationToGL[ MinEquation ] = extension.MIN_EXT; + equationToGL[ MaxEquation ] = extension.MAX_EXT; + + } + + } + + var factorToGL = {}; + factorToGL[ ZeroFactor ] = 0; + factorToGL[ OneFactor ] = 1; + factorToGL[ SrcColorFactor ] = 768; + factorToGL[ SrcAlphaFactor ] = 770; + factorToGL[ SrcAlphaSaturateFactor ] = 776; + factorToGL[ DstColorFactor ] = 774; + factorToGL[ DstAlphaFactor ] = 772; + factorToGL[ OneMinusSrcColorFactor ] = 769; + factorToGL[ OneMinusSrcAlphaFactor ] = 771; + factorToGL[ OneMinusDstColorFactor ] = 775; + factorToGL[ OneMinusDstAlphaFactor ] = 773; + + function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { + + if ( blending === NoBlending ) { + + if ( currentBlendingEnabled ) { + + disable( 3042 ); + currentBlendingEnabled = false; + + } + + return; + + } + + if ( ! currentBlendingEnabled ) { + + enable( 3042 ); + currentBlendingEnabled = true; + + } + + if ( blending !== CustomBlending ) { + + if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { + + if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { + + gl.blendEquation( 32774 ); + + currentBlendEquation = AddEquation; + currentBlendEquationAlpha = AddEquation; + + } + + if ( premultipliedAlpha ) { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( 1, 771, 1, 771 ); + break; + + case AdditiveBlending: + gl.blendFunc( 1, 1 ); + break; + + case SubtractiveBlending: + gl.blendFuncSeparate( 0, 0, 769, 771 ); + break; + + case MultiplyBlending: + gl.blendFuncSeparate( 0, 768, 0, 770 ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } else { + + switch ( blending ) { + + case NormalBlending: + gl.blendFuncSeparate( 770, 771, 1, 771 ); + break; + + case AdditiveBlending: + gl.blendFunc( 770, 1 ); + break; + + case SubtractiveBlending: + gl.blendFunc( 0, 769 ); + break; + + case MultiplyBlending: + gl.blendFunc( 0, 768 ); + break; + + default: + console.error( 'THREE.WebGLState: Invalid blending: ', blending ); + break; + + } + + } + + currentBlendSrc = null; + currentBlendDst = null; + currentBlendSrcAlpha = null; + currentBlendDstAlpha = null; + + currentBlending = blending; + currentPremultipledAlpha = premultipliedAlpha; + + } + + return; + + } + + // custom blending + + blendEquationAlpha = blendEquationAlpha || blendEquation; + blendSrcAlpha = blendSrcAlpha || blendSrc; + blendDstAlpha = blendDstAlpha || blendDst; + + if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { + + gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); + + currentBlendEquation = blendEquation; + currentBlendEquationAlpha = blendEquationAlpha; + + } + + if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { + + gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); + + currentBlendSrc = blendSrc; + currentBlendDst = blendDst; + currentBlendSrcAlpha = blendSrcAlpha; + currentBlendDstAlpha = blendDstAlpha; + + } + + currentBlending = blending; + currentPremultipledAlpha = null; + + } + + function setMaterial( material, frontFaceCW ) { + + material.side === DoubleSide + ? disable( 2884 ) + : enable( 2884 ); + + var flipSided = ( material.side === BackSide ); + if ( frontFaceCW ) { flipSided = ! flipSided; } + + setFlipSided( flipSided ); + + ( material.blending === NormalBlending && material.transparent === false ) + ? setBlending( NoBlending ) + : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ); + + depthBuffer.setFunc( material.depthFunc ); + depthBuffer.setTest( material.depthTest ); + depthBuffer.setMask( material.depthWrite ); + colorBuffer.setMask( material.colorWrite ); + + var stencilWrite = material.stencilWrite; + stencilBuffer.setTest( stencilWrite ); + if ( stencilWrite ) { + + stencilBuffer.setMask( material.stencilWriteMask ); + stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); + stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); + + } + + setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); + + } + + // + + function setFlipSided( flipSided ) { + + if ( currentFlipSided !== flipSided ) { + + if ( flipSided ) { + + gl.frontFace( 2304 ); + + } else { + + gl.frontFace( 2305 ); + + } + + currentFlipSided = flipSided; + + } + + } + + function setCullFace( cullFace ) { + + if ( cullFace !== CullFaceNone ) { + + enable( 2884 ); + + if ( cullFace !== currentCullFace ) { + + if ( cullFace === CullFaceBack ) { + + gl.cullFace( 1029 ); + + } else if ( cullFace === CullFaceFront ) { + + gl.cullFace( 1028 ); + + } else { + + gl.cullFace( 1032 ); + + } + + } + + } else { + + disable( 2884 ); + + } + + currentCullFace = cullFace; + + } + + function setLineWidth( width ) { + + if ( width !== currentLineWidth ) { + + if ( lineWidthAvailable ) { gl.lineWidth( width ); } + + currentLineWidth = width; + + } + + } + + function setPolygonOffset( polygonOffset, factor, units ) { + + if ( polygonOffset ) { + + enable( 32823 ); + + if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { + + gl.polygonOffset( factor, units ); + + currentPolygonOffsetFactor = factor; + currentPolygonOffsetUnits = units; + + } + + } else { + + disable( 32823 ); + + } + + } + + function setScissorTest( scissorTest ) { + + if ( scissorTest ) { + + enable( 3089 ); + + } else { + + disable( 3089 ); + + } + + } + + // texture + + function activeTexture( webglSlot ) { + + if ( webglSlot === undefined ) { webglSlot = 33984 + maxTextures - 1; } + + if ( currentTextureSlot !== webglSlot ) { + + gl.activeTexture( webglSlot ); + currentTextureSlot = webglSlot; + + } + + } + + function bindTexture( webglType, webglTexture ) { + + if ( currentTextureSlot === null ) { + + activeTexture(); + + } + + var boundTexture = currentBoundTextures[ currentTextureSlot ]; + + if ( boundTexture === undefined ) { + + boundTexture = { type: undefined, texture: undefined }; + currentBoundTextures[ currentTextureSlot ] = boundTexture; + + } + + if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { + + gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); + + boundTexture.type = webglType; + boundTexture.texture = webglTexture; + + } + + } + + function unbindTexture() { + + var boundTexture = currentBoundTextures[ currentTextureSlot ]; + + if ( boundTexture !== undefined && boundTexture.type !== undefined ) { + + gl.bindTexture( boundTexture.type, null ); + + boundTexture.type = undefined; + boundTexture.texture = undefined; + + } + + } + + function compressedTexImage2D() { + + try { + + gl.compressedTexImage2D.apply( gl, arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texImage2D() { + + try { + + gl.texImage2D.apply( gl, arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + function texImage3D() { + + try { + + gl.texImage3D.apply( gl, arguments ); + + } catch ( error ) { + + console.error( 'THREE.WebGLState:', error ); + + } + + } + + // + + function scissor( scissor ) { + + if ( currentScissor.equals( scissor ) === false ) { + + gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); + currentScissor.copy( scissor ); + + } + + } + + function viewport( viewport ) { + + if ( currentViewport.equals( viewport ) === false ) { + + gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); + currentViewport.copy( viewport ); + + } + + } + + // + + function reset() { + + enabledCapabilities = {}; + + currentTextureSlot = null; + currentBoundTextures = {}; + + currentProgram = null; + + currentBlending = null; + + currentFlipSided = null; + currentCullFace = null; + + colorBuffer.reset(); + depthBuffer.reset(); + stencilBuffer.reset(); + + } + + return { + + buffers: { + color: colorBuffer, + depth: depthBuffer, + stencil: stencilBuffer + }, + + enable: enable, + disable: disable, + + useProgram: useProgram, + + setBlending: setBlending, + setMaterial: setMaterial, + + setFlipSided: setFlipSided, + setCullFace: setCullFace, + + setLineWidth: setLineWidth, + setPolygonOffset: setPolygonOffset, + + setScissorTest: setScissorTest, + + activeTexture: activeTexture, + bindTexture: bindTexture, + unbindTexture: unbindTexture, + compressedTexImage2D: compressedTexImage2D, + texImage2D: texImage2D, + texImage3D: texImage3D, + + scissor: scissor, + viewport: viewport, + + reset: reset + + }; + + } + + function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { + + var isWebGL2 = capabilities.isWebGL2; + var maxTextures = capabilities.maxTextures; + var maxCubemapSize = capabilities.maxCubemapSize; + var maxTextureSize = capabilities.maxTextureSize; + var maxSamples = capabilities.maxSamples; + + var _videoTextures = new WeakMap(); + var _canvas; + + // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, + // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! + // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). + + var useOffscreenCanvas = false; + + try { + + useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' + && ( new OffscreenCanvas( 1, 1 ).getContext( "2d" ) ) !== null; + + } catch ( err ) { + + // Ignore any errors + + } + + function createCanvas( width, height ) { + + // Use OffscreenCanvas when available. Specially needed in web workers + + return useOffscreenCanvas ? + new OffscreenCanvas( width, height ) : + document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ); + + } + + function resizeImage( image, needsPowerOfTwo, needsNewCanvas, maxSize ) { + + var scale = 1; + + // handle case if texture exceeds max size + + if ( image.width > maxSize || image.height > maxSize ) { + + scale = maxSize / Math.max( image.width, image.height ); + + } + + // only perform resize if necessary + + if ( scale < 1 || needsPowerOfTwo === true ) { + + // only perform resize for certain image types + + if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || + ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || + ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { + + var floor = needsPowerOfTwo ? MathUtils.floorPowerOfTwo : Math.floor; + + var width = floor( scale * image.width ); + var height = floor( scale * image.height ); + + if ( _canvas === undefined ) { _canvas = createCanvas( width, height ); } + + // cube textures can't reuse the same canvas + + var canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; + + canvas.width = width; + canvas.height = height; + + var context = canvas.getContext( '2d' ); + context.drawImage( image, 0, 0, width, height ); + + console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').' ); + + return canvas; + + } else { + + if ( 'data' in image ) { + + console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').' ); + + } + + return image; + + } + + } + + return image; + + } + + function isPowerOfTwo( image ) { + + return MathUtils.isPowerOfTwo( image.width ) && MathUtils.isPowerOfTwo( image.height ); + + } + + function textureNeedsPowerOfTwo( texture ) { + + if ( isWebGL2 ) { return false; } + + return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) || + ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ); + + } + + function textureNeedsGenerateMipmaps( texture, supportsMips ) { + + return texture.generateMipmaps && supportsMips && + texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; + + } + + function generateMipmap( target, texture, width, height ) { + + _gl.generateMipmap( target ); + + var textureProperties = properties.get( texture ); + + // Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11 + textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E; + + } + + function getInternalFormat( internalFormatName, glFormat, glType ) { + + if ( isWebGL2 === false ) { return glFormat; } + + if ( internalFormatName !== null ) { + + if ( _gl[ internalFormatName ] !== undefined ) { return _gl[ internalFormatName ]; } + + console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); + + } + + var internalFormat = glFormat; + + if ( glFormat === 6403 ) { + + if ( glType === 5126 ) { internalFormat = 33326; } + if ( glType === 5131 ) { internalFormat = 33325; } + if ( glType === 5121 ) { internalFormat = 33321; } + + } + + if ( glFormat === 6407 ) { + + if ( glType === 5126 ) { internalFormat = 34837; } + if ( glType === 5131 ) { internalFormat = 34843; } + if ( glType === 5121 ) { internalFormat = 32849; } + + } + + if ( glFormat === 6408 ) { + + if ( glType === 5126 ) { internalFormat = 34836; } + if ( glType === 5131 ) { internalFormat = 34842; } + if ( glType === 5121 ) { internalFormat = 32856; } + + } + + if ( internalFormat === 33325 || internalFormat === 33326 || + internalFormat === 34842 || internalFormat === 34836 ) { + + extensions.get( 'EXT_color_buffer_float' ); + + } + + return internalFormat; + + } + + // Fallback filters for non-power-of-2 textures + + function filterFallback( f ) { + + if ( f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter ) { + + return 9728; + + } + + return 9729; + + } + + // + + function onTextureDispose( event ) { + + var texture = event.target; + + texture.removeEventListener( 'dispose', onTextureDispose ); + + deallocateTexture( texture ); + + if ( texture.isVideoTexture ) { + + _videoTextures.delete( texture ); + + } + + info.memory.textures --; + + } + + function onRenderTargetDispose( event ) { + + var renderTarget = event.target; + + renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); + + deallocateRenderTarget( renderTarget ); + + info.memory.textures --; + + } + + // + + function deallocateTexture( texture ) { + + var textureProperties = properties.get( texture ); + + if ( textureProperties.__webglInit === undefined ) { return; } + + _gl.deleteTexture( textureProperties.__webglTexture ); + + properties.remove( texture ); + + } + + function deallocateRenderTarget( renderTarget ) { + + var renderTargetProperties = properties.get( renderTarget ); + var textureProperties = properties.get( renderTarget.texture ); + + if ( ! renderTarget ) { return; } + + if ( textureProperties.__webglTexture !== undefined ) { + + _gl.deleteTexture( textureProperties.__webglTexture ); + + } + + if ( renderTarget.depthTexture ) { + + renderTarget.depthTexture.dispose(); + + } + + if ( renderTarget.isWebGLCubeRenderTarget ) { + + for ( var i = 0; i < 6; i ++ ) { + + _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); + if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } + + } + + } else { + + _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); + if ( renderTargetProperties.__webglDepthbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); } + if ( renderTargetProperties.__webglMultisampledFramebuffer ) { _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); } + if ( renderTargetProperties.__webglColorRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer ); } + if ( renderTargetProperties.__webglDepthRenderbuffer ) { _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); } + + } + + properties.remove( renderTarget.texture ); + properties.remove( renderTarget ); + + } + + // + + var textureUnits = 0; + + function resetTextureUnits() { + + textureUnits = 0; + + } + + function allocateTextureUnit() { + + var textureUnit = textureUnits; + + if ( textureUnit >= maxTextures ) { + + console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures ); + + } + + textureUnits += 1; + + return textureUnit; + + } + + // + + function setTexture2D( texture, slot ) { + + var textureProperties = properties.get( texture ); + + if ( texture.isVideoTexture ) { updateVideoTexture( texture ); } + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + var image = texture.image; + + if ( image === undefined ) { + + console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined' ); + + } else if ( image.complete === false ) { + + console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); + + } else { + + uploadTexture( textureProperties, texture, slot ); + return; + + } + + } + + state.activeTexture( 33984 + slot ); + state.bindTexture( 3553, textureProperties.__webglTexture ); + + } + + function setTexture2DArray( texture, slot ) { + + var textureProperties = properties.get( texture ); + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + uploadTexture( textureProperties, texture, slot ); + return; + + } + + state.activeTexture( 33984 + slot ); + state.bindTexture( 35866, textureProperties.__webglTexture ); + + } + + function setTexture3D( texture, slot ) { + + var textureProperties = properties.get( texture ); + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + uploadTexture( textureProperties, texture, slot ); + return; + + } + + state.activeTexture( 33984 + slot ); + state.bindTexture( 32879, textureProperties.__webglTexture ); + + } + + function setTextureCube( texture, slot ) { + + if ( texture.image.length !== 6 ) { return; } + + var textureProperties = properties.get( texture ); + + if ( texture.version > 0 && textureProperties.__version !== texture.version ) { + + initTexture( textureProperties, texture ); + + state.activeTexture( 33984 + slot ); + state.bindTexture( 34067, textureProperties.__webglTexture ); + + _gl.pixelStorei( 37440, texture.flipY ); + + var isCompressed = ( texture && ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ) ); + var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); + + var cubeImage = []; + + for ( var i = 0; i < 6; i ++ ) { + + if ( ! isCompressed && ! isDataTexture ) { + + cubeImage[ i ] = resizeImage( texture.image[ i ], false, true, maxCubemapSize ); + + } else { + + cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; + + } + + } + + var image = cubeImage[ 0 ], + supportsMips = isPowerOfTwo( image ) || isWebGL2, + glFormat = utils.convert( texture.format ), + glType = utils.convert( texture.type ), + glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); + + setTextureParameters( 34067, texture, supportsMips ); + + var mipmaps; + + if ( isCompressed ) { + + for ( var i$1 = 0; i$1 < 6; i$1 ++ ) { + + mipmaps = cubeImage[ i$1 ].mipmaps; + + for ( var j = 0; j < mipmaps.length; j ++ ) { + + var mipmap = mipmaps[ j ]; + + if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { + + if ( glFormat !== null ) { + + state.compressedTexImage2D( 34069 + i$1, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); + + } + + } else { + + state.texImage2D( 34069 + i$1, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); + + } + + } + + } + + textureProperties.__maxMipLevel = mipmaps.length - 1; + + } else { + + mipmaps = texture.mipmaps; + + for ( var i$2 = 0; i$2 < 6; i$2 ++ ) { + + if ( isDataTexture ) { + + state.texImage2D( 34069 + i$2, 0, glInternalFormat, cubeImage[ i$2 ].width, cubeImage[ i$2 ].height, 0, glFormat, glType, cubeImage[ i$2 ].data ); + + for ( var j$1 = 0; j$1 < mipmaps.length; j$1 ++ ) { + + var mipmap$1 = mipmaps[ j$1 ]; + var mipmapImage = mipmap$1.image[ i$2 ].image; + + state.texImage2D( 34069 + i$2, j$1 + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); + + } + + } else { + + state.texImage2D( 34069 + i$2, 0, glInternalFormat, glFormat, glType, cubeImage[ i$2 ] ); + + for ( var j$2 = 0; j$2 < mipmaps.length; j$2 ++ ) { + + var mipmap$2 = mipmaps[ j$2 ]; + + state.texImage2D( 34069 + i$2, j$2 + 1, glInternalFormat, glFormat, glType, mipmap$2.image[ i$2 ] ); + + } + + } + + } + + textureProperties.__maxMipLevel = mipmaps.length; + + } + + if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { + + // We assume images for cube map have the same size. + generateMipmap( 34067, texture, image.width, image.height ); + + } + + textureProperties.__version = texture.version; + + if ( texture.onUpdate ) { texture.onUpdate( texture ); } + + } else { + + state.activeTexture( 33984 + slot ); + state.bindTexture( 34067, textureProperties.__webglTexture ); + + } + + } + + function setTextureCubeDynamic( texture, slot ) { + + state.activeTexture( 33984 + slot ); + state.bindTexture( 34067, properties.get( texture ).__webglTexture ); + + } + + var wrappingToGL = {}; + wrappingToGL[ RepeatWrapping ] = 10497; + wrappingToGL[ ClampToEdgeWrapping ] = 33071; + wrappingToGL[ MirroredRepeatWrapping ] = 33648; + + var filterToGL = {}; + filterToGL[ NearestFilter ] = 9728; + filterToGL[ NearestMipmapNearestFilter ] = 9984; + filterToGL[ NearestMipmapLinearFilter ] = 9986; + filterToGL[ LinearFilter ] = 9729; + filterToGL[ LinearMipmapNearestFilter ] = 9985; + filterToGL[ LinearMipmapLinearFilter ] = 9987; + + function setTextureParameters( textureType, texture, supportsMips ) { + + if ( supportsMips ) { + + _gl.texParameteri( textureType, 10242, wrappingToGL[ texture.wrapS ] ); + _gl.texParameteri( textureType, 10243, wrappingToGL[ texture.wrapT ] ); + + if ( textureType === 32879 || textureType === 35866 ) { + + _gl.texParameteri( textureType, 32882, wrappingToGL[ texture.wrapR ] ); + + } + + _gl.texParameteri( textureType, 10240, filterToGL[ texture.magFilter ] ); + _gl.texParameteri( textureType, 10241, filterToGL[ texture.minFilter ] ); + + } else { + + _gl.texParameteri( textureType, 10242, 33071 ); + _gl.texParameteri( textureType, 10243, 33071 ); + + if ( textureType === 32879 || textureType === 35866 ) { + + _gl.texParameteri( textureType, 32882, 33071 ); + + } + + if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) { + + console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.' ); + + } + + _gl.texParameteri( textureType, 10240, filterFallback( texture.magFilter ) ); + _gl.texParameteri( textureType, 10241, filterFallback( texture.minFilter ) ); + + if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) { + + console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.' ); + + } + + } + + var extension = extensions.get( 'EXT_texture_filter_anisotropic' ); + + if ( extension ) { + + if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) { return; } + if ( texture.type === HalfFloatType && ( isWebGL2 || extensions.get( 'OES_texture_half_float_linear' ) ) === null ) { return; } + + if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { + + _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); + properties.get( texture ).__currentAnisotropy = texture.anisotropy; + + } + + } + + } + + function initTexture( textureProperties, texture ) { + + if ( textureProperties.__webglInit === undefined ) { + + textureProperties.__webglInit = true; + + texture.addEventListener( 'dispose', onTextureDispose ); + + textureProperties.__webglTexture = _gl.createTexture(); + + info.memory.textures ++; + + } + + } + + function uploadTexture( textureProperties, texture, slot ) { + + var textureType = 3553; + + if ( texture.isDataTexture2DArray ) { textureType = 35866; } + if ( texture.isDataTexture3D ) { textureType = 32879; } + + initTexture( textureProperties, texture ); + + state.activeTexture( 33984 + slot ); + state.bindTexture( textureType, textureProperties.__webglTexture ); + + _gl.pixelStorei( 37440, texture.flipY ); + _gl.pixelStorei( 37441, texture.premultiplyAlpha ); + _gl.pixelStorei( 3317, texture.unpackAlignment ); + + var needsPowerOfTwo = textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( texture.image ) === false; + var image = resizeImage( texture.image, needsPowerOfTwo, false, maxTextureSize ); + + var supportsMips = isPowerOfTwo( image ) || isWebGL2, + glFormat = utils.convert( texture.format ); + + var glType = utils.convert( texture.type ), + glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType ); + + setTextureParameters( textureType, texture, supportsMips ); + + var mipmap; + var mipmaps = texture.mipmaps; + + if ( texture.isDepthTexture ) { + + // populate depth texture with dummy data + + glInternalFormat = 6402; + + if ( isWebGL2 ) { + + if ( texture.type === FloatType ) { + + glInternalFormat = 36012; + + } else if ( texture.type === UnsignedIntType ) { + + glInternalFormat = 33190; + + } else if ( texture.type === UnsignedInt248Type ) { + + glInternalFormat = 35056; + + } else { + + glInternalFormat = 33189; // WebGL2 requires sized internalformat for glTexImage2D + + } + + } else { + + if ( texture.type === FloatType ) { + + console.error( 'WebGLRenderer: Floating point depth texture requires WebGL2.' ); + + } + + } + + // validation checks for WebGL 1 + + if ( texture.format === DepthFormat && glInternalFormat === 6402 ) { + + // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are + // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) { + + console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ); + + texture.type = UnsignedShortType; + glType = utils.convert( texture.type ); + + } + + } + + if ( texture.format === DepthStencilFormat && glInternalFormat === 6402 ) { + + // Depth stencil textures need the DEPTH_STENCIL internal format + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + glInternalFormat = 34041; + + // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are + // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. + // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) + if ( texture.type !== UnsignedInt248Type ) { + + console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ); + + texture.type = UnsignedInt248Type; + glType = utils.convert( texture.type ); + + } + + } + + // + + state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); + + } else if ( texture.isDataTexture ) { + + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + + if ( mipmaps.length > 0 && supportsMips ) { + + for ( var i = 0, il = mipmaps.length; i < il; i ++ ) { + + mipmap = mipmaps[ i ]; + state.texImage2D( 3553, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); + + } + + texture.generateMipmaps = false; + textureProperties.__maxMipLevel = mipmaps.length - 1; + + } else { + + state.texImage2D( 3553, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); + textureProperties.__maxMipLevel = 0; + + } + + } else if ( texture.isCompressedTexture ) { + + for ( var i$1 = 0, il$1 = mipmaps.length; i$1 < il$1; i$1 ++ ) { + + mipmap = mipmaps[ i$1 ]; + + if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) { + + if ( glFormat !== null ) { + + state.compressedTexImage2D( 3553, i$1, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); + + } else { + + console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); + + } + + } else { + + state.texImage2D( 3553, i$1, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); + + } + + } + + textureProperties.__maxMipLevel = mipmaps.length - 1; + + } else if ( texture.isDataTexture2DArray ) { + + state.texImage3D( 35866, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); + textureProperties.__maxMipLevel = 0; + + } else if ( texture.isDataTexture3D ) { + + state.texImage3D( 32879, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); + textureProperties.__maxMipLevel = 0; + + } else { + + // regular Texture (image, video, canvas) + + // use manually created mipmaps if available + // if there are no manual mipmaps + // set 0 level mipmap and then use GL to generate other mipmap levels + + if ( mipmaps.length > 0 && supportsMips ) { + + for ( var i$2 = 0, il$2 = mipmaps.length; i$2 < il$2; i$2 ++ ) { + + mipmap = mipmaps[ i$2 ]; + state.texImage2D( 3553, i$2, glInternalFormat, glFormat, glType, mipmap ); + + } + + texture.generateMipmaps = false; + textureProperties.__maxMipLevel = mipmaps.length - 1; + + } else { + + state.texImage2D( 3553, 0, glInternalFormat, glFormat, glType, image ); + textureProperties.__maxMipLevel = 0; + + } + + } + + if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { + + generateMipmap( textureType, texture, image.width, image.height ); + + } + + textureProperties.__version = texture.version; + + if ( texture.onUpdate ) { texture.onUpdate( texture ); } + + } + + // Render targets + + // Setup storage for target texture and bind it to correct framebuffer + function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) { + + var glFormat = utils.convert( renderTarget.texture.format ); + var glType = utils.convert( renderTarget.texture.type ); + var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType ); + state.texImage2D( textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ); + _gl.bindFramebuffer( 36160, framebuffer ); + _gl.framebufferTexture2D( 36160, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 ); + _gl.bindFramebuffer( 36160, null ); + + } + + // Setup storage for internal depth/stencil buffers and bind to correct framebuffer + function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { + + _gl.bindRenderbuffer( 36161, renderbuffer ); + + if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) { + + var glInternalFormat = 33189; + + if ( isMultisample ) { + + var depthTexture = renderTarget.depthTexture; + + if ( depthTexture && depthTexture.isDepthTexture ) { + + if ( depthTexture.type === FloatType ) { + + glInternalFormat = 36012; + + } else if ( depthTexture.type === UnsignedIntType ) { + + glInternalFormat = 33190; + + } + + } + + var samples = getRenderTargetSamples( renderTarget ); + + _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + } else { + + _gl.renderbufferStorage( 36161, glInternalFormat, renderTarget.width, renderTarget.height ); + + } + + _gl.framebufferRenderbuffer( 36160, 36096, 36161, renderbuffer ); + + } else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) { + + if ( isMultisample ) { + + var samples$1 = getRenderTargetSamples( renderTarget ); + + _gl.renderbufferStorageMultisample( 36161, samples$1, 35056, renderTarget.width, renderTarget.height ); + + } else { + + _gl.renderbufferStorage( 36161, 34041, renderTarget.width, renderTarget.height ); + + } + + + _gl.framebufferRenderbuffer( 36160, 33306, 36161, renderbuffer ); + + } else { + + var glFormat = utils.convert( renderTarget.texture.format ); + var glType = utils.convert( renderTarget.texture.type ); + var glInternalFormat$1 = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType ); + + if ( isMultisample ) { + + var samples$2 = getRenderTargetSamples( renderTarget ); + + _gl.renderbufferStorageMultisample( 36161, samples$2, glInternalFormat$1, renderTarget.width, renderTarget.height ); + + } else { + + _gl.renderbufferStorage( 36161, glInternalFormat$1, renderTarget.width, renderTarget.height ); + + } + + } + + _gl.bindRenderbuffer( 36161, null ); + + } + + // Setup resources for a Depth Texture for a FBO (needs an extension) + function setupDepthTexture( framebuffer, renderTarget ) { + + var isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); + if ( isCube ) { throw new Error( 'Depth Texture with cube render targets is not supported' ); } + + _gl.bindFramebuffer( 36160, framebuffer ); + + if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { + + throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); + + } + + // upload an empty depth texture with framebuffer size + if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || + renderTarget.depthTexture.image.width !== renderTarget.width || + renderTarget.depthTexture.image.height !== renderTarget.height ) { + + renderTarget.depthTexture.image.width = renderTarget.width; + renderTarget.depthTexture.image.height = renderTarget.height; + renderTarget.depthTexture.needsUpdate = true; + + } + + setTexture2D( renderTarget.depthTexture, 0 ); + + var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; + + if ( renderTarget.depthTexture.format === DepthFormat ) { + + _gl.framebufferTexture2D( 36160, 36096, 3553, webglDepthTexture, 0 ); + + } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { + + _gl.framebufferTexture2D( 36160, 33306, 3553, webglDepthTexture, 0 ); + + } else { + + throw new Error( 'Unknown depthTexture format' ); + + } + + } + + // Setup GL resources for a non-texture depth buffer + function setupDepthRenderbuffer( renderTarget ) { + + var renderTargetProperties = properties.get( renderTarget ); + + var isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); + + if ( renderTarget.depthTexture ) { + + if ( isCube ) { throw new Error( 'target.depthTexture not supported in Cube render targets' ); } + + setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); + + } else { + + if ( isCube ) { + + renderTargetProperties.__webglDepthbuffer = []; + + for ( var i = 0; i < 6; i ++ ) { + + _gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer[ i ] ); + renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); + setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); + + } + + } else { + + _gl.bindFramebuffer( 36160, renderTargetProperties.__webglFramebuffer ); + renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); + + } + + } + + _gl.bindFramebuffer( 36160, null ); + + } + + // Set up GL resources for the render target + function setupRenderTarget( renderTarget ) { + + var renderTargetProperties = properties.get( renderTarget ); + var textureProperties = properties.get( renderTarget.texture ); + + renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); + + textureProperties.__webglTexture = _gl.createTexture(); + + info.memory.textures ++; + + var isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); + var isMultisample = ( renderTarget.isWebGLMultisampleRenderTarget === true ); + var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2; + + // Handles WebGL2 RGBFormat fallback - #18858 + + if ( isWebGL2 && renderTarget.texture.format === RGBFormat && ( renderTarget.texture.type === FloatType || renderTarget.texture.type === HalfFloatType ) ) { + + renderTarget.texture.format = RGBAFormat; + + console.warn( 'THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.' ); + + } + + // Setup framebuffer + + if ( isCube ) { + + renderTargetProperties.__webglFramebuffer = []; + + for ( var i = 0; i < 6; i ++ ) { + + renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); + + } + + } else { + + renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); + + if ( isMultisample ) { + + if ( isWebGL2 ) { + + renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); + renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer(); + + _gl.bindRenderbuffer( 36161, renderTargetProperties.__webglColorRenderbuffer ); + + var glFormat = utils.convert( renderTarget.texture.format ); + var glType = utils.convert( renderTarget.texture.type ); + var glInternalFormat = getInternalFormat( renderTarget.texture.internalFormat, glFormat, glType ); + var samples = getRenderTargetSamples( renderTarget ); + _gl.renderbufferStorageMultisample( 36161, samples, glInternalFormat, renderTarget.width, renderTarget.height ); + + _gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); + _gl.framebufferRenderbuffer( 36160, 36064, 36161, renderTargetProperties.__webglColorRenderbuffer ); + _gl.bindRenderbuffer( 36161, null ); + + if ( renderTarget.depthBuffer ) { + + renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); + setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); + + } + + _gl.bindFramebuffer( 36160, null ); + + + } else { + + console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' ); + + } + + } + + } + + // Setup color buffer + + if ( isCube ) { + + state.bindTexture( 34067, textureProperties.__webglTexture ); + setTextureParameters( 34067, renderTarget.texture, supportsMips ); + + for ( var i$1 = 0; i$1 < 6; i$1 ++ ) { + + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i$1 ], renderTarget, 36064, 34069 + i$1 ); + + } + + if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) { + + generateMipmap( 34067, renderTarget.texture, renderTarget.width, renderTarget.height ); + + } + + state.bindTexture( 34067, null ); + + } else { + + state.bindTexture( 3553, textureProperties.__webglTexture ); + setTextureParameters( 3553, renderTarget.texture, supportsMips ); + setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, 36064, 3553 ); + + if ( textureNeedsGenerateMipmaps( renderTarget.texture, supportsMips ) ) { + + generateMipmap( 3553, renderTarget.texture, renderTarget.width, renderTarget.height ); + + } + + state.bindTexture( 3553, null ); + + } + + // Setup depth and stencil buffers + + if ( renderTarget.depthBuffer ) { + + setupDepthRenderbuffer( renderTarget ); + + } + + } + + function updateRenderTargetMipmap( renderTarget ) { + + var texture = renderTarget.texture; + var supportsMips = isPowerOfTwo( renderTarget ) || isWebGL2; + + if ( textureNeedsGenerateMipmaps( texture, supportsMips ) ) { + + var target = renderTarget.isWebGLCubeRenderTarget ? 34067 : 3553; + var webglTexture = properties.get( texture ).__webglTexture; + + state.bindTexture( target, webglTexture ); + generateMipmap( target, texture, renderTarget.width, renderTarget.height ); + state.bindTexture( target, null ); + + } + + } + + function updateMultisampleRenderTarget( renderTarget ) { + + if ( renderTarget.isWebGLMultisampleRenderTarget ) { + + if ( isWebGL2 ) { + + var renderTargetProperties = properties.get( renderTarget ); + + _gl.bindFramebuffer( 36008, renderTargetProperties.__webglMultisampledFramebuffer ); + _gl.bindFramebuffer( 36009, renderTargetProperties.__webglFramebuffer ); + + var width = renderTarget.width; + var height = renderTarget.height; + var mask = 16384; + + if ( renderTarget.depthBuffer ) { mask |= 256; } + if ( renderTarget.stencilBuffer ) { mask |= 1024; } + + _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, 9728 ); + + _gl.bindFramebuffer( 36160, renderTargetProperties.__webglMultisampledFramebuffer ); // see #18905 + + } else { + + console.warn( 'THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.' ); + + } + + } + + } + + function getRenderTargetSamples( renderTarget ) { + + return ( isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ) ? + Math.min( maxSamples, renderTarget.samples ) : 0; + + } + + function updateVideoTexture( texture ) { + + var frame = info.render.frame; + + // Check the last frame we updated the VideoTexture + + if ( _videoTextures.get( texture ) !== frame ) { + + _videoTextures.set( texture, frame ); + texture.update(); + + } + + } + + // backwards compatibility + + var warnedTexture2D = false; + var warnedTextureCube = false; + + function safeSetTexture2D( texture, slot ) { + + if ( texture && texture.isWebGLRenderTarget ) { + + if ( warnedTexture2D === false ) { + + console.warn( "THREE.WebGLTextures.safeSetTexture2D: don't use render targets as textures. Use their .texture property instead." ); + warnedTexture2D = true; + + } + + texture = texture.texture; + + } + + setTexture2D( texture, slot ); + + } + + function safeSetTextureCube( texture, slot ) { + + if ( texture && texture.isWebGLCubeRenderTarget ) { + + if ( warnedTextureCube === false ) { + + console.warn( "THREE.WebGLTextures.safeSetTextureCube: don't use cube render targets as textures. Use their .texture property instead." ); + warnedTextureCube = true; + + } + + texture = texture.texture; + + } + + // currently relying on the fact that WebGLCubeRenderTarget.texture is a Texture and NOT a CubeTexture + // TODO: unify these code paths + if ( ( texture && texture.isCubeTexture ) || + ( Array.isArray( texture.image ) && texture.image.length === 6 ) ) { + + // CompressedTexture can have Array in image :/ + + // this function alone should take care of cube textures + setTextureCube( texture, slot ); + + } else { + + // assumed: texture property of THREE.WebGLCubeRenderTarget + setTextureCubeDynamic( texture, slot ); + + } + + } + + // + + this.allocateTextureUnit = allocateTextureUnit; + this.resetTextureUnits = resetTextureUnits; + + this.setTexture2D = setTexture2D; + this.setTexture2DArray = setTexture2DArray; + this.setTexture3D = setTexture3D; + this.setTextureCube = setTextureCube; + this.setTextureCubeDynamic = setTextureCubeDynamic; + this.setupRenderTarget = setupRenderTarget; + this.updateRenderTargetMipmap = updateRenderTargetMipmap; + this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; + + this.safeSetTexture2D = safeSetTexture2D; + this.safeSetTextureCube = safeSetTextureCube; + + } + + function WebGLUtils( gl, extensions, capabilities ) { + + var isWebGL2 = capabilities.isWebGL2; + + function convert( p ) { + + var extension; + + if ( p === UnsignedByteType ) { return 5121; } + if ( p === UnsignedShort4444Type ) { return 32819; } + if ( p === UnsignedShort5551Type ) { return 32820; } + if ( p === UnsignedShort565Type ) { return 33635; } + + if ( p === ByteType ) { return 5120; } + if ( p === ShortType ) { return 5122; } + if ( p === UnsignedShortType ) { return 5123; } + if ( p === IntType ) { return 5124; } + if ( p === UnsignedIntType ) { return 5125; } + if ( p === FloatType ) { return 5126; } + + if ( p === HalfFloatType ) { + + if ( isWebGL2 ) { return 5131; } + + extension = extensions.get( 'OES_texture_half_float' ); + + if ( extension !== null ) { + + return extension.HALF_FLOAT_OES; + + } else { + + return null; + + } + + } + + if ( p === AlphaFormat ) { return 6406; } + if ( p === RGBFormat ) { return 6407; } + if ( p === RGBAFormat ) { return 6408; } + if ( p === LuminanceFormat ) { return 6409; } + if ( p === LuminanceAlphaFormat ) { return 6410; } + if ( p === DepthFormat ) { return 6402; } + if ( p === DepthStencilFormat ) { return 34041; } + if ( p === RedFormat ) { return 6403; } + + // WebGL2 formats. + + if ( p === RedIntegerFormat ) { return 36244; } + if ( p === RGFormat ) { return 33319; } + if ( p === RGIntegerFormat ) { return 33320; } + if ( p === RGBIntegerFormat ) { return 36248; } + if ( p === RGBAIntegerFormat ) { return 36249; } + + if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || + p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); + + if ( extension !== null ) { + + if ( p === RGB_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; } + if ( p === RGBA_S3TC_DXT1_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; } + if ( p === RGBA_S3TC_DXT3_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; } + if ( p === RGBA_S3TC_DXT5_Format ) { return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } + + } else { + + return null; + + } + + } + + if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || + p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); + + if ( extension !== null ) { + + if ( p === RGB_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; } + if ( p === RGB_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; } + if ( p === RGBA_PVRTC_4BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; } + if ( p === RGBA_PVRTC_2BPPV1_Format ) { return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } + + } else { + + return null; + + } + + } + + if ( p === RGB_ETC1_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_etc1' ); + + if ( extension !== null ) { + + return extension.COMPRESSED_RGB_ETC1_WEBGL; + + } else { + + return null; + + } + + } + + if ( p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_etc' ); + + if ( extension !== null ) { + + if ( p === RGB_ETC2_Format ) { return extension.COMPRESSED_RGB8_ETC2; } + if ( p === RGBA_ETC2_EAC_Format ) { return extension.COMPRESSED_RGBA8_ETC2_EAC; } + + } + + } + + if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || + p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || + p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || + p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || + p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || + p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || + p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || + p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || + p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || + p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format ) { + + extension = extensions.get( 'WEBGL_compressed_texture_astc' ); + + if ( extension !== null ) { + + // TODO Complete? + + return p; + + } else { + + return null; + + } + + } + + if ( p === RGBA_BPTC_Format ) { + + extension = extensions.get( 'EXT_texture_compression_bptc' ); + + if ( extension !== null ) { + + // TODO Complete? + + return p; + + } else { + + return null; + + } + + } + + if ( p === UnsignedInt248Type ) { + + if ( isWebGL2 ) { return 34042; } + + extension = extensions.get( 'WEBGL_depth_texture' ); + + if ( extension !== null ) { + + return extension.UNSIGNED_INT_24_8_WEBGL; + + } else { + + return null; + + } + + } + + } + + return { convert: convert }; + + } + + function ArrayCamera( array ) { + + PerspectiveCamera.call( this ); + + this.cameras = array || []; + + } + + ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), { + + constructor: ArrayCamera, + + isArrayCamera: true + + } ); + + function Group() { + + Object3D.call( this ); + + this.type = 'Group'; + + } + + Group.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Group, + + isGroup: true + + } ); + + function WebXRController() { + + this._targetRay = null; + this._grip = null; + this._hand = null; + + } + + Object.assign( WebXRController.prototype, { + + constructor: WebXRController, + + getHandSpace: function () { + + if ( this._hand === null ) { + + this._hand = new Group(); + this._hand.matrixAutoUpdate = false; + this._hand.visible = false; + + this._hand.joints = []; + this._hand.inputState = { pinching: false }; + + if ( window.XRHand ) { + + for ( var i = 0; i <= window.XRHand.LITTLE_PHALANX_TIP; i ++ ) { + + // The transform of this joint will be updated with the joint pose on each frame + var joint = new Group(); + joint.matrixAutoUpdate = false; + joint.visible = false; + this._hand.joints.push( joint ); + // ?? + this._hand.add( joint ); + + } + + } + + } + + return this._hand; + + }, + + getTargetRaySpace: function () { + + if ( this._targetRay === null ) { + + this._targetRay = new Group(); + this._targetRay.matrixAutoUpdate = false; + this._targetRay.visible = false; + + } + + return this._targetRay; + + }, + + getGripSpace: function () { + + if ( this._grip === null ) { + + this._grip = new Group(); + this._grip.matrixAutoUpdate = false; + this._grip.visible = false; + + } + + return this._grip; + + }, + + dispatchEvent: function ( event ) { + + if ( this._targetRay !== null ) { + + this._targetRay.dispatchEvent( event ); + + } + + if ( this._grip !== null ) { + + this._grip.dispatchEvent( event ); + + } + + if ( this._hand !== null ) { + + this._hand.dispatchEvent( event ); + + } + + return this; + + }, + + disconnect: function ( inputSource ) { + + this.dispatchEvent( { type: 'disconnected', data: inputSource } ); + + if ( this._targetRay !== null ) { + + this._targetRay.visible = false; + + } + + if ( this._grip !== null ) { + + this._grip.visible = false; + + } + + if ( this._hand !== null ) { + + this._hand.visible = false; + + } + + return this; + + }, + + update: function ( inputSource, frame, referenceSpace ) { + + var inputPose = null; + var gripPose = null; + var handPose = null; + + var targetRay = this._targetRay; + var grip = this._grip; + var hand = this._hand; + + if ( inputSource ) { + + if ( inputSource.hand ) { + + handPose = true; + + for ( var i = 0; i <= window.XRHand.LITTLE_PHALANX_TIP; i ++ ) { + + if ( inputSource.hand[ i ] ) { + + // Update the joints groups with the XRJoint poses + var jointPose = frame.getJointPose( inputSource.hand[ i ], referenceSpace ); + var joint = hand.joints[ i ]; + + if ( jointPose !== null ) { + + joint.matrix.fromArray( jointPose.transform.matrix ); + joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); + joint.jointRadius = jointPose.radius; + + } + + joint.visible = jointPose !== null; + + // Custom events + + // Check pinch + var indexTip = hand.joints[ window.XRHand.INDEX_PHALANX_TIP ]; + var thumbTip = hand.joints[ window.XRHand.THUMB_PHALANX_TIP ]; + var distance = indexTip.position.distanceTo( thumbTip.position ); + + var distanceToPinch = 0.02; + var threshold = 0.005; + + if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { + + hand.inputState.pinching = false; + this.dispatchEvent( { + type: "pinchend", + handedness: inputSource.handedness, + target: this + } ); + + } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { + + hand.inputState.pinching = true; + this.dispatchEvent( { + type: "pinchstart", + handedness: inputSource.handedness, + target: this + } ); + + } + + } + + } + + } else { + + if ( targetRay !== null ) { + + inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); + + if ( inputPose !== null ) { + + targetRay.matrix.fromArray( inputPose.transform.matrix ); + targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); + + } + + } + + if ( grip !== null && inputSource.gripSpace ) { + + gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); + + if ( gripPose !== null ) { + + grip.matrix.fromArray( gripPose.transform.matrix ); + grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); + + } + + } + + } + + } + + if ( targetRay !== null ) { + + targetRay.visible = ( inputPose !== null ); + + } + + if ( grip !== null ) { + + grip.visible = ( gripPose !== null ); + + } + + if ( hand !== null ) { + + hand.visible = ( handPose !== null ); + + } + + return this; + + } + + } ); + + function WebXRManager( renderer, gl ) { + + var scope = this; + + var session = null; + + var framebufferScaleFactor = 1.0; + + var referenceSpace = null; + var referenceSpaceType = 'local-floor'; + + var pose = null; + + var controllers = []; + var inputSourcesMap = new Map(); + + // + + var cameraL = new PerspectiveCamera(); + cameraL.layers.enable( 1 ); + cameraL.viewport = new Vector4(); + + var cameraR = new PerspectiveCamera(); + cameraR.layers.enable( 2 ); + cameraR.viewport = new Vector4(); + + var cameras = [ cameraL, cameraR ]; + + var cameraVR = new ArrayCamera(); + cameraVR.layers.enable( 1 ); + cameraVR.layers.enable( 2 ); + + var _currentDepthNear = null; + var _currentDepthFar = null; + + // + + this.enabled = false; + + this.isPresenting = false; + + this.getController = function ( index ) { + + var controller = controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + controllers[ index ] = controller; + + } + + return controller.getTargetRaySpace(); + + }; + + this.getControllerGrip = function ( index ) { + + var controller = controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + controllers[ index ] = controller; + + } + + return controller.getGripSpace(); + + }; + + this.getHand = function ( index ) { + + var controller = controllers[ index ]; + + if ( controller === undefined ) { + + controller = new WebXRController(); + controllers[ index ] = controller; + + } + + return controller.getHandSpace(); + + }; + + // + + function onSessionEvent( event ) { + + var controller = inputSourcesMap.get( event.inputSource ); + + if ( controller ) { + + controller.dispatchEvent( { type: event.type } ); + + } + + } + + function onSessionEnd() { + + inputSourcesMap.forEach( function ( controller, inputSource ) { + + controller.disconnect( inputSource ); + + } ); + + inputSourcesMap.clear(); + + // + + renderer.setFramebuffer( null ); + renderer.setRenderTarget( renderer.getRenderTarget() ); // Hack #15830 + animation.stop(); + + scope.isPresenting = false; + + scope.dispatchEvent( { type: 'sessionend' } ); + + } + + function onRequestReferenceSpace( value ) { + + referenceSpace = value; + + animation.setContext( session ); + animation.start(); + + scope.isPresenting = true; + + scope.dispatchEvent( { type: 'sessionstart' } ); + + } + + this.setFramebufferScaleFactor = function ( value ) { + + framebufferScaleFactor = value; + + if ( scope.isPresenting === true ) { + + console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); + + } + + }; + + this.setReferenceSpaceType = function ( value ) { + + referenceSpaceType = value; + + if ( scope.isPresenting === true ) { + + console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); + + } + + }; + + this.getReferenceSpace = function () { + + return referenceSpace; + + }; + + this.getSession = function () { + + return session; + + }; + + this.setSession = function ( value ) { + + session = value; + + if ( session !== null ) { + + session.addEventListener( 'select', onSessionEvent ); + session.addEventListener( 'selectstart', onSessionEvent ); + session.addEventListener( 'selectend', onSessionEvent ); + session.addEventListener( 'squeeze', onSessionEvent ); + session.addEventListener( 'squeezestart', onSessionEvent ); + session.addEventListener( 'squeezeend', onSessionEvent ); + session.addEventListener( 'end', onSessionEnd ); + + var attributes = gl.getContextAttributes(); + + if ( attributes.xrCompatible !== true ) { + + gl.makeXRCompatible(); + + } + + var layerInit = { + antialias: attributes.antialias, + alpha: attributes.alpha, + depth: attributes.depth, + stencil: attributes.stencil, + framebufferScaleFactor: framebufferScaleFactor + }; + + // eslint-disable-next-line no-undef + var baseLayer = new XRWebGLLayer( session, gl, layerInit ); + + session.updateRenderState( { baseLayer: baseLayer } ); + + session.requestReferenceSpace( referenceSpaceType ).then( onRequestReferenceSpace ); + + // + + session.addEventListener( 'inputsourceschange', updateInputSources ); + + } + + }; + + function updateInputSources( event ) { + + var inputSources = session.inputSources; + + // Assign inputSources to available controllers + + for ( var i = 0; i < controllers.length; i ++ ) { + + inputSourcesMap.set( inputSources[ i ], controllers[ i ] ); + + } + + // Notify disconnected + + for ( var i$1 = 0; i$1 < event.removed.length; i$1 ++ ) { + + var inputSource = event.removed[ i$1 ]; + var controller = inputSourcesMap.get( inputSource ); + + if ( controller ) { + + controller.dispatchEvent( { type: 'disconnected', data: inputSource } ); + inputSourcesMap.delete( inputSource ); + + } + + } + + // Notify connected + + for ( var i$2 = 0; i$2 < event.added.length; i$2 ++ ) { + + var inputSource$1 = event.added[ i$2 ]; + var controller$1 = inputSourcesMap.get( inputSource$1 ); + + if ( controller$1 ) { + + controller$1.dispatchEvent( { type: 'connected', data: inputSource$1 } ); + + } + + } + + } + + // + + var cameraLPos = new Vector3(); + var cameraRPos = new Vector3(); + + /** + * Assumes 2 cameras that are parallel and share an X-axis, and that + * the cameras' projection and world matrices have already been set. + * And that near and far planes are identical for both cameras. + * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 + */ + function setProjectionFromUnion( camera, cameraL, cameraR ) { + + cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); + cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); + + var ipd = cameraLPos.distanceTo( cameraRPos ); + + var projL = cameraL.projectionMatrix.elements; + var projR = cameraR.projectionMatrix.elements; + + // VR systems will have identical far and near planes, and + // most likely identical top and bottom frustum extents. + // Use the left camera for these values. + var near = projL[ 14 ] / ( projL[ 10 ] - 1 ); + var far = projL[ 14 ] / ( projL[ 10 ] + 1 ); + var topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; + var bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; + + var leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; + var rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; + var left = near * leftFov; + var right = near * rightFov; + + // Calculate the new camera's position offset from the + // left camera. xOffset should be roughly half `ipd`. + var zOffset = ipd / ( - leftFov + rightFov ); + var xOffset = zOffset * - leftFov; + + // TODO: Better way to apply this offset? + cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); + camera.translateX( xOffset ); + camera.translateZ( zOffset ); + camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); + camera.matrixWorldInverse.getInverse( camera.matrixWorld ); + + // Find the union of the frustum values of the cameras and scale + // the values so that the near plane's position does not change in world space, + // although must now be relative to the new union camera. + var near2 = near + zOffset; + var far2 = far + zOffset; + var left2 = left - xOffset; + var right2 = right + ( ipd - xOffset ); + var top2 = topFov * far / far2 * near2; + var bottom2 = bottomFov * far / far2 * near2; + + camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); + + } + + function updateCamera( camera, parent ) { + + if ( parent === null ) { + + camera.matrixWorld.copy( camera.matrix ); + + } else { + + camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); + + } + + camera.matrixWorldInverse.getInverse( camera.matrixWorld ); + + } + + this.getCamera = function ( camera ) { + + cameraVR.near = cameraR.near = cameraL.near = camera.near; + cameraVR.far = cameraR.far = cameraL.far = camera.far; + + if ( _currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far ) { + + // Note that the new renderState won't apply until the next frame. See #18320 + + session.updateRenderState( { + depthNear: cameraVR.near, + depthFar: cameraVR.far + } ); + + _currentDepthNear = cameraVR.near; + _currentDepthFar = cameraVR.far; + + } + + var parent = camera.parent; + var cameras = cameraVR.cameras; + + updateCamera( cameraVR, parent ); + + for ( var i = 0; i < cameras.length; i ++ ) { + + updateCamera( cameras[ i ], parent ); + + } + + // update camera and its children + + camera.matrixWorld.copy( cameraVR.matrixWorld ); + + var children = camera.children; + + for ( var i$1 = 0, l = children.length; i$1 < l; i$1 ++ ) { + + children[ i$1 ].updateMatrixWorld( true ); + + } + + // update projection matrix for proper view frustum culling + + if ( cameras.length === 2 ) { + + setProjectionFromUnion( cameraVR, cameraL, cameraR ); + + } else { + + // assume single camera setup (AR) + + cameraVR.projectionMatrix.copy( cameraL.projectionMatrix ); + + } + + return cameraVR; + + }; + + // Animation Loop + + var onAnimationFrameCallback = null; + + function onAnimationFrame( time, frame ) { + + pose = frame.getViewerPose( referenceSpace ); + + if ( pose !== null ) { + + var views = pose.views; + var baseLayer = session.renderState.baseLayer; + + renderer.setFramebuffer( baseLayer.framebuffer ); + + var cameraVRNeedsUpdate = false; + + // check if it's necessary to rebuild cameraVR's camera list + + if ( views.length !== cameraVR.cameras.length ) { + + cameraVR.cameras.length = 0; + cameraVRNeedsUpdate = true; + + } + + for ( var i = 0; i < views.length; i ++ ) { + + var view = views[ i ]; + var viewport = baseLayer.getViewport( view ); + + var camera = cameras[ i ]; + camera.matrix.fromArray( view.transform.matrix ); + camera.projectionMatrix.fromArray( view.projectionMatrix ); + camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); + + if ( i === 0 ) { + + cameraVR.matrix.copy( camera.matrix ); + + } + + if ( cameraVRNeedsUpdate === true ) { + + cameraVR.cameras.push( camera ); + + } + + } + + } + + // + + var inputSources = session.inputSources; + + for ( var i$1 = 0; i$1 < controllers.length; i$1 ++ ) { + + var controller = controllers[ i$1 ]; + var inputSource = inputSources[ i$1 ]; + + controller.update( inputSource, frame, referenceSpace ); + + } + + if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time, frame ); } + + } + + var animation = new WebGLAnimation(); + animation.setAnimationLoop( onAnimationFrame ); + + this.setAnimationLoop = function ( callback ) { + + onAnimationFrameCallback = callback; + + }; + + this.dispose = function () {}; + + } + + Object.assign( WebXRManager.prototype, EventDispatcher.prototype ); + + function WebGLMaterials( properties ) { + + function refreshFogUniforms( uniforms, fog ) { + + uniforms.fogColor.value.copy( fog.color ); + + if ( fog.isFog ) { + + uniforms.fogNear.value = fog.near; + uniforms.fogFar.value = fog.far; + + } else if ( fog.isFogExp2 ) { + + uniforms.fogDensity.value = fog.density; + + } + + } + + function refreshMaterialUniforms( uniforms, material, environment, pixelRatio, height ) { + + if ( material.isMeshBasicMaterial ) { + + refreshUniformsCommon( uniforms, material ); + + } else if ( material.isMeshLambertMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsLambert( uniforms, material ); + + } else if ( material.isMeshToonMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsToon( uniforms, material ); + + } else if ( material.isMeshPhongMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsPhong( uniforms, material ); + + } else if ( material.isMeshStandardMaterial ) { + + refreshUniformsCommon( uniforms, material, environment ); + + if ( material.isMeshPhysicalMaterial ) { + + refreshUniformsPhysical( uniforms, material, environment ); + + } else { + + refreshUniformsStandard( uniforms, material, environment ); + + } + + } else if ( material.isMeshMatcapMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsMatcap( uniforms, material ); + + } else if ( material.isMeshDepthMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsDepth( uniforms, material ); + + } else if ( material.isMeshDistanceMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsDistance( uniforms, material ); + + } else if ( material.isMeshNormalMaterial ) { + + refreshUniformsCommon( uniforms, material ); + refreshUniformsNormal( uniforms, material ); + + } else if ( material.isLineBasicMaterial ) { + + refreshUniformsLine( uniforms, material ); + + if ( material.isLineDashedMaterial ) { + + refreshUniformsDash( uniforms, material ); + + } + + } else if ( material.isPointsMaterial ) { + + refreshUniformsPoints( uniforms, material, pixelRatio, height ); + + } else if ( material.isSpriteMaterial ) { + + refreshUniformsSprites( uniforms, material ); + + } else if ( material.isShadowMaterial ) { + + uniforms.color.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + + } else if ( material.isShaderMaterial ) { + + material.uniformsNeedUpdate = false; // #15581 + + } + + } + + function refreshUniformsCommon( uniforms, material, environment ) { + + uniforms.opacity.value = material.opacity; + + if ( material.color ) { + + uniforms.diffuse.value.copy( material.color ); + + } + + if ( material.emissive ) { + + uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); + + } + + if ( material.map ) { + + uniforms.map.value = material.map; + + } + + if ( material.alphaMap ) { + + uniforms.alphaMap.value = material.alphaMap; + + } + + if ( material.specularMap ) { + + uniforms.specularMap.value = material.specularMap; + + } + + var envMap = material.envMap || environment; + + if ( envMap ) { + + uniforms.envMap.value = envMap; + + uniforms.flipEnvMap.value = envMap.isCubeTexture ? - 1 : 1; + + uniforms.reflectivity.value = material.reflectivity; + uniforms.refractionRatio.value = material.refractionRatio; + + var maxMipLevel = properties.get( envMap ).__maxMipLevel; + + if ( maxMipLevel !== undefined ) { + + uniforms.maxMipLevel.value = maxMipLevel; + + } + + } + + if ( material.lightMap ) { + + uniforms.lightMap.value = material.lightMap; + uniforms.lightMapIntensity.value = material.lightMapIntensity; + + } + + if ( material.aoMap ) { + + uniforms.aoMap.value = material.aoMap; + uniforms.aoMapIntensity.value = material.aoMapIntensity; + + } + + // uv repeat and offset setting priorities + // 1. color map + // 2. specular map + // 3. normal map + // 4. bump map + // 5. alpha map + // 6. emissive map + + var uvScaleMap; + + if ( material.map ) { + + uvScaleMap = material.map; + + } else if ( material.specularMap ) { + + uvScaleMap = material.specularMap; + + } else if ( material.displacementMap ) { + + uvScaleMap = material.displacementMap; + + } else if ( material.normalMap ) { + + uvScaleMap = material.normalMap; + + } else if ( material.bumpMap ) { + + uvScaleMap = material.bumpMap; + + } else if ( material.roughnessMap ) { + + uvScaleMap = material.roughnessMap; + + } else if ( material.metalnessMap ) { + + uvScaleMap = material.metalnessMap; + + } else if ( material.alphaMap ) { + + uvScaleMap = material.alphaMap; + + } else if ( material.emissiveMap ) { + + uvScaleMap = material.emissiveMap; + + } + + if ( uvScaleMap !== undefined ) { + + // backwards compatibility + if ( uvScaleMap.isWebGLRenderTarget ) { + + uvScaleMap = uvScaleMap.texture; + + } + + if ( uvScaleMap.matrixAutoUpdate === true ) { + + uvScaleMap.updateMatrix(); + + } + + uniforms.uvTransform.value.copy( uvScaleMap.matrix ); + + } + + // uv repeat and offset setting priorities for uv2 + // 1. ao map + // 2. light map + + var uv2ScaleMap; + + if ( material.aoMap ) { + + uv2ScaleMap = material.aoMap; + + } else if ( material.lightMap ) { + + uv2ScaleMap = material.lightMap; + + } + + if ( uv2ScaleMap !== undefined ) { + + // backwards compatibility + if ( uv2ScaleMap.isWebGLRenderTarget ) { + + uv2ScaleMap = uv2ScaleMap.texture; + + } + + if ( uv2ScaleMap.matrixAutoUpdate === true ) { + + uv2ScaleMap.updateMatrix(); + + } + + uniforms.uv2Transform.value.copy( uv2ScaleMap.matrix ); + + } + + } + + function refreshUniformsLine( uniforms, material ) { + + uniforms.diffuse.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + + } + + function refreshUniformsDash( uniforms, material ) { + + uniforms.dashSize.value = material.dashSize; + uniforms.totalSize.value = material.dashSize + material.gapSize; + uniforms.scale.value = material.scale; + + } + + function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { + + uniforms.diffuse.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + uniforms.size.value = material.size * pixelRatio; + uniforms.scale.value = height * 0.5; + + if ( material.map ) { + + uniforms.map.value = material.map; + + } + + if ( material.alphaMap ) { + + uniforms.alphaMap.value = material.alphaMap; + + } + + // uv repeat and offset setting priorities + // 1. color map + // 2. alpha map + + var uvScaleMap; + + if ( material.map ) { + + uvScaleMap = material.map; + + } else if ( material.alphaMap ) { + + uvScaleMap = material.alphaMap; + + } + + if ( uvScaleMap !== undefined ) { + + if ( uvScaleMap.matrixAutoUpdate === true ) { + + uvScaleMap.updateMatrix(); + + } + + uniforms.uvTransform.value.copy( uvScaleMap.matrix ); + + } + + } + + function refreshUniformsSprites( uniforms, material ) { + + uniforms.diffuse.value.copy( material.color ); + uniforms.opacity.value = material.opacity; + uniforms.rotation.value = material.rotation; + + if ( material.map ) { + + uniforms.map.value = material.map; + + } + + if ( material.alphaMap ) { + + uniforms.alphaMap.value = material.alphaMap; + + } + + // uv repeat and offset setting priorities + // 1. color map + // 2. alpha map + + var uvScaleMap; + + if ( material.map ) { + + uvScaleMap = material.map; + + } else if ( material.alphaMap ) { + + uvScaleMap = material.alphaMap; + + } + + if ( uvScaleMap !== undefined ) { + + if ( uvScaleMap.matrixAutoUpdate === true ) { + + uvScaleMap.updateMatrix(); + + } + + uniforms.uvTransform.value.copy( uvScaleMap.matrix ); + + } + + } + + function refreshUniformsLambert( uniforms, material ) { + + if ( material.emissiveMap ) { + + uniforms.emissiveMap.value = material.emissiveMap; + + } + + } + + function refreshUniformsPhong( uniforms, material ) { + + uniforms.specular.value.copy( material.specular ); + uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) + + if ( material.emissiveMap ) { + + uniforms.emissiveMap.value = material.emissiveMap; + + } + + if ( material.bumpMap ) { + + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } + + } + + if ( material.normalMap ) { + + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy( material.normalScale ); + if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } + + } + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + } + + function refreshUniformsToon( uniforms, material ) { + + if ( material.gradientMap ) { + + uniforms.gradientMap.value = material.gradientMap; + + } + + if ( material.emissiveMap ) { + + uniforms.emissiveMap.value = material.emissiveMap; + + } + + if ( material.bumpMap ) { + + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } + + } + + if ( material.normalMap ) { + + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy( material.normalScale ); + if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } + + } + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + } + + function refreshUniformsStandard( uniforms, material, environment ) { + + uniforms.roughness.value = material.roughness; + uniforms.metalness.value = material.metalness; + + if ( material.roughnessMap ) { + + uniforms.roughnessMap.value = material.roughnessMap; + + } + + if ( material.metalnessMap ) { + + uniforms.metalnessMap.value = material.metalnessMap; + + } + + if ( material.emissiveMap ) { + + uniforms.emissiveMap.value = material.emissiveMap; + + } + + if ( material.bumpMap ) { + + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } + + } + + if ( material.normalMap ) { + + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy( material.normalScale ); + if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } + + } + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + if ( material.envMap || environment ) { + + //uniforms.envMap.value = material.envMap; // part of uniforms common + uniforms.envMapIntensity.value = material.envMapIntensity; + + } + + } + + function refreshUniformsPhysical( uniforms, material, environment ) { + + refreshUniformsStandard( uniforms, material, environment ); + + uniforms.reflectivity.value = material.reflectivity; // also part of uniforms common + + uniforms.clearcoat.value = material.clearcoat; + uniforms.clearcoatRoughness.value = material.clearcoatRoughness; + if ( material.sheen ) { uniforms.sheen.value.copy( material.sheen ); } + + if ( material.clearcoatMap ) { + + uniforms.clearcoatMap.value = material.clearcoatMap; + + } + + if ( material.clearcoatRoughnessMap ) { + + uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; + + } + + if ( material.clearcoatNormalMap ) { + + uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); + uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; + + if ( material.side === BackSide ) { + + uniforms.clearcoatNormalScale.value.negate(); + + } + + } + + uniforms.transmission.value = material.transmission; + + if ( material.transmissionMap ) { + + uniforms.transmissionMap.value = material.transmissionMap; + + } + + } + + function refreshUniformsMatcap( uniforms, material ) { + + if ( material.matcap ) { + + uniforms.matcap.value = material.matcap; + + } + + if ( material.bumpMap ) { + + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } + + } + + if ( material.normalMap ) { + + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy( material.normalScale ); + if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } + + } + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + } + + function refreshUniformsDepth( uniforms, material ) { + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + } + + function refreshUniformsDistance( uniforms, material ) { + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + uniforms.referencePosition.value.copy( material.referencePosition ); + uniforms.nearDistance.value = material.nearDistance; + uniforms.farDistance.value = material.farDistance; + + } + + function refreshUniformsNormal( uniforms, material ) { + + if ( material.bumpMap ) { + + uniforms.bumpMap.value = material.bumpMap; + uniforms.bumpScale.value = material.bumpScale; + if ( material.side === BackSide ) { uniforms.bumpScale.value *= - 1; } + + } + + if ( material.normalMap ) { + + uniforms.normalMap.value = material.normalMap; + uniforms.normalScale.value.copy( material.normalScale ); + if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } + + } + + if ( material.displacementMap ) { + + uniforms.displacementMap.value = material.displacementMap; + uniforms.displacementScale.value = material.displacementScale; + uniforms.displacementBias.value = material.displacementBias; + + } + + } + + return { + refreshFogUniforms: refreshFogUniforms, + refreshMaterialUniforms: refreshMaterialUniforms + }; + + } + + function WebGLRenderer( parameters ) { + + parameters = parameters || {}; + + var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ), + _context = parameters.context !== undefined ? parameters.context : null, + + _alpha = parameters.alpha !== undefined ? parameters.alpha : false, + _depth = parameters.depth !== undefined ? parameters.depth : true, + _stencil = parameters.stencil !== undefined ? parameters.stencil : true, + _antialias = parameters.antialias !== undefined ? parameters.antialias : false, + _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, + _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, + _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default', + _failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false; + + var currentRenderList = null; + var currentRenderState = null; + + // public properties + + this.domElement = _canvas; + + // Debug configuration container + this.debug = { + + /** + * Enables error checking and reporting when shader programs are being compiled + * @type {boolean} + */ + checkShaderErrors: true + }; + + // clearing + + this.autoClear = true; + this.autoClearColor = true; + this.autoClearDepth = true; + this.autoClearStencil = true; + + // scene graph + + this.sortObjects = true; + + // user-defined clipping + + this.clippingPlanes = []; + this.localClippingEnabled = false; + + // physically based shading + + this.gammaFactor = 2.0; // for backwards compatibility + this.outputEncoding = LinearEncoding; + + // physical lights + + this.physicallyCorrectLights = false; + + // tone mapping + + this.toneMapping = NoToneMapping; + this.toneMappingExposure = 1.0; + + // morphs + + this.maxMorphTargets = 8; + this.maxMorphNormals = 4; + + // internal properties + + var _this = this; + + var _isContextLost = false; + + // internal state cache + + var _framebuffer = null; + + var _currentActiveCubeFace = 0; + var _currentActiveMipmapLevel = 0; + var _currentRenderTarget = null; + var _currentFramebuffer = null; + var _currentMaterialId = - 1; + + var _currentCamera = null; + var _currentArrayCamera = null; + + var _currentViewport = new Vector4(); + var _currentScissor = new Vector4(); + var _currentScissorTest = null; + + // + + var _width = _canvas.width; + var _height = _canvas.height; + + var _pixelRatio = 1; + var _opaqueSort = null; + var _transparentSort = null; + + var _viewport = new Vector4( 0, 0, _width, _height ); + var _scissor = new Vector4( 0, 0, _width, _height ); + var _scissorTest = false; + + // frustum + + var _frustum = new Frustum(); + + // clipping + + var _clipping = new WebGLClipping(); + var _clippingEnabled = false; + var _localClippingEnabled = false; + + // camera matrices cache + + var _projScreenMatrix = new Matrix4(); + + var _vector3 = new Vector3(); + + var _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; + + function getTargetPixelRatio() { + + return _currentRenderTarget === null ? _pixelRatio : 1; + + } + + // initialize + + var _gl = _context; + + function getContext( contextNames, contextAttributes ) { + + for ( var i = 0; i < contextNames.length; i ++ ) { + + var contextName = contextNames[ i ]; + var context = _canvas.getContext( contextName, contextAttributes ); + if ( context !== null ) { return context; } + + } + + return null; + + } + + try { + + var contextAttributes = { + alpha: _alpha, + depth: _depth, + stencil: _stencil, + antialias: _antialias, + premultipliedAlpha: _premultipliedAlpha, + preserveDrawingBuffer: _preserveDrawingBuffer, + powerPreference: _powerPreference, + failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat + }; + + // event listeners must be registered before WebGL context is created, see #12753 + + _canvas.addEventListener( 'webglcontextlost', onContextLost, false ); + _canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); + + if ( _gl === null ) { + + var contextNames = [ 'webgl2', 'webgl', 'experimental-webgl' ]; + + if ( _this.isWebGL1Renderer === true ) { + + contextNames.shift(); + + } + + _gl = getContext( contextNames, contextAttributes ); + + if ( _gl === null ) { + + if ( getContext( contextNames ) ) { + + throw new Error( 'Error creating WebGL context with your selected attributes.' ); + + } else { + + throw new Error( 'Error creating WebGL context.' ); + + } + + } + + } + + // Some experimental-webgl implementations do not have getShaderPrecisionFormat + + if ( _gl.getShaderPrecisionFormat === undefined ) { + + _gl.getShaderPrecisionFormat = function () { + + return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 }; + + }; + + } + + } catch ( error ) { + + console.error( 'THREE.WebGLRenderer: ' + error.message ); + throw error; + + } + + var extensions, capabilities, state, info; + var properties, textures, attributes, geometries, objects; + var programCache, materials, renderLists, renderStates; + + var background, morphtargets, bufferRenderer, indexedBufferRenderer; + + var utils, bindingStates; + + function initGLContext() { + + extensions = new WebGLExtensions( _gl ); + + capabilities = new WebGLCapabilities( _gl, extensions, parameters ); + + if ( capabilities.isWebGL2 === false ) { + + extensions.get( 'WEBGL_depth_texture' ); + extensions.get( 'OES_texture_float' ); + extensions.get( 'OES_texture_half_float' ); + extensions.get( 'OES_texture_half_float_linear' ); + extensions.get( 'OES_standard_derivatives' ); + extensions.get( 'OES_element_index_uint' ); + extensions.get( 'OES_vertex_array_object' ); + extensions.get( 'ANGLE_instanced_arrays' ); + + } + + extensions.get( 'OES_texture_float_linear' ); + + utils = new WebGLUtils( _gl, extensions, capabilities ); + + state = new WebGLState( _gl, extensions, capabilities ); + state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() ); + state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() ); + + info = new WebGLInfo( _gl ); + properties = new WebGLProperties(); + textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); + attributes = new WebGLAttributes( _gl, capabilities ); + bindingStates = new WebGLBindingStates( _gl, extensions, attributes, capabilities ); + geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); + objects = new WebGLObjects( _gl, geometries, attributes, info ); + morphtargets = new WebGLMorphtargets( _gl ); + programCache = new WebGLPrograms( _this, extensions, capabilities, bindingStates ); + materials = new WebGLMaterials( properties ); + renderLists = new WebGLRenderLists( properties ); + renderStates = new WebGLRenderStates(); + + background = new WebGLBackground( _this, state, objects, _premultipliedAlpha ); + + bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info, capabilities ); + indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info, capabilities ); + + info.programs = programCache.programs; + + _this.capabilities = capabilities; + _this.extensions = extensions; + _this.properties = properties; + _this.renderLists = renderLists; + _this.state = state; + _this.info = info; + + } + + initGLContext(); + + // xr + + var xr = new WebXRManager( _this, _gl ); + + this.xr = xr; + + // shadow map + + var shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize ); + + this.shadowMap = shadowMap; + + // API + + this.getContext = function () { + + return _gl; + + }; + + this.getContextAttributes = function () { + + return _gl.getContextAttributes(); + + }; + + this.forceContextLoss = function () { + + var extension = extensions.get( 'WEBGL_lose_context' ); + if ( extension ) { extension.loseContext(); } + + }; + + this.forceContextRestore = function () { + + var extension = extensions.get( 'WEBGL_lose_context' ); + if ( extension ) { extension.restoreContext(); } + + }; + + this.getPixelRatio = function () { + + return _pixelRatio; + + }; + + this.setPixelRatio = function ( value ) { + + if ( value === undefined ) { return; } + + _pixelRatio = value; + + this.setSize( _width, _height, false ); + + }; + + this.getSize = function ( target ) { + + if ( target === undefined ) { + + console.warn( 'WebGLRenderer: .getsize() now requires a Vector2 as an argument' ); + + target = new Vector2(); + + } + + return target.set( _width, _height ); + + }; + + this.setSize = function ( width, height, updateStyle ) { + + if ( xr.isPresenting ) { + + console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); + return; + + } + + _width = width; + _height = height; + + _canvas.width = Math.floor( width * _pixelRatio ); + _canvas.height = Math.floor( height * _pixelRatio ); + + if ( updateStyle !== false ) { + + _canvas.style.width = width + 'px'; + _canvas.style.height = height + 'px'; + + } + + this.setViewport( 0, 0, width, height ); + + }; + + this.getDrawingBufferSize = function ( target ) { + + if ( target === undefined ) { + + console.warn( 'WebGLRenderer: .getdrawingBufferSize() now requires a Vector2 as an argument' ); + + target = new Vector2(); + + } + + return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); + + }; + + this.setDrawingBufferSize = function ( width, height, pixelRatio ) { + + _width = width; + _height = height; + + _pixelRatio = pixelRatio; + + _canvas.width = Math.floor( width * pixelRatio ); + _canvas.height = Math.floor( height * pixelRatio ); + + this.setViewport( 0, 0, width, height ); + + }; + + this.getCurrentViewport = function ( target ) { + + if ( target === undefined ) { + + console.warn( 'WebGLRenderer: .getCurrentViewport() now requires a Vector4 as an argument' ); + + target = new Vector4(); + + } + + return target.copy( _currentViewport ); + + }; + + this.getViewport = function ( target ) { + + return target.copy( _viewport ); + + }; + + this.setViewport = function ( x, y, width, height ) { + + if ( x.isVector4 ) { + + _viewport.set( x.x, x.y, x.z, x.w ); + + } else { + + _viewport.set( x, y, width, height ); + + } + + state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor() ); + + }; + + this.getScissor = function ( target ) { + + return target.copy( _scissor ); + + }; + + this.setScissor = function ( x, y, width, height ) { + + if ( x.isVector4 ) { + + _scissor.set( x.x, x.y, x.z, x.w ); + + } else { + + _scissor.set( x, y, width, height ); + + } + + state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor() ); + + }; + + this.getScissorTest = function () { + + return _scissorTest; + + }; + + this.setScissorTest = function ( boolean ) { + + state.setScissorTest( _scissorTest = boolean ); + + }; + + this.setOpaqueSort = function ( method ) { + + _opaqueSort = method; + + }; + + this.setTransparentSort = function ( method ) { + + _transparentSort = method; + + }; + + // Clearing + + this.getClearColor = function () { + + return background.getClearColor(); + + }; + + this.setClearColor = function () { + + background.setClearColor.apply( background, arguments ); + + }; + + this.getClearAlpha = function () { + + return background.getClearAlpha(); + + }; + + this.setClearAlpha = function () { + + background.setClearAlpha.apply( background, arguments ); + + }; + + this.clear = function ( color, depth, stencil ) { + + var bits = 0; + + if ( color === undefined || color ) { bits |= 16384; } + if ( depth === undefined || depth ) { bits |= 256; } + if ( stencil === undefined || stencil ) { bits |= 1024; } + + _gl.clear( bits ); + + }; + + this.clearColor = function () { + + this.clear( true, false, false ); + + }; + + this.clearDepth = function () { + + this.clear( false, true, false ); + + }; + + this.clearStencil = function () { + + this.clear( false, false, true ); + + }; + + // + + this.dispose = function () { + + _canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); + _canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); + + renderLists.dispose(); + renderStates.dispose(); + properties.dispose(); + objects.dispose(); + bindingStates.dispose(); + + xr.dispose(); + + animation.stop(); + + }; + + // Events + + function onContextLost( event ) { + + event.preventDefault(); + + console.log( 'THREE.WebGLRenderer: Context Lost.' ); + + _isContextLost = true; + + } + + function onContextRestore( /* event */ ) { + + console.log( 'THREE.WebGLRenderer: Context Restored.' ); + + _isContextLost = false; + + initGLContext(); + + } + + function onMaterialDispose( event ) { + + var material = event.target; + + material.removeEventListener( 'dispose', onMaterialDispose ); + + deallocateMaterial( material ); + + } + + // Buffer deallocation + + function deallocateMaterial( material ) { + + releaseMaterialProgramReference( material ); + + properties.remove( material ); + + } + + + function releaseMaterialProgramReference( material ) { + + var programInfo = properties.get( material ).program; + + if ( programInfo !== undefined ) { + + programCache.releaseProgram( programInfo ); + + } + + } + + // Buffer rendering + + function renderObjectImmediate( object, program ) { + + object.render( function ( object ) { + + _this.renderBufferImmediate( object, program ); + + } ); + + } + + this.renderBufferImmediate = function ( object, program ) { + + bindingStates.initAttributes(); + + var buffers = properties.get( object ); + + if ( object.hasPositions && ! buffers.position ) { buffers.position = _gl.createBuffer(); } + if ( object.hasNormals && ! buffers.normal ) { buffers.normal = _gl.createBuffer(); } + if ( object.hasUvs && ! buffers.uv ) { buffers.uv = _gl.createBuffer(); } + if ( object.hasColors && ! buffers.color ) { buffers.color = _gl.createBuffer(); } + + var programAttributes = program.getAttributes(); + + if ( object.hasPositions ) { + + _gl.bindBuffer( 34962, buffers.position ); + _gl.bufferData( 34962, object.positionArray, 35048 ); + + bindingStates.enableAttribute( programAttributes.position ); + _gl.vertexAttribPointer( programAttributes.position, 3, 5126, false, 0, 0 ); + + } + + if ( object.hasNormals ) { + + _gl.bindBuffer( 34962, buffers.normal ); + _gl.bufferData( 34962, object.normalArray, 35048 ); + + bindingStates.enableAttribute( programAttributes.normal ); + _gl.vertexAttribPointer( programAttributes.normal, 3, 5126, false, 0, 0 ); + + } + + if ( object.hasUvs ) { + + _gl.bindBuffer( 34962, buffers.uv ); + _gl.bufferData( 34962, object.uvArray, 35048 ); + + bindingStates.enableAttribute( programAttributes.uv ); + _gl.vertexAttribPointer( programAttributes.uv, 2, 5126, false, 0, 0 ); + + } + + if ( object.hasColors ) { + + _gl.bindBuffer( 34962, buffers.color ); + _gl.bufferData( 34962, object.colorArray, 35048 ); + + bindingStates.enableAttribute( programAttributes.color ); + _gl.vertexAttribPointer( programAttributes.color, 3, 5126, false, 0, 0 ); + + } + + bindingStates.disableUnusedAttributes(); + + _gl.drawArrays( 4, 0, object.count ); + + object.count = 0; + + }; + + this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { + + if ( scene === null ) { scene = _emptyScene; } // renderBufferDirect second parameter used to be fog (could be null) + + var frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); + + var program = setProgram( camera, scene, material, object ); + + state.setMaterial( material, frontFaceCW ); + + // + + var index = geometry.index; + var position = geometry.attributes.position; + + // + + if ( index === null ) { + + if ( position === undefined || position.count === 0 ) { return; } + + } else if ( index.count === 0 ) { + + return; + + } + + // + + var rangeFactor = 1; + + if ( material.wireframe === true ) { + + index = geometries.getWireframeAttribute( geometry ); + rangeFactor = 2; + + } + + if ( material.morphTargets || material.morphNormals ) { + + morphtargets.update( object, geometry, material, program ); + + } + + bindingStates.setup( object, material, program, geometry, index ); + + var attribute; + var renderer = bufferRenderer; + + if ( index !== null ) { + + attribute = attributes.get( index ); + + renderer = indexedBufferRenderer; + renderer.setIndex( attribute ); + + } + + // + + var dataCount = ( index !== null ) ? index.count : position.count; + + var rangeStart = geometry.drawRange.start * rangeFactor; + var rangeCount = geometry.drawRange.count * rangeFactor; + + var groupStart = group !== null ? group.start * rangeFactor : 0; + var groupCount = group !== null ? group.count * rangeFactor : Infinity; + + var drawStart = Math.max( rangeStart, groupStart ); + var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1; + + var drawCount = Math.max( 0, drawEnd - drawStart + 1 ); + + if ( drawCount === 0 ) { return; } + + // + + if ( object.isMesh ) { + + if ( material.wireframe === true ) { + + state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); + renderer.setMode( 1 ); + + } else { + + renderer.setMode( 4 ); + + } + + } else if ( object.isLine ) { + + var lineWidth = material.linewidth; + + if ( lineWidth === undefined ) { lineWidth = 1; } // Not using Line*Material + + state.setLineWidth( lineWidth * getTargetPixelRatio() ); + + if ( object.isLineSegments ) { + + renderer.setMode( 1 ); + + } else if ( object.isLineLoop ) { + + renderer.setMode( 2 ); + + } else { + + renderer.setMode( 3 ); + + } + + } else if ( object.isPoints ) { + + renderer.setMode( 0 ); + + } else if ( object.isSprite ) { + + renderer.setMode( 4 ); + + } + + if ( object.isInstancedMesh ) { + + renderer.renderInstances( drawStart, drawCount, object.count ); + + } else if ( geometry.isInstancedBufferGeometry ) { + + var instanceCount = Math.min( geometry.instanceCount, geometry._maxInstanceCount ); + + renderer.renderInstances( drawStart, drawCount, instanceCount ); + + } else { + + renderer.render( drawStart, drawCount ); + + } + + }; + + // Compile + + this.compile = function ( scene, camera ) { + + currentRenderState = renderStates.get( scene, camera ); + currentRenderState.init(); + + scene.traverse( function ( object ) { + + if ( object.isLight ) { + + currentRenderState.pushLight( object ); + + if ( object.castShadow ) { + + currentRenderState.pushShadow( object ); + + } + + } + + } ); + + currentRenderState.setupLights( camera ); + + var compiled = new WeakMap(); + + scene.traverse( function ( object ) { + + var material = object.material; + + if ( material ) { + + if ( Array.isArray( material ) ) { + + for ( var i = 0; i < material.length; i ++ ) { + + var material2 = material[ i ]; + + if ( compiled.has( material2 ) === false ) { + + initMaterial( material2, scene, object ); + compiled.set( material2 ); + + } + + } + + } else if ( compiled.has( material ) === false ) { + + initMaterial( material, scene, object ); + compiled.set( material ); + + } + + } + + } ); + + }; + + // Animation Loop + + var onAnimationFrameCallback = null; + + function onAnimationFrame( time ) { + + if ( xr.isPresenting ) { return; } + if ( onAnimationFrameCallback ) { onAnimationFrameCallback( time ); } + + } + + var animation = new WebGLAnimation(); + animation.setAnimationLoop( onAnimationFrame ); + + if ( typeof window !== 'undefined' ) { animation.setContext( window ); } + + this.setAnimationLoop = function ( callback ) { + + onAnimationFrameCallback = callback; + xr.setAnimationLoop( callback ); + + ( callback === null ) ? animation.stop() : animation.start(); + + }; + + // Rendering + + this.render = function ( scene, camera ) { + + var renderTarget, forceClear; + + if ( arguments[ 2 ] !== undefined ) { + + console.warn( 'THREE.WebGLRenderer.render(): the renderTarget argument has been removed. Use .setRenderTarget() instead.' ); + renderTarget = arguments[ 2 ]; + + } + + if ( arguments[ 3 ] !== undefined ) { + + console.warn( 'THREE.WebGLRenderer.render(): the forceClear argument has been removed. Use .clear() instead.' ); + forceClear = arguments[ 3 ]; + + } + + if ( camera !== undefined && camera.isCamera !== true ) { + + console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); + return; + + } + + if ( _isContextLost === true ) { return; } + + // reset caching for this frame + + bindingStates.resetDefaultState(); + _currentMaterialId = - 1; + _currentCamera = null; + + // update scene graph + + if ( scene.autoUpdate === true ) { scene.updateMatrixWorld(); } + + // update camera matrices and frustum + + if ( camera.parent === null ) { camera.updateMatrixWorld(); } + + if ( xr.enabled === true && xr.isPresenting === true ) { + + camera = xr.getCamera( camera ); + + } + + // + if ( scene.isScene === true ) { scene.onBeforeRender( _this, scene, camera, renderTarget || _currentRenderTarget ); } + + currentRenderState = renderStates.get( scene, camera ); + currentRenderState.init(); + + _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); + _frustum.setFromProjectionMatrix( _projScreenMatrix ); + + _localClippingEnabled = this.localClippingEnabled; + _clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera ); + + currentRenderList = renderLists.get( scene, camera ); + currentRenderList.init(); + + projectObject( scene, camera, 0, _this.sortObjects ); + + currentRenderList.finish(); + + if ( _this.sortObjects === true ) { + + currentRenderList.sort( _opaqueSort, _transparentSort ); + + } + + // + + if ( _clippingEnabled === true ) { _clipping.beginShadows(); } + + var shadowsArray = currentRenderState.state.shadowsArray; + + shadowMap.render( shadowsArray, scene, camera ); + + currentRenderState.setupLights( camera ); + + if ( _clippingEnabled === true ) { _clipping.endShadows(); } + + // + + if ( this.info.autoReset === true ) { this.info.reset(); } + + if ( renderTarget !== undefined ) { + + this.setRenderTarget( renderTarget ); + + } + + // + + background.render( currentRenderList, scene, camera, forceClear ); + + // render scene + + var opaqueObjects = currentRenderList.opaque; + var transparentObjects = currentRenderList.transparent; + + if ( opaqueObjects.length > 0 ) { renderObjects( opaqueObjects, scene, camera ); } + if ( transparentObjects.length > 0 ) { renderObjects( transparentObjects, scene, camera ); } + + // + + if ( scene.isScene === true ) { scene.onAfterRender( _this, scene, camera ); } + + // + + if ( _currentRenderTarget !== null ) { + + // Generate mipmap if we're using any kind of mipmap filtering + + textures.updateRenderTargetMipmap( _currentRenderTarget ); + + // resolve multisample renderbuffers to a single-sample texture if necessary + + textures.updateMultisampleRenderTarget( _currentRenderTarget ); + + } + + // Ensure depth buffer writing is enabled so it can be cleared on next render + + state.buffers.depth.setTest( true ); + state.buffers.depth.setMask( true ); + state.buffers.color.setMask( true ); + + state.setPolygonOffset( false ); + + // _gl.finish(); + + currentRenderList = null; + currentRenderState = null; + + }; + + function projectObject( object, camera, groupOrder, sortObjects ) { + + if ( object.visible === false ) { return; } + + var visible = object.layers.test( camera.layers ); + + if ( visible ) { + + if ( object.isGroup ) { + + groupOrder = object.renderOrder; + + } else if ( object.isLOD ) { + + if ( object.autoUpdate === true ) { object.update( camera ); } + + } else if ( object.isLight ) { + + currentRenderState.pushLight( object ); + + if ( object.castShadow ) { + + currentRenderState.pushShadow( object ); + + } + + } else if ( object.isSprite ) { + + if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { + + if ( sortObjects ) { + + _vector3.setFromMatrixPosition( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + var geometry = objects.update( object ); + var material = object.material; + + if ( material.visible ) { + + currentRenderList.push( object, geometry, material, groupOrder, _vector3.z, null ); + + } + + } + + } else if ( object.isImmediateRenderObject ) { + + if ( sortObjects ) { + + _vector3.setFromMatrixPosition( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + currentRenderList.push( object, null, object.material, groupOrder, _vector3.z, null ); + + } else if ( object.isMesh || object.isLine || object.isPoints ) { + + if ( object.isSkinnedMesh ) { + + // update skeleton only once in a frame + + if ( object.skeleton.frame !== info.render.frame ) { + + object.skeleton.update(); + object.skeleton.frame = info.render.frame; + + } + + } + + if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { + + if ( sortObjects ) { + + _vector3.setFromMatrixPosition( object.matrixWorld ) + .applyMatrix4( _projScreenMatrix ); + + } + + var geometry$1 = objects.update( object ); + var material$1 = object.material; + + if ( Array.isArray( material$1 ) ) { + + var groups = geometry$1.groups; + + for ( var i = 0, l = groups.length; i < l; i ++ ) { + + var group = groups[ i ]; + var groupMaterial = material$1[ group.materialIndex ]; + + if ( groupMaterial && groupMaterial.visible ) { + + currentRenderList.push( object, geometry$1, groupMaterial, groupOrder, _vector3.z, group ); + + } + + } + + } else if ( material$1.visible ) { + + currentRenderList.push( object, geometry$1, material$1, groupOrder, _vector3.z, null ); + + } + + } + + } + + } + + var children = object.children; + + for ( var i$1 = 0, l$1 = children.length; i$1 < l$1; i$1 ++ ) { + + projectObject( children[ i$1 ], camera, groupOrder, sortObjects ); + + } + + } + + function renderObjects( renderList, scene, camera ) { + + var overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; + + for ( var i = 0, l = renderList.length; i < l; i ++ ) { + + var renderItem = renderList[ i ]; + + var object = renderItem.object; + var geometry = renderItem.geometry; + var material = overrideMaterial === null ? renderItem.material : overrideMaterial; + var group = renderItem.group; + + if ( camera.isArrayCamera ) { + + _currentArrayCamera = camera; + + var cameras = camera.cameras; + + for ( var j = 0, jl = cameras.length; j < jl; j ++ ) { + + var camera2 = cameras[ j ]; + + if ( object.layers.test( camera2.layers ) ) { + + state.viewport( _currentViewport.copy( camera2.viewport ) ); + + currentRenderState.setupLights( camera2 ); + + renderObject( object, scene, camera2, geometry, material, group ); + + } + + } + + } else { + + _currentArrayCamera = null; + + renderObject( object, scene, camera, geometry, material, group ); + + } + + } + + } + + function renderObject( object, scene, camera, geometry, material, group ) { + + object.onBeforeRender( _this, scene, camera, geometry, material, group ); + currentRenderState = renderStates.get( scene, _currentArrayCamera || camera ); + + object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); + object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); + + if ( object.isImmediateRenderObject ) { + + var program = setProgram( camera, scene, material, object ); + + state.setMaterial( material ); + + bindingStates.reset(); + + renderObjectImmediate( object, program ); + + } else { + + _this.renderBufferDirect( camera, scene, geometry, material, object, group ); + + } + + object.onAfterRender( _this, scene, camera, geometry, material, group ); + currentRenderState = renderStates.get( scene, _currentArrayCamera || camera ); + + } + + function initMaterial( material, scene, object ) { + + if ( scene.isScene !== true ) { scene = _emptyScene; } // scene could be a Mesh, Line, Points, ... + + var materialProperties = properties.get( material ); + + var lights = currentRenderState.state.lights; + var shadowsArray = currentRenderState.state.shadowsArray; + + var lightsStateVersion = lights.state.version; + + var parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, _clipping.numPlanes, _clipping.numIntersection, object ); + var programCacheKey = programCache.getProgramCacheKey( parameters ); + + var program = materialProperties.program; + var programChange = true; + + if ( program === undefined ) { + + // new material + material.addEventListener( 'dispose', onMaterialDispose ); + + } else if ( program.cacheKey !== programCacheKey ) { + + // changed glsl or parameters + releaseMaterialProgramReference( material ); + + } else if ( materialProperties.lightsStateVersion !== lightsStateVersion ) { + + materialProperties.lightsStateVersion = lightsStateVersion; + + programChange = false; + + } else if ( parameters.shaderID !== undefined ) { + + // same glsl and uniform list + return; + + } else { + + // only rebuild uniform list + programChange = false; + + } + + if ( programChange ) { + + parameters.uniforms = programCache.getUniforms( material, parameters ); + + material.onBeforeCompile( parameters, _this ); + + program = programCache.acquireProgram( parameters, programCacheKey ); + + materialProperties.program = program; + materialProperties.uniforms = parameters.uniforms; + materialProperties.outputEncoding = parameters.outputEncoding; + + } + + var programAttributes = program.getAttributes(); + + if ( material.morphTargets ) { + + material.numSupportedMorphTargets = 0; + + for ( var i = 0; i < _this.maxMorphTargets; i ++ ) { + + if ( programAttributes[ 'morphTarget' + i ] >= 0 ) { + + material.numSupportedMorphTargets ++; + + } + + } + + } + + if ( material.morphNormals ) { + + material.numSupportedMorphNormals = 0; + + for ( var i$1 = 0; i$1 < _this.maxMorphNormals; i$1 ++ ) { + + if ( programAttributes[ 'morphNormal' + i$1 ] >= 0 ) { + + material.numSupportedMorphNormals ++; + + } + + } + + } + + var uniforms = materialProperties.uniforms; + + if ( ! material.isShaderMaterial && + ! material.isRawShaderMaterial || + material.clipping === true ) { + + materialProperties.numClippingPlanes = _clipping.numPlanes; + materialProperties.numIntersection = _clipping.numIntersection; + uniforms.clippingPlanes = _clipping.uniform; + + } + + materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; + materialProperties.fog = scene.fog; + + // store the light setup it was created for + + materialProperties.needsLights = materialNeedsLights( material ); + materialProperties.lightsStateVersion = lightsStateVersion; + + if ( materialProperties.needsLights ) { + + // wire up the material to this renderer's lighting state + + uniforms.ambientLightColor.value = lights.state.ambient; + uniforms.lightProbe.value = lights.state.probe; + uniforms.directionalLights.value = lights.state.directional; + uniforms.directionalLightShadows.value = lights.state.directionalShadow; + uniforms.spotLights.value = lights.state.spot; + uniforms.spotLightShadows.value = lights.state.spotShadow; + uniforms.rectAreaLights.value = lights.state.rectArea; + uniforms.pointLights.value = lights.state.point; + uniforms.pointLightShadows.value = lights.state.pointShadow; + uniforms.hemisphereLights.value = lights.state.hemi; + + uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; + uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; + uniforms.spotShadowMap.value = lights.state.spotShadowMap; + uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix; + uniforms.pointShadowMap.value = lights.state.pointShadowMap; + uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; + // TODO (abelnation): add area lights shadow info to uniforms + + } + + var progUniforms = materialProperties.program.getUniforms(), + uniformsList = + WebGLUniforms.seqWithValue( progUniforms.seq, uniforms ); + + materialProperties.uniformsList = uniformsList; + + } + + function setProgram( camera, scene, material, object ) { + + if ( scene.isScene !== true ) { scene = _emptyScene; } // scene could be a Mesh, Line, Points, ... + + textures.resetTextureUnits(); + + var fog = scene.fog; + var environment = material.isMeshStandardMaterial ? scene.environment : null; + var encoding = ( _currentRenderTarget === null ) ? _this.outputEncoding : _currentRenderTarget.texture.encoding; + + var materialProperties = properties.get( material ); + var lights = currentRenderState.state.lights; + + if ( _clippingEnabled === true ) { + + if ( _localClippingEnabled === true || camera !== _currentCamera ) { + + var useCache = + camera === _currentCamera && + material.id === _currentMaterialId; + + // we might want to call this function with some ClippingGroup + // object instead of the material, once it becomes feasible + // (#8465, #8379) + _clipping.setState( + material.clippingPlanes, material.clipIntersection, material.clipShadows, + camera, materialProperties, useCache ); + + } + + } + + if ( material.version === materialProperties.__version ) { + + if ( materialProperties.program === undefined ) { + + initMaterial( material, scene, object ); + + } else if ( material.fog && materialProperties.fog !== fog ) { + + initMaterial( material, scene, object ); + + } else if ( materialProperties.environment !== environment ) { + + initMaterial( material, scene, object ); + + } else if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { + + initMaterial( material, scene, object ); + + } else if ( materialProperties.numClippingPlanes !== undefined && + ( materialProperties.numClippingPlanes !== _clipping.numPlanes || + materialProperties.numIntersection !== _clipping.numIntersection ) ) { + + initMaterial( material, scene, object ); + + } else if ( materialProperties.outputEncoding !== encoding ) { + + initMaterial( material, scene, object ); + + } + + } else { + + initMaterial( material, scene, object ); + materialProperties.__version = material.version; + + } + + var refreshProgram = false; + var refreshMaterial = false; + var refreshLights = false; + + var program = materialProperties.program, + p_uniforms = program.getUniforms(), + m_uniforms = materialProperties.uniforms; + + if ( state.useProgram( program.program ) ) { + + refreshProgram = true; + refreshMaterial = true; + refreshLights = true; + + } + + if ( material.id !== _currentMaterialId ) { + + _currentMaterialId = material.id; + + refreshMaterial = true; + + } + + if ( refreshProgram || _currentCamera !== camera ) { + + p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); + + if ( capabilities.logarithmicDepthBuffer ) { + + p_uniforms.setValue( _gl, 'logDepthBufFC', + 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); + + } + + if ( _currentCamera !== camera ) { + + _currentCamera = camera; + + // lighting uniforms depend on the camera so enforce an update + // now, in case this material supports lights - or later, when + // the next material that does gets activated: + + refreshMaterial = true; // set to true on material change + refreshLights = true; // remains set until update done + + } + + // load material specific uniforms + // (shader material also gets them for the sake of genericity) + + if ( material.isShaderMaterial || + material.isMeshPhongMaterial || + material.isMeshToonMaterial || + material.isMeshStandardMaterial || + material.envMap ) { + + var uCamPos = p_uniforms.map.cameraPosition; + + if ( uCamPos !== undefined ) { + + uCamPos.setValue( _gl, + _vector3.setFromMatrixPosition( camera.matrixWorld ) ); + + } + + } + + if ( material.isMeshPhongMaterial || + material.isMeshToonMaterial || + material.isMeshLambertMaterial || + material.isMeshBasicMaterial || + material.isMeshStandardMaterial || + material.isShaderMaterial ) { + + p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); + + } + + if ( material.isMeshPhongMaterial || + material.isMeshToonMaterial || + material.isMeshLambertMaterial || + material.isMeshBasicMaterial || + material.isMeshStandardMaterial || + material.isShaderMaterial || + material.isShadowMaterial || + material.skinning ) { + + p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); + + } + + } + + // skinning uniforms must be set even if material didn't change + // auto-setting of texture unit for bone texture must go before other textures + // otherwise textures used for skinning can take over texture units reserved for other material textures + + if ( material.skinning ) { + + p_uniforms.setOptional( _gl, object, 'bindMatrix' ); + p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); + + var skeleton = object.skeleton; + + if ( skeleton ) { + + var bones = skeleton.bones; + + if ( capabilities.floatVertexTextures ) { + + if ( skeleton.boneTexture === undefined ) { + + // layout (1 matrix = 4 pixels) + // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) + // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) + // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) + // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) + // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) + + + var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix + size = MathUtils.ceilPowerOfTwo( size ); + size = Math.max( size, 4 ); + + var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel + boneMatrices.set( skeleton.boneMatrices ); // copy current values + + var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); + + skeleton.boneMatrices = boneMatrices; + skeleton.boneTexture = boneTexture; + skeleton.boneTextureSize = size; + + } + + p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); + p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize ); + + } else { + + p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' ); + + } + + } + + } + + if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { + + materialProperties.receiveShadow = object.receiveShadow; + p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); + + } + + if ( refreshMaterial ) { + + p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); + + if ( materialProperties.needsLights ) { + + // the current material requires lighting info + + // note: all lighting uniforms are always set correctly + // they simply reference the renderer's state for their + // values + // + // use the current material's .needsUpdate flags to set + // the GL state when required + + markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); + + } + + // refresh uniforms common to several materials + + if ( fog && material.fog ) { + + materials.refreshFogUniforms( m_uniforms, fog ); + + } + + materials.refreshMaterialUniforms( m_uniforms, material, environment, _pixelRatio, _height ); + + // RectAreaLight Texture + // TODO (mrdoob): Find a nicer implementation + + if ( m_uniforms.ltc_1 !== undefined ) { m_uniforms.ltc_1.value = UniformsLib.LTC_1; } + if ( m_uniforms.ltc_2 !== undefined ) { m_uniforms.ltc_2.value = UniformsLib.LTC_2; } + + WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); + + } + + if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { + + WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, textures ); + material.uniformsNeedUpdate = false; + + } + + if ( material.isSpriteMaterial ) { + + p_uniforms.setValue( _gl, 'center', object.center ); + + } + + // common matrices + + p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); + p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); + p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); + + return program; + + } + + // If uniforms are marked as clean, they don't need to be loaded to the GPU. + + function markUniformsLightsNeedsUpdate( uniforms, value ) { + + uniforms.ambientLightColor.needsUpdate = value; + uniforms.lightProbe.needsUpdate = value; + + uniforms.directionalLights.needsUpdate = value; + uniforms.directionalLightShadows.needsUpdate = value; + uniforms.pointLights.needsUpdate = value; + uniforms.pointLightShadows.needsUpdate = value; + uniforms.spotLights.needsUpdate = value; + uniforms.spotLightShadows.needsUpdate = value; + uniforms.rectAreaLights.needsUpdate = value; + uniforms.hemisphereLights.needsUpdate = value; + + } + + function materialNeedsLights( material ) { + + return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || + material.isMeshStandardMaterial || material.isShadowMaterial || + ( material.isShaderMaterial && material.lights === true ); + + } + + // + this.setFramebuffer = function ( value ) { + + if ( _framebuffer !== value && _currentRenderTarget === null ) { _gl.bindFramebuffer( 36160, value ); } + + _framebuffer = value; + + }; + + this.getActiveCubeFace = function () { + + return _currentActiveCubeFace; + + }; + + this.getActiveMipmapLevel = function () { + + return _currentActiveMipmapLevel; + + }; + + this.getRenderTarget = function () { + + return _currentRenderTarget; + + }; + + this.setRenderTarget = function ( renderTarget, activeCubeFace, activeMipmapLevel ) { + + _currentRenderTarget = renderTarget; + _currentActiveCubeFace = activeCubeFace; + _currentActiveMipmapLevel = activeMipmapLevel; + + if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) { + + textures.setupRenderTarget( renderTarget ); + + } + + var framebuffer = _framebuffer; + var isCube = false; + + if ( renderTarget ) { + + var _webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; + + if ( renderTarget.isWebGLCubeRenderTarget ) { + + framebuffer = _webglFramebuffer[ activeCubeFace || 0 ]; + isCube = true; + + } else if ( renderTarget.isWebGLMultisampleRenderTarget ) { + + framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; + + } else { + + framebuffer = _webglFramebuffer; + + } + + _currentViewport.copy( renderTarget.viewport ); + _currentScissor.copy( renderTarget.scissor ); + _currentScissorTest = renderTarget.scissorTest; + + } else { + + _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); + _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); + _currentScissorTest = _scissorTest; + + } + + if ( _currentFramebuffer !== framebuffer ) { + + _gl.bindFramebuffer( 36160, framebuffer ); + _currentFramebuffer = framebuffer; + + } + + state.viewport( _currentViewport ); + state.scissor( _currentScissor ); + state.setScissorTest( _currentScissorTest ); + + if ( isCube ) { + + var textureProperties = properties.get( renderTarget.texture ); + _gl.framebufferTexture2D( 36160, 36064, 34069 + ( activeCubeFace || 0 ), textureProperties.__webglTexture, activeMipmapLevel || 0 ); + + } + + }; + + this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { + + if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); + return; + + } + + var framebuffer = properties.get( renderTarget ).__webglFramebuffer; + + if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { + + framebuffer = framebuffer[ activeCubeFaceIndex ]; + + } + + if ( framebuffer ) { + + var restore = false; + + if ( framebuffer !== _currentFramebuffer ) { + + _gl.bindFramebuffer( 36160, framebuffer ); + + restore = true; + + } + + try { + + var texture = renderTarget.texture; + var textureFormat = texture.format; + var textureType = texture.type; + + if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( 35739 ) ) { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); + return; + + } + + if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( 35738 ) && // IE11, Edge and Chrome Mac < 52 (#9513) + ! ( textureType === FloatType && ( capabilities.isWebGL2 || extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox + ! ( textureType === HalfFloatType && ( capabilities.isWebGL2 ? extensions.get( 'EXT_color_buffer_float' ) : extensions.get( 'EXT_color_buffer_half_float' ) ) ) ) { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); + return; + + } + + if ( _gl.checkFramebufferStatus( 36160 ) === 36053 ) { + + // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) + + if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { + + _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); + + } + + } else { + + console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ); + + } + + } finally { + + if ( restore ) { + + _gl.bindFramebuffer( 36160, _currentFramebuffer ); + + } + + } + + } + + }; + + this.copyFramebufferToTexture = function ( position, texture, level ) { + + if ( level === undefined ) { level = 0; } + + var levelScale = Math.pow( 2, - level ); + var width = Math.floor( texture.image.width * levelScale ); + var height = Math.floor( texture.image.height * levelScale ); + var glFormat = utils.convert( texture.format ); + + textures.setTexture2D( texture, 0 ); + + _gl.copyTexImage2D( 3553, level, glFormat, position.x, position.y, width, height, 0 ); + + state.unbindTexture(); + + }; + + this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) { + + if ( level === undefined ) { level = 0; } + + var width = srcTexture.image.width; + var height = srcTexture.image.height; + var glFormat = utils.convert( dstTexture.format ); + var glType = utils.convert( dstTexture.type ); + + textures.setTexture2D( dstTexture, 0 ); + + // As another texture upload may have changed pixelStorei + // parameters, make sure they are correct for the dstTexture + _gl.pixelStorei( 37440, dstTexture.flipY ); + _gl.pixelStorei( 37441, dstTexture.premultiplyAlpha ); + _gl.pixelStorei( 3317, dstTexture.unpackAlignment ); + + if ( srcTexture.isDataTexture ) { + + _gl.texSubImage2D( 3553, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data ); + + } else { + + if ( srcTexture.isCompressedTexture ) { + + _gl.compressedTexSubImage2D( 3553, level, position.x, position.y, srcTexture.mipmaps[ 0 ].width, srcTexture.mipmaps[ 0 ].height, glFormat, srcTexture.mipmaps[ 0 ].data ); + + } else { + + _gl.texSubImage2D( 3553, level, position.x, position.y, glFormat, glType, srcTexture.image ); + + } + + } + + // Generate mipmaps only when copying level 0 + if ( level === 0 && dstTexture.generateMipmaps ) { _gl.generateMipmap( 3553 ); } + + state.unbindTexture(); + + }; + + this.initTexture = function ( texture ) { + + textures.setTexture2D( texture, 0 ); + + state.unbindTexture(); + + }; + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); // eslint-disable-line no-undef + + } + + } + + function WebGL1Renderer( parameters ) { + + WebGLRenderer.call( this, parameters ); + + } + + WebGL1Renderer.prototype = Object.assign( Object.create( WebGLRenderer.prototype ), { + + constructor: WebGL1Renderer, + + isWebGL1Renderer: true + + } ); + + function FogExp2( color, density ) { + + this.name = ''; + + this.color = new Color( color ); + this.density = ( density !== undefined ) ? density : 0.00025; + + } + + Object.assign( FogExp2.prototype, { + + isFogExp2: true, + + clone: function () { + + return new FogExp2( this.color, this.density ); + + }, + + toJSON: function ( /* meta */ ) { + + return { + type: 'FogExp2', + color: this.color.getHex(), + density: this.density + }; + + } + + } ); + + function Fog( color, near, far ) { + + this.name = ''; + + this.color = new Color( color ); + + this.near = ( near !== undefined ) ? near : 1; + this.far = ( far !== undefined ) ? far : 1000; + + } + + Object.assign( Fog.prototype, { + + isFog: true, + + clone: function () { + + return new Fog( this.color, this.near, this.far ); + + }, + + toJSON: function ( /* meta */ ) { + + return { + type: 'Fog', + color: this.color.getHex(), + near: this.near, + far: this.far + }; + + } + + } ); + + function InterleavedBuffer( array, stride ) { + + this.array = array; + this.stride = stride; + this.count = array !== undefined ? array.length / stride : 0; + + this.usage = StaticDrawUsage; + this.updateRange = { offset: 0, count: - 1 }; + + this.version = 0; + + this.uuid = MathUtils.generateUUID(); + + } + + Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', { + + set: function ( value ) { + + if ( value === true ) { this.version ++; } + + } + + } ); + + Object.assign( InterleavedBuffer.prototype, { + + isInterleavedBuffer: true, + + onUploadCallback: function () {}, + + setUsage: function ( value ) { + + this.usage = value; + + return this; + + }, + + copy: function ( source ) { + + this.array = new source.array.constructor( source.array ); + this.count = source.count; + this.stride = source.stride; + this.usage = source.usage; + + return this; + + }, + + copyAt: function ( index1, attribute, index2 ) { + + index1 *= this.stride; + index2 *= attribute.stride; + + for ( var i = 0, l = this.stride; i < l; i ++ ) { + + this.array[ index1 + i ] = attribute.array[ index2 + i ]; + + } + + return this; + + }, + + set: function ( value, offset ) { + + if ( offset === undefined ) { offset = 0; } + + this.array.set( value, offset ); + + return this; + + }, + + clone: function ( data ) { + + if ( data.arrayBuffers === undefined ) { + + data.arrayBuffers = {}; + + } + + if ( this.array.buffer._uuid === undefined ) { + + this.array.buffer._uuid = MathUtils.generateUUID(); + + } + + if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { + + data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer; + + } + + var array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] ); + + var ib = new InterleavedBuffer( array, this.stride ); + ib.setUsage( this.usage ); + + return ib; + + }, + + onUpload: function ( callback ) { + + this.onUploadCallback = callback; + + return this; + + }, + + toJSON: function ( data ) { + + if ( data.arrayBuffers === undefined ) { + + data.arrayBuffers = {}; + + } + + // generate UUID for array buffer if necessary + + if ( this.array.buffer._uuid === undefined ) { + + this.array.buffer._uuid = MathUtils.generateUUID(); + + } + + if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { + + data.arrayBuffers[ this.array.buffer._uuid ] = Array.prototype.slice.call( new Uint32Array( this.array.buffer ) ); + + } + + // + + return { + uuid: this.uuid, + buffer: this.array.buffer._uuid, + type: this.array.constructor.name, + stride: this.stride + }; + + } + + } ); + + var _vector$6 = new Vector3(); + + function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) { + + this.name = ''; + + this.data = interleavedBuffer; + this.itemSize = itemSize; + this.offset = offset; + + this.normalized = normalized === true; + + } + + Object.defineProperties( InterleavedBufferAttribute.prototype, { + + count: { + + get: function () { + + return this.data.count; + + } + + }, + + array: { + + get: function () { + + return this.data.array; + + } + + }, + + needsUpdate: { + + set: function ( value ) { + + this.data.needsUpdate = value; + + } + + } + + } ); + + Object.assign( InterleavedBufferAttribute.prototype, { + + isInterleavedBufferAttribute: true, + + applyMatrix4: function ( m ) { + + for ( var i = 0, l = this.data.count; i < l; i ++ ) { + + _vector$6.x = this.getX( i ); + _vector$6.y = this.getY( i ); + _vector$6.z = this.getZ( i ); + + _vector$6.applyMatrix4( m ); + + this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); + + } + + return this; + + }, + + setX: function ( index, x ) { + + this.data.array[ index * this.data.stride + this.offset ] = x; + + return this; + + }, + + setY: function ( index, y ) { + + this.data.array[ index * this.data.stride + this.offset + 1 ] = y; + + return this; + + }, + + setZ: function ( index, z ) { + + this.data.array[ index * this.data.stride + this.offset + 2 ] = z; + + return this; + + }, + + setW: function ( index, w ) { + + this.data.array[ index * this.data.stride + this.offset + 3 ] = w; + + return this; + + }, + + getX: function ( index ) { + + return this.data.array[ index * this.data.stride + this.offset ]; + + }, + + getY: function ( index ) { + + return this.data.array[ index * this.data.stride + this.offset + 1 ]; + + }, + + getZ: function ( index ) { + + return this.data.array[ index * this.data.stride + this.offset + 2 ]; + + }, + + getW: function ( index ) { + + return this.data.array[ index * this.data.stride + this.offset + 3 ]; + + }, + + setXY: function ( index, x, y ) { + + index = index * this.data.stride + this.offset; + + this.data.array[ index + 0 ] = x; + this.data.array[ index + 1 ] = y; + + return this; + + }, + + setXYZ: function ( index, x, y, z ) { + + index = index * this.data.stride + this.offset; + + this.data.array[ index + 0 ] = x; + this.data.array[ index + 1 ] = y; + this.data.array[ index + 2 ] = z; + + return this; + + }, + + setXYZW: function ( index, x, y, z, w ) { + + index = index * this.data.stride + this.offset; + + this.data.array[ index + 0 ] = x; + this.data.array[ index + 1 ] = y; + this.data.array[ index + 2 ] = z; + this.data.array[ index + 3 ] = w; + + return this; + + }, + + clone: function ( data ) { + + if ( data === undefined ) { + + console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.' ); + + var array = []; + + for ( var i = 0; i < this.count; i ++ ) { + + var index = i * this.data.stride + this.offset; + + for ( var j = 0; j < this.itemSize; j ++ ) { + + array.push( this.data.array[ index + j ] ); + + } + + } + + return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized ); + + } else { + + if ( data.interleavedBuffers === undefined ) { + + data.interleavedBuffers = {}; + + } + + if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { + + data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data ); + + } + + return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized ); + + } + + }, + + toJSON: function ( data ) { + + if ( data === undefined ) { + + console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.' ); + + var array = []; + + for ( var i = 0; i < this.count; i ++ ) { + + var index = i * this.data.stride + this.offset; + + for ( var j = 0; j < this.itemSize; j ++ ) { + + array.push( this.data.array[ index + j ] ); + + } + + } + + // deinterleave data and save it as an ordinary buffer attribute for now + + return { + itemSize: this.itemSize, + type: this.array.constructor.name, + array: array, + normalized: this.normalized + }; + + } else { + + // save as true interlaved attribtue + + if ( data.interleavedBuffers === undefined ) { + + data.interleavedBuffers = {}; + + } + + if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { + + data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data ); + + } + + return { + isInterleavedBufferAttribute: true, + itemSize: this.itemSize, + data: this.data.uuid, + offset: this.offset, + normalized: this.normalized + }; + + } + + } + + } ); + + /** + * parameters = { + * color: , + * map: new THREE.Texture( ), + * alphaMap: new THREE.Texture( ), + * rotation: , + * sizeAttenuation: + * } + */ + + function SpriteMaterial( parameters ) { + + Material.call( this ); + + this.type = 'SpriteMaterial'; + + this.color = new Color( 0xffffff ); + + this.map = null; + + this.alphaMap = null; + + this.rotation = 0; + + this.sizeAttenuation = true; + + this.transparent = true; + + this.setValues( parameters ); + + } + + SpriteMaterial.prototype = Object.create( Material.prototype ); + SpriteMaterial.prototype.constructor = SpriteMaterial; + SpriteMaterial.prototype.isSpriteMaterial = true; + + SpriteMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.rotation = source.rotation; + + this.sizeAttenuation = source.sizeAttenuation; + + return this; + + }; + + var _geometry; + + var _intersectPoint = new Vector3(); + var _worldScale = new Vector3(); + var _mvPosition = new Vector3(); + + var _alignedPosition = new Vector2(); + var _rotatedPosition = new Vector2(); + var _viewWorldMatrix = new Matrix4(); + + var _vA$1 = new Vector3(); + var _vB$1 = new Vector3(); + var _vC$1 = new Vector3(); + + var _uvA$1 = new Vector2(); + var _uvB$1 = new Vector2(); + var _uvC$1 = new Vector2(); + + function Sprite( material ) { + + Object3D.call( this ); + + this.type = 'Sprite'; + + if ( _geometry === undefined ) { + + _geometry = new BufferGeometry(); + + var float32Array = new Float32Array( [ + - 0.5, - 0.5, 0, 0, 0, + 0.5, - 0.5, 0, 1, 0, + 0.5, 0.5, 0, 1, 1, + - 0.5, 0.5, 0, 0, 1 + ] ); + + var interleavedBuffer = new InterleavedBuffer( float32Array, 5 ); + + _geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); + _geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); + _geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) ); + + } + + this.geometry = _geometry; + this.material = ( material !== undefined ) ? material : new SpriteMaterial(); + + this.center = new Vector2( 0.5, 0.5 ); + + } + + Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Sprite, + + isSprite: true, + + raycast: function ( raycaster, intersects ) { + + if ( raycaster.camera === null ) { + + console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' ); + + } + + _worldScale.setFromMatrixScale( this.matrixWorld ); + + _viewWorldMatrix.copy( raycaster.camera.matrixWorld ); + this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld ); + + _mvPosition.setFromMatrixPosition( this.modelViewMatrix ); + + if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) { + + _worldScale.multiplyScalar( - _mvPosition.z ); + + } + + var rotation = this.material.rotation; + var sin, cos; + + if ( rotation !== 0 ) { + + cos = Math.cos( rotation ); + sin = Math.sin( rotation ); + + } + + var center = this.center; + + transformVertex( _vA$1.set( - 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + transformVertex( _vB$1.set( 0.5, - 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + transformVertex( _vC$1.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + + _uvA$1.set( 0, 0 ); + _uvB$1.set( 1, 0 ); + _uvC$1.set( 1, 1 ); + + // check first triangle + var intersect = raycaster.ray.intersectTriangle( _vA$1, _vB$1, _vC$1, false, _intersectPoint ); + + if ( intersect === null ) { + + // check second triangle + transformVertex( _vB$1.set( - 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); + _uvB$1.set( 0, 1 ); + + intersect = raycaster.ray.intersectTriangle( _vA$1, _vC$1, _vB$1, false, _intersectPoint ); + if ( intersect === null ) { + + return; + + } + + } + + var distance = raycaster.ray.origin.distanceTo( _intersectPoint ); + + if ( distance < raycaster.near || distance > raycaster.far ) { return; } + + intersects.push( { + + distance: distance, + point: _intersectPoint.clone(), + uv: Triangle.getUV( _intersectPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2() ), + face: null, + object: this + + } ); + + }, + + copy: function ( source ) { + + Object3D.prototype.copy.call( this, source ); + + if ( source.center !== undefined ) { this.center.copy( source.center ); } + + this.material = source.material; + + return this; + + } + + } ); + + function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) { + + // compute position in camera space + _alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale ); + + // to check if rotation is not zero + if ( sin !== undefined ) { + + _rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y ); + _rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y ); + + } else { + + _rotatedPosition.copy( _alignedPosition ); + + } + + + vertexPosition.copy( mvPosition ); + vertexPosition.x += _rotatedPosition.x; + vertexPosition.y += _rotatedPosition.y; + + // transform to world space + vertexPosition.applyMatrix4( _viewWorldMatrix ); + + } + + var _v1$4 = new Vector3(); + var _v2$2 = new Vector3(); + + function LOD() { + + Object3D.call( this ); + + this._currentLevel = 0; + + this.type = 'LOD'; + + Object.defineProperties( this, { + levels: { + enumerable: true, + value: [] + } + } ); + + this.autoUpdate = true; + + } + + LOD.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: LOD, + + isLOD: true, + + copy: function ( source ) { + + Object3D.prototype.copy.call( this, source, false ); + + var levels = source.levels; + + for ( var i = 0, l = levels.length; i < l; i ++ ) { + + var level = levels[ i ]; + + this.addLevel( level.object.clone(), level.distance ); + + } + + this.autoUpdate = source.autoUpdate; + + return this; + + }, + + addLevel: function ( object, distance ) { + + if ( distance === undefined ) { distance = 0; } + + distance = Math.abs( distance ); + + var levels = this.levels; + + var l; + + for ( l = 0; l < levels.length; l ++ ) { + + if ( distance < levels[ l ].distance ) { + + break; + + } + + } + + levels.splice( l, 0, { distance: distance, object: object } ); + + this.add( object ); + + return this; + + }, + + getCurrentLevel: function () { + + return this._currentLevel; + + }, + + getObjectForDistance: function ( distance ) { + + var levels = this.levels; + + if ( levels.length > 0 ) { + + var i, l; + + for ( i = 1, l = levels.length; i < l; i ++ ) { + + if ( distance < levels[ i ].distance ) { + + break; + + } + + } + + return levels[ i - 1 ].object; + + } + + return null; + + }, + + raycast: function ( raycaster, intersects ) { + + var levels = this.levels; + + if ( levels.length > 0 ) { + + _v1$4.setFromMatrixPosition( this.matrixWorld ); + + var distance = raycaster.ray.origin.distanceTo( _v1$4 ); + + this.getObjectForDistance( distance ).raycast( raycaster, intersects ); + + } + + }, + + update: function ( camera ) { + + var levels = this.levels; + + if ( levels.length > 1 ) { + + _v1$4.setFromMatrixPosition( camera.matrixWorld ); + _v2$2.setFromMatrixPosition( this.matrixWorld ); + + var distance = _v1$4.distanceTo( _v2$2 ) / camera.zoom; + + levels[ 0 ].object.visible = true; + + var i, l; + + for ( i = 1, l = levels.length; i < l; i ++ ) { + + if ( distance >= levels[ i ].distance ) { + + levels[ i - 1 ].object.visible = false; + levels[ i ].object.visible = true; + + } else { + + break; + + } + + } + + this._currentLevel = i - 1; + + for ( ; i < l; i ++ ) { + + levels[ i ].object.visible = false; + + } + + } + + }, + + toJSON: function ( meta ) { + + var data = Object3D.prototype.toJSON.call( this, meta ); + + if ( this.autoUpdate === false ) { data.object.autoUpdate = false; } + + data.object.levels = []; + + var levels = this.levels; + + for ( var i = 0, l = levels.length; i < l; i ++ ) { + + var level = levels[ i ]; + + data.object.levels.push( { + object: level.object.uuid, + distance: level.distance + } ); + + } + + return data; + + } + + } ); + + function SkinnedMesh( geometry, material ) { + + if ( geometry && geometry.isGeometry ) { + + console.error( 'THREE.SkinnedMesh no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.' ); + + } + + Mesh.call( this, geometry, material ); + + this.type = 'SkinnedMesh'; + + this.bindMode = 'attached'; + this.bindMatrix = new Matrix4(); + this.bindMatrixInverse = new Matrix4(); + + } + + SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), { + + constructor: SkinnedMesh, + + isSkinnedMesh: true, + + copy: function ( source ) { + + Mesh.prototype.copy.call( this, source ); + + this.bindMode = source.bindMode; + this.bindMatrix.copy( source.bindMatrix ); + this.bindMatrixInverse.copy( source.bindMatrixInverse ); + + this.skeleton = source.skeleton; + + return this; + + }, + + bind: function ( skeleton, bindMatrix ) { + + this.skeleton = skeleton; + + if ( bindMatrix === undefined ) { + + this.updateMatrixWorld( true ); + + this.skeleton.calculateInverses(); + + bindMatrix = this.matrixWorld; + + } + + this.bindMatrix.copy( bindMatrix ); + this.bindMatrixInverse.getInverse( bindMatrix ); + + }, + + pose: function () { + + this.skeleton.pose(); + + }, + + normalizeSkinWeights: function () { + + var vector = new Vector4(); + + var skinWeight = this.geometry.attributes.skinWeight; + + for ( var i = 0, l = skinWeight.count; i < l; i ++ ) { + + vector.x = skinWeight.getX( i ); + vector.y = skinWeight.getY( i ); + vector.z = skinWeight.getZ( i ); + vector.w = skinWeight.getW( i ); + + var scale = 1.0 / vector.manhattanLength(); + + if ( scale !== Infinity ) { + + vector.multiplyScalar( scale ); + + } else { + + vector.set( 1, 0, 0, 0 ); // do something reasonable + + } + + skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w ); + + } + + }, + + updateMatrixWorld: function ( force ) { + + Mesh.prototype.updateMatrixWorld.call( this, force ); + + if ( this.bindMode === 'attached' ) { + + this.bindMatrixInverse.getInverse( this.matrixWorld ); + + } else if ( this.bindMode === 'detached' ) { + + this.bindMatrixInverse.getInverse( this.bindMatrix ); + + } else { + + console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); + + } + + }, + + boneTransform: ( function () { + + var basePosition = new Vector3(); + + var skinIndex = new Vector4(); + var skinWeight = new Vector4(); + + var vector = new Vector3(); + var matrix = new Matrix4(); + + return function ( index, target ) { + + var skeleton = this.skeleton; + var geometry = this.geometry; + + skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index ); + skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index ); + + basePosition.fromBufferAttribute( geometry.attributes.position, index ).applyMatrix4( this.bindMatrix ); + + target.set( 0, 0, 0 ); + + for ( var i = 0; i < 4; i ++ ) { + + var weight = skinWeight.getComponent( i ); + + if ( weight !== 0 ) { + + var boneIndex = skinIndex.getComponent( i ); + + matrix.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] ); + + target.addScaledVector( vector.copy( basePosition ).applyMatrix4( matrix ), weight ); + + } + + } + + return target.applyMatrix4( this.bindMatrixInverse ); + + }; + + }() ) + + } ); + + var _offsetMatrix = new Matrix4(); + var _identityMatrix = new Matrix4(); + + function Skeleton( bones, boneInverses ) { + + // copy the bone array + + bones = bones || []; + + this.bones = bones.slice( 0 ); + this.boneMatrices = new Float32Array( this.bones.length * 16 ); + + this.frame = - 1; + + // use the supplied bone inverses or calculate the inverses + + if ( boneInverses === undefined ) { + + this.calculateInverses(); + + } else { + + if ( this.bones.length === boneInverses.length ) { + + this.boneInverses = boneInverses.slice( 0 ); + + } else { + + console.warn( 'THREE.Skeleton boneInverses is the wrong length.' ); + + this.boneInverses = []; + + for ( var i = 0, il = this.bones.length; i < il; i ++ ) { + + this.boneInverses.push( new Matrix4() ); + + } + + } + + } + + } + + Object.assign( Skeleton.prototype, { + + calculateInverses: function () { + + this.boneInverses = []; + + for ( var i = 0, il = this.bones.length; i < il; i ++ ) { + + var inverse = new Matrix4(); + + if ( this.bones[ i ] ) { + + inverse.getInverse( this.bones[ i ].matrixWorld ); + + } + + this.boneInverses.push( inverse ); + + } + + }, + + pose: function () { + + // recover the bind-time world matrices + + for ( var i = 0, il = this.bones.length; i < il; i ++ ) { + + var bone = this.bones[ i ]; + + if ( bone ) { + + bone.matrixWorld.getInverse( this.boneInverses[ i ] ); + + } + + } + + // compute the local matrices, positions, rotations and scales + + for ( var i$1 = 0, il$1 = this.bones.length; i$1 < il$1; i$1 ++ ) { + + var bone$1 = this.bones[ i$1 ]; + + if ( bone$1 ) { + + if ( bone$1.parent && bone$1.parent.isBone ) { + + bone$1.matrix.getInverse( bone$1.parent.matrixWorld ); + bone$1.matrix.multiply( bone$1.matrixWorld ); + + } else { + + bone$1.matrix.copy( bone$1.matrixWorld ); + + } + + bone$1.matrix.decompose( bone$1.position, bone$1.quaternion, bone$1.scale ); + + } + + } + + }, + + update: function () { + + var bones = this.bones; + var boneInverses = this.boneInverses; + var boneMatrices = this.boneMatrices; + var boneTexture = this.boneTexture; + + // flatten bone matrices to array + + for ( var i = 0, il = bones.length; i < il; i ++ ) { + + // compute the offset between the current and the original transform + + var matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix; + + _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); + _offsetMatrix.toArray( boneMatrices, i * 16 ); + + } + + if ( boneTexture !== undefined ) { + + boneTexture.needsUpdate = true; + + } + + }, + + clone: function () { + + return new Skeleton( this.bones, this.boneInverses ); + + }, + + getBoneByName: function ( name ) { + + for ( var i = 0, il = this.bones.length; i < il; i ++ ) { + + var bone = this.bones[ i ]; + + if ( bone.name === name ) { + + return bone; + + } + + } + + return undefined; + + }, + + dispose: function ( ) { + + if ( this.boneTexture ) { + + this.boneTexture.dispose(); + + this.boneTexture = undefined; + + } + + } + + } ); + + function Bone() { + + Object3D.call( this ); + + this.type = 'Bone'; + + } + + Bone.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Bone, + + isBone: true + + } ); + + var _instanceLocalMatrix = new Matrix4(); + var _instanceWorldMatrix = new Matrix4(); + + var _instanceIntersects = []; + + var _mesh = new Mesh(); + + function InstancedMesh( geometry, material, count ) { + + Mesh.call( this, geometry, material ); + + this.instanceMatrix = new BufferAttribute( new Float32Array( count * 16 ), 16 ); + + this.count = count; + + this.frustumCulled = false; + + } + + InstancedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), { + + constructor: InstancedMesh, + + isInstancedMesh: true, + + copy: function ( source ) { + + Mesh.prototype.copy.call( this, source ); + + this.instanceMatrix.copy( source.instanceMatrix ); + this.count = source.count; + + return this; + + }, + + getMatrixAt: function ( index, matrix ) { + + matrix.fromArray( this.instanceMatrix.array, index * 16 ); + + }, + + raycast: function ( raycaster, intersects ) { + + var matrixWorld = this.matrixWorld; + var raycastTimes = this.count; + + _mesh.geometry = this.geometry; + _mesh.material = this.material; + + if ( _mesh.material === undefined ) { return; } + + for ( var instanceId = 0; instanceId < raycastTimes; instanceId ++ ) { + + // calculate the world matrix for each instance + + this.getMatrixAt( instanceId, _instanceLocalMatrix ); + + _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix ); + + // the mesh represents this single instance + + _mesh.matrixWorld = _instanceWorldMatrix; + + _mesh.raycast( raycaster, _instanceIntersects ); + + // process the result of raycast + + for ( var i = 0, l = _instanceIntersects.length; i < l; i ++ ) { + + var intersect = _instanceIntersects[ i ]; + intersect.instanceId = instanceId; + intersect.object = this; + intersects.push( intersect ); + + } + + _instanceIntersects.length = 0; + + } + + }, + + setMatrixAt: function ( index, matrix ) { + + matrix.toArray( this.instanceMatrix.array, index * 16 ); + + }, + + updateMorphTargets: function () { + + } + + } ); + + /** + * parameters = { + * color: , + * opacity: , + * + * linewidth: , + * linecap: "round", + * linejoin: "round" + * } + */ + + function LineBasicMaterial( parameters ) { + + Material.call( this ); + + this.type = 'LineBasicMaterial'; + + this.color = new Color( 0xffffff ); + + this.linewidth = 1; + this.linecap = 'round'; + this.linejoin = 'round'; + + this.morphTargets = false; + + this.setValues( parameters ); + + } + + LineBasicMaterial.prototype = Object.create( Material.prototype ); + LineBasicMaterial.prototype.constructor = LineBasicMaterial; + + LineBasicMaterial.prototype.isLineBasicMaterial = true; + + LineBasicMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + this.linewidth = source.linewidth; + this.linecap = source.linecap; + this.linejoin = source.linejoin; + + this.morphTargets = source.morphTargets; + + return this; + + }; + + var _start = new Vector3(); + var _end = new Vector3(); + var _inverseMatrix$1 = new Matrix4(); + var _ray$1 = new Ray(); + var _sphere$2 = new Sphere(); + + function Line( geometry, material, mode ) { + + if ( mode === 1 ) { + + console.error( 'THREE.Line: parameter THREE.LinePieces no longer supported. Use THREE.LineSegments instead.' ); + + } + + Object3D.call( this ); + + this.type = 'Line'; + + this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); + this.material = material !== undefined ? material : new LineBasicMaterial(); + + this.updateMorphTargets(); + + } + + Line.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Line, + + isLine: true, + + copy: function ( source ) { + + Object3D.prototype.copy.call( this, source ); + + this.material = source.material; + this.geometry = source.geometry; + + return this; + + }, + + computeLineDistances: function () { + + var geometry = this.geometry; + + if ( geometry.isBufferGeometry ) { + + // we assume non-indexed geometry + + if ( geometry.index === null ) { + + var positionAttribute = geometry.attributes.position; + var lineDistances = [ 0 ]; + + for ( var i = 1, l = positionAttribute.count; i < l; i ++ ) { + + _start.fromBufferAttribute( positionAttribute, i - 1 ); + _end.fromBufferAttribute( positionAttribute, i ); + + lineDistances[ i ] = lineDistances[ i - 1 ]; + lineDistances[ i ] += _start.distanceTo( _end ); + + } + + geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); + + } else { + + console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); + + } + + } else if ( geometry.isGeometry ) { + + var vertices = geometry.vertices; + var lineDistances$1 = geometry.lineDistances; + + lineDistances$1[ 0 ] = 0; + + for ( var i$1 = 1, l$1 = vertices.length; i$1 < l$1; i$1 ++ ) { + + lineDistances$1[ i$1 ] = lineDistances$1[ i$1 - 1 ]; + lineDistances$1[ i$1 ] += vertices[ i$1 - 1 ].distanceTo( vertices[ i$1 ] ); + + } + + } + + return this; + + }, + + raycast: function ( raycaster, intersects ) { + + var geometry = this.geometry; + var matrixWorld = this.matrixWorld; + var threshold = raycaster.params.Line.threshold; + + // Checking boundingSphere distance to ray + + if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } + + _sphere$2.copy( geometry.boundingSphere ); + _sphere$2.applyMatrix4( matrixWorld ); + _sphere$2.radius += threshold; + + if ( raycaster.ray.intersectsSphere( _sphere$2 ) === false ) { return; } + + // + + _inverseMatrix$1.getInverse( matrixWorld ); + _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); + + var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); + var localThresholdSq = localThreshold * localThreshold; + + var vStart = new Vector3(); + var vEnd = new Vector3(); + var interSegment = new Vector3(); + var interRay = new Vector3(); + var step = ( this && this.isLineSegments ) ? 2 : 1; + + if ( geometry.isBufferGeometry ) { + + var index = geometry.index; + var attributes = geometry.attributes; + var positions = attributes.position.array; + + if ( index !== null ) { + + var indices = index.array; + + for ( var i = 0, l = indices.length - 1; i < l; i += step ) { + + var a = indices[ i ]; + var b = indices[ i + 1 ]; + + vStart.fromArray( positions, a * 3 ); + vEnd.fromArray( positions, b * 3 ); + + var distSq = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); + + if ( distSq > localThresholdSq ) { continue; } + + interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation + + var distance = raycaster.ray.origin.distanceTo( interRay ); + + if ( distance < raycaster.near || distance > raycaster.far ) { continue; } + + intersects.push( { + + distance: distance, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4( this.matrixWorld ), + index: i, + face: null, + faceIndex: null, + object: this + + } ); + + } + + } else { + + for ( var i$1 = 0, l$1 = positions.length / 3 - 1; i$1 < l$1; i$1 += step ) { + + vStart.fromArray( positions, 3 * i$1 ); + vEnd.fromArray( positions, 3 * i$1 + 3 ); + + var distSq$1 = _ray$1.distanceSqToSegment( vStart, vEnd, interRay, interSegment ); + + if ( distSq$1 > localThresholdSq ) { continue; } + + interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation + + var distance$1 = raycaster.ray.origin.distanceTo( interRay ); + + if ( distance$1 < raycaster.near || distance$1 > raycaster.far ) { continue; } + + intersects.push( { + + distance: distance$1, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4( this.matrixWorld ), + index: i$1, + face: null, + faceIndex: null, + object: this + + } ); + + } + + } + + } else if ( geometry.isGeometry ) { + + var vertices = geometry.vertices; + var nbVertices = vertices.length; + + for ( var i$2 = 0; i$2 < nbVertices - 1; i$2 += step ) { + + var distSq$2 = _ray$1.distanceSqToSegment( vertices[ i$2 ], vertices[ i$2 + 1 ], interRay, interSegment ); + + if ( distSq$2 > localThresholdSq ) { continue; } + + interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation + + var distance$2 = raycaster.ray.origin.distanceTo( interRay ); + + if ( distance$2 < raycaster.near || distance$2 > raycaster.far ) { continue; } + + intersects.push( { + + distance: distance$2, + // What do we want? intersection point on the ray or on the segment?? + // point: raycaster.ray.at( distance ), + point: interSegment.clone().applyMatrix4( this.matrixWorld ), + index: i$2, + face: null, + faceIndex: null, + object: this + + } ); + + } + + } + + }, + + updateMorphTargets: function () { + + var geometry = this.geometry; + + if ( geometry.isBufferGeometry ) { + + var morphAttributes = geometry.morphAttributes; + var keys = Object.keys( morphAttributes ); + + if ( keys.length > 0 ) { + + var morphAttribute = morphAttributes[ keys[ 0 ] ]; + + if ( morphAttribute !== undefined ) { + + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for ( var m = 0, ml = morphAttribute.length; m < ml; m ++ ) { + + var name = morphAttribute[ m ].name || String( m ); + + this.morphTargetInfluences.push( 0 ); + this.morphTargetDictionary[ name ] = m; + + } + + } + + } + + } else { + + var morphTargets = geometry.morphTargets; + + if ( morphTargets !== undefined && morphTargets.length > 0 ) { + + console.error( 'THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' ); + + } + + } + + } + + } ); + + var _start$1 = new Vector3(); + var _end$1 = new Vector3(); + + function LineSegments( geometry, material ) { + + Line.call( this, geometry, material ); + + this.type = 'LineSegments'; + + } + + LineSegments.prototype = Object.assign( Object.create( Line.prototype ), { + + constructor: LineSegments, + + isLineSegments: true, + + computeLineDistances: function () { + + var geometry = this.geometry; + + if ( geometry.isBufferGeometry ) { + + // we assume non-indexed geometry + + if ( geometry.index === null ) { + + var positionAttribute = geometry.attributes.position; + var lineDistances = []; + + for ( var i = 0, l = positionAttribute.count; i < l; i += 2 ) { + + _start$1.fromBufferAttribute( positionAttribute, i ); + _end$1.fromBufferAttribute( positionAttribute, i + 1 ); + + lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; + lineDistances[ i + 1 ] = lineDistances[ i ] + _start$1.distanceTo( _end$1 ); + + } + + geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); + + } else { + + console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); + + } + + } else if ( geometry.isGeometry ) { + + var vertices = geometry.vertices; + var lineDistances$1 = geometry.lineDistances; + + for ( var i$1 = 0, l$1 = vertices.length; i$1 < l$1; i$1 += 2 ) { + + _start$1.copy( vertices[ i$1 ] ); + _end$1.copy( vertices[ i$1 + 1 ] ); + + lineDistances$1[ i$1 ] = ( i$1 === 0 ) ? 0 : lineDistances$1[ i$1 - 1 ]; + lineDistances$1[ i$1 + 1 ] = lineDistances$1[ i$1 ] + _start$1.distanceTo( _end$1 ); + + } + + } + + return this; + + } + + } ); + + function LineLoop( geometry, material ) { + + Line.call( this, geometry, material ); + + this.type = 'LineLoop'; + + } + + LineLoop.prototype = Object.assign( Object.create( Line.prototype ), { + + constructor: LineLoop, + + isLineLoop: true, + + } ); + + /** + * parameters = { + * color: , + * opacity: , + * map: new THREE.Texture( ), + * alphaMap: new THREE.Texture( ), + * + * size: , + * sizeAttenuation: + * + * morphTargets: + * } + */ + + function PointsMaterial( parameters ) { + + Material.call( this ); + + this.type = 'PointsMaterial'; + + this.color = new Color( 0xffffff ); + + this.map = null; + + this.alphaMap = null; + + this.size = 1; + this.sizeAttenuation = true; + + this.morphTargets = false; + + this.setValues( parameters ); + + } + + PointsMaterial.prototype = Object.create( Material.prototype ); + PointsMaterial.prototype.constructor = PointsMaterial; + + PointsMaterial.prototype.isPointsMaterial = true; + + PointsMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.alphaMap = source.alphaMap; + + this.size = source.size; + this.sizeAttenuation = source.sizeAttenuation; + + this.morphTargets = source.morphTargets; + + return this; + + }; + + var _inverseMatrix$2 = new Matrix4(); + var _ray$2 = new Ray(); + var _sphere$3 = new Sphere(); + var _position$1 = new Vector3(); + + function Points( geometry, material ) { + + Object3D.call( this ); + + this.type = 'Points'; + + this.geometry = geometry !== undefined ? geometry : new BufferGeometry(); + this.material = material !== undefined ? material : new PointsMaterial(); + + this.updateMorphTargets(); + + } + + Points.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Points, + + isPoints: true, + + copy: function ( source ) { + + Object3D.prototype.copy.call( this, source ); + + this.material = source.material; + this.geometry = source.geometry; + + return this; + + }, + + raycast: function ( raycaster, intersects ) { + + var geometry = this.geometry; + var matrixWorld = this.matrixWorld; + var threshold = raycaster.params.Points.threshold; + + // Checking boundingSphere distance to ray + + if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } + + _sphere$3.copy( geometry.boundingSphere ); + _sphere$3.applyMatrix4( matrixWorld ); + _sphere$3.radius += threshold; + + if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) { return; } + + // + + _inverseMatrix$2.getInverse( matrixWorld ); + _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 ); + + var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); + var localThresholdSq = localThreshold * localThreshold; + + if ( geometry.isBufferGeometry ) { + + var index = geometry.index; + var attributes = geometry.attributes; + var positions = attributes.position.array; + + if ( index !== null ) { + + var indices = index.array; + + for ( var i = 0, il = indices.length; i < il; i ++ ) { + + var a = indices[ i ]; + + _position$1.fromArray( positions, a * 3 ); + + testPoint( _position$1, a, localThresholdSq, matrixWorld, raycaster, intersects, this ); + + } + + } else { + + for ( var i$1 = 0, l = positions.length / 3; i$1 < l; i$1 ++ ) { + + _position$1.fromArray( positions, i$1 * 3 ); + + testPoint( _position$1, i$1, localThresholdSq, matrixWorld, raycaster, intersects, this ); + + } + + } + + } else { + + var vertices = geometry.vertices; + + for ( var i$2 = 0, l$1 = vertices.length; i$2 < l$1; i$2 ++ ) { + + testPoint( vertices[ i$2 ], i$2, localThresholdSq, matrixWorld, raycaster, intersects, this ); + + } + + } + + }, + + updateMorphTargets: function () { + + var geometry = this.geometry; + + if ( geometry.isBufferGeometry ) { + + var morphAttributes = geometry.morphAttributes; + var keys = Object.keys( morphAttributes ); + + if ( keys.length > 0 ) { + + var morphAttribute = morphAttributes[ keys[ 0 ] ]; + + if ( morphAttribute !== undefined ) { + + this.morphTargetInfluences = []; + this.morphTargetDictionary = {}; + + for ( var m = 0, ml = morphAttribute.length; m < ml; m ++ ) { + + var name = morphAttribute[ m ].name || String( m ); + + this.morphTargetInfluences.push( 0 ); + this.morphTargetDictionary[ name ] = m; + + } + + } + + } + + } else { + + var morphTargets = geometry.morphTargets; + + if ( morphTargets !== undefined && morphTargets.length > 0 ) { + + console.error( 'THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.' ); + + } + + } + + } + + } ); + + function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) { + + var rayPointDistanceSq = _ray$2.distanceSqToPoint( point ); + + if ( rayPointDistanceSq < localThresholdSq ) { + + var intersectPoint = new Vector3(); + + _ray$2.closestPointToPoint( point, intersectPoint ); + intersectPoint.applyMatrix4( matrixWorld ); + + var distance = raycaster.ray.origin.distanceTo( intersectPoint ); + + if ( distance < raycaster.near || distance > raycaster.far ) { return; } + + intersects.push( { + + distance: distance, + distanceToRay: Math.sqrt( rayPointDistanceSq ), + point: intersectPoint, + index: index, + face: null, + object: object + + } ); + + } + + } + + function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { + + Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + this.format = format !== undefined ? format : RGBFormat; + + this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; + this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; + + this.generateMipmaps = false; + + var scope = this; + + function updateVideo() { + + scope.needsUpdate = true; + video.requestVideoFrameCallback( updateVideo ); + + } + + if ( 'requestVideoFrameCallback' in video ) { + + video.requestVideoFrameCallback( updateVideo ); + + } + + } + + VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), { + + constructor: VideoTexture, + + isVideoTexture: true, + + update: function () { + + var video = this.image; + var hasVideoFrameCallback = 'requestVideoFrameCallback' in video; + + if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) { + + this.needsUpdate = true; + + } + + } + + } ); + + function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { + + Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ); + + this.image = { width: width, height: height }; + this.mipmaps = mipmaps; + + // no flipping for cube textures + // (also flipping doesn't work for compressed textures ) + + this.flipY = false; + + // can't generate mipmaps for compressed textures + // mips must be embedded in DDS files + + this.generateMipmaps = false; + + } + + CompressedTexture.prototype = Object.create( Texture.prototype ); + CompressedTexture.prototype.constructor = CompressedTexture; + + CompressedTexture.prototype.isCompressedTexture = true; + + function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { + + Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + this.needsUpdate = true; + + } + + CanvasTexture.prototype = Object.create( Texture.prototype ); + CanvasTexture.prototype.constructor = CanvasTexture; + CanvasTexture.prototype.isCanvasTexture = true; + + function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { + + format = format !== undefined ? format : DepthFormat; + + if ( format !== DepthFormat && format !== DepthStencilFormat ) { + + throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); + + } + + if ( type === undefined && format === DepthFormat ) { type = UnsignedShortType; } + if ( type === undefined && format === DepthStencilFormat ) { type = UnsignedInt248Type; } + + Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); + + this.image = { width: width, height: height }; + + this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; + this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; + + this.flipY = false; + this.generateMipmaps = false; + + } + + DepthTexture.prototype = Object.create( Texture.prototype ); + DepthTexture.prototype.constructor = DepthTexture; + DepthTexture.prototype.isDepthTexture = true; + + function WireframeGeometry( geometry ) { + + BufferGeometry.call( this ); + + this.type = 'WireframeGeometry'; + + // buffer + + var vertices = []; + + // helper variables + + var edge = [ 0, 0 ], edges = {}; + var keys = [ 'a', 'b', 'c' ]; + + // different logic for Geometry and BufferGeometry + + if ( geometry && geometry.isGeometry ) { + + // create a data structure that contains all edges without duplicates + + var faces = geometry.faces; + + for ( var i = 0, l = faces.length; i < l; i ++ ) { + + var face = faces[ i ]; + + for ( var j = 0; j < 3; j ++ ) { + + var edge1 = face[ keys[ j ] ]; + var edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; + edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates + edge[ 1 ] = Math.max( edge1, edge2 ); + + var key = edge[ 0 ] + ',' + edge[ 1 ]; + + if ( edges[ key ] === undefined ) { + + edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] }; + + } + + } + + } + + // generate vertices + + for ( var key$1 in edges ) { + + var e = edges[ key$1 ]; + + var vertex = geometry.vertices[ e.index1 ]; + vertices.push( vertex.x, vertex.y, vertex.z ); + + vertex = geometry.vertices[ e.index2 ]; + vertices.push( vertex.x, vertex.y, vertex.z ); + + } + + } else if ( geometry && geometry.isBufferGeometry ) { + + var vertex$1 = new Vector3(); + + if ( geometry.index !== null ) { + + // indexed BufferGeometry + + var position = geometry.attributes.position; + var indices = geometry.index; + var groups = geometry.groups; + + if ( groups.length === 0 ) { + + groups = [ { start: 0, count: indices.count, materialIndex: 0 } ]; + + } + + // create a data structure that contains all eges without duplicates + + for ( var o = 0, ol = groups.length; o < ol; ++ o ) { + + var group = groups[ o ]; + + var start = group.start; + var count = group.count; + + for ( var i$1 = start, l$1 = ( start + count ); i$1 < l$1; i$1 += 3 ) { + + for ( var j$1 = 0; j$1 < 3; j$1 ++ ) { + + var edge1$1 = indices.getX( i$1 + j$1 ); + var edge2$1 = indices.getX( i$1 + ( j$1 + 1 ) % 3 ); + edge[ 0 ] = Math.min( edge1$1, edge2$1 ); // sorting prevents duplicates + edge[ 1 ] = Math.max( edge1$1, edge2$1 ); + + var key$2 = edge[ 0 ] + ',' + edge[ 1 ]; + + if ( edges[ key$2 ] === undefined ) { + + edges[ key$2 ] = { index1: edge[ 0 ], index2: edge[ 1 ] }; + + } + + } + + } + + } + + // generate vertices + + for ( var key$3 in edges ) { + + var e$1 = edges[ key$3 ]; + + vertex$1.fromBufferAttribute( position, e$1.index1 ); + vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); + + vertex$1.fromBufferAttribute( position, e$1.index2 ); + vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); + + } + + } else { + + // non-indexed BufferGeometry + + var position$1 = geometry.attributes.position; + + for ( var i$2 = 0, l$2 = ( position$1.count / 3 ); i$2 < l$2; i$2 ++ ) { + + for ( var j$2 = 0; j$2 < 3; j$2 ++ ) { + + // three edges per triangle, an edge is represented as (index1, index2) + // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) + + var index1 = 3 * i$2 + j$2; + vertex$1.fromBufferAttribute( position$1, index1 ); + vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); + + var index2 = 3 * i$2 + ( ( j$2 + 1 ) % 3 ); + vertex$1.fromBufferAttribute( position$1, index2 ); + vertices.push( vertex$1.x, vertex$1.y, vertex$1.z ); + + } + + } + + } + + } + + // build geometry + + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + + } + + WireframeGeometry.prototype = Object.create( BufferGeometry.prototype ); + WireframeGeometry.prototype.constructor = WireframeGeometry; + + /** + * Parametric Surfaces Geometry + * based on the brilliant article by @prideout https://prideout.net/blog/old/blog/index.html@p=44.html + */ + + // ParametricGeometry + + function ParametricGeometry( func, slices, stacks ) { + + Geometry.call( this ); + + this.type = 'ParametricGeometry'; + + this.parameters = { + func: func, + slices: slices, + stacks: stacks + }; + + this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) ); + this.mergeVertices(); + + } + + ParametricGeometry.prototype = Object.create( Geometry.prototype ); + ParametricGeometry.prototype.constructor = ParametricGeometry; + + // ParametricBufferGeometry + + function ParametricBufferGeometry( func, slices, stacks ) { + + BufferGeometry.call( this ); + + this.type = 'ParametricBufferGeometry'; + + this.parameters = { + func: func, + slices: slices, + stacks: stacks + }; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + var EPS = 0.00001; + + var normal = new Vector3(); + + var p0 = new Vector3(), p1 = new Vector3(); + var pu = new Vector3(), pv = new Vector3(); + + if ( func.length < 3 ) { + + console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' ); + + } + + // generate vertices, normals and uvs + + var sliceCount = slices + 1; + + for ( var i = 0; i <= stacks; i ++ ) { + + var v = i / stacks; + + for ( var j = 0; j <= slices; j ++ ) { + + var u = j / slices; + + // vertex + + func( u, v, p0 ); + vertices.push( p0.x, p0.y, p0.z ); + + // normal + + // approximate tangent vectors via finite differences + + if ( u - EPS >= 0 ) { + + func( u - EPS, v, p1 ); + pu.subVectors( p0, p1 ); + + } else { + + func( u + EPS, v, p1 ); + pu.subVectors( p1, p0 ); + + } + + if ( v - EPS >= 0 ) { + + func( u, v - EPS, p1 ); + pv.subVectors( p0, p1 ); + + } else { + + func( u, v + EPS, p1 ); + pv.subVectors( p1, p0 ); + + } + + // cross product of tangent vectors returns surface normal + + normal.crossVectors( pu, pv ).normalize(); + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( u, v ); + + } + + } + + // generate indices + + for ( var i$1 = 0; i$1 < stacks; i$1 ++ ) { + + for ( var j$1 = 0; j$1 < slices; j$1 ++ ) { + + var a = i$1 * sliceCount + j$1; + var b = i$1 * sliceCount + j$1 + 1; + var c = ( i$1 + 1 ) * sliceCount + j$1 + 1; + var d = ( i$1 + 1 ) * sliceCount + j$1; + + // faces one and two + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry; + + // PolyhedronGeometry + + function PolyhedronGeometry( vertices, indices, radius, detail ) { + + Geometry.call( this ); + + this.type = 'PolyhedronGeometry'; + + this.parameters = { + vertices: vertices, + indices: indices, + radius: radius, + detail: detail + }; + + this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) ); + this.mergeVertices(); + + } + + PolyhedronGeometry.prototype = Object.create( Geometry.prototype ); + PolyhedronGeometry.prototype.constructor = PolyhedronGeometry; + + // PolyhedronBufferGeometry + + function PolyhedronBufferGeometry( vertices, indices, radius, detail ) { + + BufferGeometry.call( this ); + + this.type = 'PolyhedronBufferGeometry'; + + this.parameters = { + vertices: vertices, + indices: indices, + radius: radius, + detail: detail + }; + + radius = radius || 1; + detail = detail || 0; + + // default buffer data + + var vertexBuffer = []; + var uvBuffer = []; + + // the subdivision creates the vertex buffer data + + subdivide( detail ); + + // all vertices should lie on a conceptual sphere with a given radius + + applyRadius( radius ); + + // finally, create the uv data + + generateUVs(); + + // build non-indexed geometry + + this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) ); + + if ( detail === 0 ) { + + this.computeVertexNormals(); // flat normals + + } else { + + this.normalizeNormals(); // smooth normals + + } + + // helper functions + + function subdivide( detail ) { + + var a = new Vector3(); + var b = new Vector3(); + var c = new Vector3(); + + // iterate over all faces and apply a subdivison with the given detail value + + for ( var i = 0; i < indices.length; i += 3 ) { + + // get the vertices of the face + + getVertexByIndex( indices[ i + 0 ], a ); + getVertexByIndex( indices[ i + 1 ], b ); + getVertexByIndex( indices[ i + 2 ], c ); + + // perform subdivision + + subdivideFace( a, b, c, detail ); + + } + + } + + function subdivideFace( a, b, c, detail ) { + + var cols = Math.pow( 2, detail ); + + // we use this multidimensional array as a data structure for creating the subdivision + + var v = []; + + // construct all of the vertices for this subdivision + + for ( var i = 0; i <= cols; i ++ ) { + + v[ i ] = []; + + var aj = a.clone().lerp( c, i / cols ); + var bj = b.clone().lerp( c, i / cols ); + + var rows = cols - i; + + for ( var j = 0; j <= rows; j ++ ) { + + if ( j === 0 && i === cols ) { + + v[ i ][ j ] = aj; + + } else { + + v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); + + } + + } + + } + + // construct all of the faces + + for ( var i$1 = 0; i$1 < cols; i$1 ++ ) { + + for ( var j$1 = 0; j$1 < 2 * ( cols - i$1 ) - 1; j$1 ++ ) { + + var k = Math.floor( j$1 / 2 ); + + if ( j$1 % 2 === 0 ) { + + pushVertex( v[ i$1 ][ k + 1 ] ); + pushVertex( v[ i$1 + 1 ][ k ] ); + pushVertex( v[ i$1 ][ k ] ); + + } else { + + pushVertex( v[ i$1 ][ k + 1 ] ); + pushVertex( v[ i$1 + 1 ][ k + 1 ] ); + pushVertex( v[ i$1 + 1 ][ k ] ); + + } + + } + + } + + } + + function applyRadius( radius ) { + + var vertex = new Vector3(); + + // iterate over the entire buffer and apply the radius to each vertex + + for ( var i = 0; i < vertexBuffer.length; i += 3 ) { + + vertex.x = vertexBuffer[ i + 0 ]; + vertex.y = vertexBuffer[ i + 1 ]; + vertex.z = vertexBuffer[ i + 2 ]; + + vertex.normalize().multiplyScalar( radius ); + + vertexBuffer[ i + 0 ] = vertex.x; + vertexBuffer[ i + 1 ] = vertex.y; + vertexBuffer[ i + 2 ] = vertex.z; + + } + + } + + function generateUVs() { + + var vertex = new Vector3(); + + for ( var i = 0; i < vertexBuffer.length; i += 3 ) { + + vertex.x = vertexBuffer[ i + 0 ]; + vertex.y = vertexBuffer[ i + 1 ]; + vertex.z = vertexBuffer[ i + 2 ]; + + var u = azimuth( vertex ) / 2 / Math.PI + 0.5; + var v = inclination( vertex ) / Math.PI + 0.5; + uvBuffer.push( u, 1 - v ); + + } + + correctUVs(); + + correctSeam(); + + } + + function correctSeam() { + + // handle case when face straddles the seam, see #3269 + + for ( var i = 0; i < uvBuffer.length; i += 6 ) { + + // uv data of a single face + + var x0 = uvBuffer[ i + 0 ]; + var x1 = uvBuffer[ i + 2 ]; + var x2 = uvBuffer[ i + 4 ]; + + var max = Math.max( x0, x1, x2 ); + var min = Math.min( x0, x1, x2 ); + + // 0.9 is somewhat arbitrary + + if ( max > 0.9 && min < 0.1 ) { + + if ( x0 < 0.2 ) { uvBuffer[ i + 0 ] += 1; } + if ( x1 < 0.2 ) { uvBuffer[ i + 2 ] += 1; } + if ( x2 < 0.2 ) { uvBuffer[ i + 4 ] += 1; } + + } + + } + + } + + function pushVertex( vertex ) { + + vertexBuffer.push( vertex.x, vertex.y, vertex.z ); + + } + + function getVertexByIndex( index, vertex ) { + + var stride = index * 3; + + vertex.x = vertices[ stride + 0 ]; + vertex.y = vertices[ stride + 1 ]; + vertex.z = vertices[ stride + 2 ]; + + } + + function correctUVs() { + + var a = new Vector3(); + var b = new Vector3(); + var c = new Vector3(); + + var centroid = new Vector3(); + + var uvA = new Vector2(); + var uvB = new Vector2(); + var uvC = new Vector2(); + + for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { + + a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); + b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); + c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); + + uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); + uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); + uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); + + centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); + + var azi = azimuth( centroid ); + + correctUV( uvA, j + 0, a, azi ); + correctUV( uvB, j + 2, b, azi ); + correctUV( uvC, j + 4, c, azi ); + + } + + } + + function correctUV( uv, stride, vector, azimuth ) { + + if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { + + uvBuffer[ stride ] = uv.x - 1; + + } + + if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { + + uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; + + } + + } + + // Angle around the Y axis, counter-clockwise when looking from above. + + function azimuth( vector ) { + + return Math.atan2( vector.z, - vector.x ); + + } + + + // Angle above the XZ plane. + + function inclination( vector ) { + + return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); + + } + + } + + PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry; + + // TetrahedronGeometry + + function TetrahedronGeometry( radius, detail ) { + + Geometry.call( this ); + + this.type = 'TetrahedronGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) ); + this.mergeVertices(); + + } + + TetrahedronGeometry.prototype = Object.create( Geometry.prototype ); + TetrahedronGeometry.prototype.constructor = TetrahedronGeometry; + + // TetrahedronBufferGeometry + + function TetrahedronBufferGeometry( radius, detail ) { + + var vertices = [ + 1, 1, 1, - 1, - 1, 1, - 1, 1, - 1, 1, - 1, - 1 + ]; + + var indices = [ + 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 + ]; + + PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); + + this.type = 'TetrahedronBufferGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + } + + TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); + TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry; + + // OctahedronGeometry + + function OctahedronGeometry( radius, detail ) { + + Geometry.call( this ); + + this.type = 'OctahedronGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) ); + this.mergeVertices(); + + } + + OctahedronGeometry.prototype = Object.create( Geometry.prototype ); + OctahedronGeometry.prototype.constructor = OctahedronGeometry; + + // OctahedronBufferGeometry + + function OctahedronBufferGeometry( radius, detail ) { + + var vertices = [ + 1, 0, 0, - 1, 0, 0, 0, 1, 0, + 0, - 1, 0, 0, 0, 1, 0, 0, - 1 + ]; + + var indices = [ + 0, 2, 4, 0, 4, 3, 0, 3, 5, + 0, 5, 2, 1, 2, 5, 1, 5, 3, + 1, 3, 4, 1, 4, 2 + ]; + + PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); + + this.type = 'OctahedronBufferGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + } + + OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); + OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry; + + // IcosahedronGeometry + + function IcosahedronGeometry( radius, detail ) { + + Geometry.call( this ); + + this.type = 'IcosahedronGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) ); + this.mergeVertices(); + + } + + IcosahedronGeometry.prototype = Object.create( Geometry.prototype ); + IcosahedronGeometry.prototype.constructor = IcosahedronGeometry; + + // IcosahedronBufferGeometry + + function IcosahedronBufferGeometry( radius, detail ) { + + var t = ( 1 + Math.sqrt( 5 ) ) / 2; + + var vertices = [ + - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, 0, + 0, - 1, t, 0, 1, t, 0, - 1, - t, 0, 1, - t, + t, 0, - 1, t, 0, 1, - t, 0, - 1, - t, 0, 1 + ]; + + var indices = [ + 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, + 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, + 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, + 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 + ]; + + PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); + + this.type = 'IcosahedronBufferGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + } + + IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); + IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry; + + // DodecahedronGeometry + + function DodecahedronGeometry( radius, detail ) { + + Geometry.call( this ); + + this.type = 'DodecahedronGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) ); + this.mergeVertices(); + + } + + DodecahedronGeometry.prototype = Object.create( Geometry.prototype ); + DodecahedronGeometry.prototype.constructor = DodecahedronGeometry; + + // DodecahedronBufferGeometry + + function DodecahedronBufferGeometry( radius, detail ) { + + var t = ( 1 + Math.sqrt( 5 ) ) / 2; + var r = 1 / t; + + var vertices = [ + + // (±1, ±1, ±1) + - 1, - 1, - 1, - 1, - 1, 1, + - 1, 1, - 1, - 1, 1, 1, + 1, - 1, - 1, 1, - 1, 1, + 1, 1, - 1, 1, 1, 1, + + // (0, ±1/φ, ±φ) + 0, - r, - t, 0, - r, t, + 0, r, - t, 0, r, t, + + // (±1/φ, ±φ, 0) + - r, - t, 0, - r, t, 0, + r, - t, 0, r, t, 0, + + // (±φ, 0, ±1/φ) + - t, 0, - r, t, 0, - r, + - t, 0, r, t, 0, r + ]; + + var indices = [ + 3, 11, 7, 3, 7, 15, 3, 15, 13, + 7, 19, 17, 7, 17, 6, 7, 6, 15, + 17, 4, 8, 17, 8, 10, 17, 10, 6, + 8, 0, 16, 8, 16, 2, 8, 2, 10, + 0, 12, 1, 0, 1, 18, 0, 18, 16, + 6, 10, 2, 6, 2, 13, 6, 13, 15, + 2, 16, 18, 2, 18, 3, 2, 3, 13, + 18, 1, 9, 18, 9, 11, 18, 11, 3, + 4, 14, 12, 4, 12, 0, 4, 0, 8, + 11, 9, 5, 11, 5, 19, 11, 19, 7, + 19, 5, 14, 19, 14, 4, 19, 4, 17, + 1, 12, 14, 1, 14, 5, 1, 5, 9 + ]; + + PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail ); + + this.type = 'DodecahedronBufferGeometry'; + + this.parameters = { + radius: radius, + detail: detail + }; + + } + + DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype ); + DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry; + + // TubeGeometry + + function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) { + + Geometry.call( this ); + + this.type = 'TubeGeometry'; + + this.parameters = { + path: path, + tubularSegments: tubularSegments, + radius: radius, + radialSegments: radialSegments, + closed: closed + }; + + if ( taper !== undefined ) { console.warn( 'THREE.TubeGeometry: taper has been removed.' ); } + + var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ); + + // expose internals + + this.tangents = bufferGeometry.tangents; + this.normals = bufferGeometry.normals; + this.binormals = bufferGeometry.binormals; + + // create geometry + + this.fromBufferGeometry( bufferGeometry ); + this.mergeVertices(); + + } + + TubeGeometry.prototype = Object.create( Geometry.prototype ); + TubeGeometry.prototype.constructor = TubeGeometry; + + // TubeBufferGeometry + + function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) { + + BufferGeometry.call( this ); + + this.type = 'TubeBufferGeometry'; + + this.parameters = { + path: path, + tubularSegments: tubularSegments, + radius: radius, + radialSegments: radialSegments, + closed: closed + }; + + tubularSegments = tubularSegments || 64; + radius = radius || 1; + radialSegments = radialSegments || 8; + closed = closed || false; + + var frames = path.computeFrenetFrames( tubularSegments, closed ); + + // expose internals + + this.tangents = frames.tangents; + this.normals = frames.normals; + this.binormals = frames.binormals; + + // helper variables + + var vertex = new Vector3(); + var normal = new Vector3(); + var uv = new Vector2(); + var P = new Vector3(); + + // buffer + + var vertices = []; + var normals = []; + var uvs = []; + var indices = []; + + // create buffer data + + generateBufferData(); + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + // functions + + function generateBufferData() { + + for ( var i = 0; i < tubularSegments; i ++ ) { + + generateSegment( i ); + + } + + // if the geometry is not closed, generate the last row of vertices and normals + // at the regular position on the given path + // + // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) + + generateSegment( ( closed === false ) ? tubularSegments : 0 ); + + // uvs are generated in a separate function. + // this makes it easy compute correct values for closed geometries + + generateUVs(); + + // finally create faces + + generateIndices(); + + } + + function generateSegment( i ) { + + // we use getPointAt to sample evenly distributed points from the given path + + P = path.getPointAt( i / tubularSegments, P ); + + // retrieve corresponding normal and binormal + + var N = frames.normals[ i ]; + var B = frames.binormals[ i ]; + + // generate normals and vertices for the current segment + + for ( var j = 0; j <= radialSegments; j ++ ) { + + var v = j / radialSegments * Math.PI * 2; + + var sin = Math.sin( v ); + var cos = - Math.cos( v ); + + // normal + + normal.x = ( cos * N.x + sin * B.x ); + normal.y = ( cos * N.y + sin * B.y ); + normal.z = ( cos * N.z + sin * B.z ); + normal.normalize(); + + normals.push( normal.x, normal.y, normal.z ); + + // vertex + + vertex.x = P.x + radius * normal.x; + vertex.y = P.y + radius * normal.y; + vertex.z = P.z + radius * normal.z; + + vertices.push( vertex.x, vertex.y, vertex.z ); + + } + + } + + function generateIndices() { + + for ( var j = 1; j <= tubularSegments; j ++ ) { + + for ( var i = 1; i <= radialSegments; i ++ ) { + + var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); + var b = ( radialSegments + 1 ) * j + ( i - 1 ); + var c = ( radialSegments + 1 ) * j + i; + var d = ( radialSegments + 1 ) * ( j - 1 ) + i; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + } + + function generateUVs() { + + for ( var i = 0; i <= tubularSegments; i ++ ) { + + for ( var j = 0; j <= radialSegments; j ++ ) { + + uv.x = i / tubularSegments; + uv.y = j / radialSegments; + + uvs.push( uv.x, uv.y ); + + } + + } + + } + + } + + TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + TubeBufferGeometry.prototype.constructor = TubeBufferGeometry; + + TubeBufferGeometry.prototype.toJSON = function () { + + var data = BufferGeometry.prototype.toJSON.call( this ); + + data.path = this.parameters.path.toJSON(); + + return data; + + }; + + // TorusKnotGeometry + + function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) { + + Geometry.call( this ); + + this.type = 'TorusKnotGeometry'; + + this.parameters = { + radius: radius, + tube: tube, + tubularSegments: tubularSegments, + radialSegments: radialSegments, + p: p, + q: q + }; + + if ( heightScale !== undefined ) { console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ); } + + this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) ); + this.mergeVertices(); + + } + + TorusKnotGeometry.prototype = Object.create( Geometry.prototype ); + TorusKnotGeometry.prototype.constructor = TorusKnotGeometry; + + // TorusKnotBufferGeometry + + function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) { + + BufferGeometry.call( this ); + + this.type = 'TorusKnotBufferGeometry'; + + this.parameters = { + radius: radius, + tube: tube, + tubularSegments: tubularSegments, + radialSegments: radialSegments, + p: p, + q: q + }; + + radius = radius || 1; + tube = tube || 0.4; + tubularSegments = Math.floor( tubularSegments ) || 64; + radialSegments = Math.floor( radialSegments ) || 8; + p = p || 2; + q = q || 3; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // helper variables + + var vertex = new Vector3(); + var normal = new Vector3(); + + var P1 = new Vector3(); + var P2 = new Vector3(); + + var B = new Vector3(); + var T = new Vector3(); + var N = new Vector3(); + + // generate vertices, normals and uvs + + for ( var i = 0; i <= tubularSegments; ++ i ) { + + // the radian "u" is used to calculate the position on the torus curve of the current tubular segement + + var u = i / tubularSegments * p * Math.PI * 2; + + // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. + // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions + + calculatePositionOnCurve( u, p, q, radius, P1 ); + calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); + + // calculate orthonormal basis + + T.subVectors( P2, P1 ); + N.addVectors( P2, P1 ); + B.crossVectors( T, N ); + N.crossVectors( B, T ); + + // normalize B, N. T can be ignored, we don't use it + + B.normalize(); + N.normalize(); + + for ( var j = 0; j <= radialSegments; ++ j ) { + + // now calculate the vertices. they are nothing more than an extrusion of the torus curve. + // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. + + var v = j / radialSegments * Math.PI * 2; + var cx = - tube * Math.cos( v ); + var cy = tube * Math.sin( v ); + + // now calculate the final vertex position. + // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve + + vertex.x = P1.x + ( cx * N.x + cy * B.x ); + vertex.y = P1.y + ( cx * N.y + cy * B.y ); + vertex.z = P1.z + ( cx * N.z + cy * B.z ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) + + normal.subVectors( vertex, P1 ).normalize(); + + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( i / tubularSegments ); + uvs.push( j / radialSegments ); + + } + + } + + // generate indices + + for ( var j$1 = 1; j$1 <= tubularSegments; j$1 ++ ) { + + for ( var i$1 = 1; i$1 <= radialSegments; i$1 ++ ) { + + // indices + + var a = ( radialSegments + 1 ) * ( j$1 - 1 ) + ( i$1 - 1 ); + var b = ( radialSegments + 1 ) * j$1 + ( i$1 - 1 ); + var c = ( radialSegments + 1 ) * j$1 + i$1; + var d = ( radialSegments + 1 ) * ( j$1 - 1 ) + i$1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + // this function calculates the current position on the torus curve + + function calculatePositionOnCurve( u, p, q, radius, position ) { + + var cu = Math.cos( u ); + var su = Math.sin( u ); + var quOverP = q / p * u; + var cs = Math.cos( quOverP ); + + position.x = radius * ( 2 + cs ) * 0.5 * cu; + position.y = radius * ( 2 + cs ) * su * 0.5; + position.z = radius * Math.sin( quOverP ) * 0.5; + + } + + } + + TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry; + + // TorusGeometry + + function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) { + + Geometry.call( this ); + + this.type = 'TorusGeometry'; + + this.parameters = { + radius: radius, + tube: tube, + radialSegments: radialSegments, + tubularSegments: tubularSegments, + arc: arc + }; + + this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) ); + this.mergeVertices(); + + } + + TorusGeometry.prototype = Object.create( Geometry.prototype ); + TorusGeometry.prototype.constructor = TorusGeometry; + + // TorusBufferGeometry + + function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) { + + BufferGeometry.call( this ); + + this.type = 'TorusBufferGeometry'; + + this.parameters = { + radius: radius, + tube: tube, + radialSegments: radialSegments, + tubularSegments: tubularSegments, + arc: arc + }; + + radius = radius || 1; + tube = tube || 0.4; + radialSegments = Math.floor( radialSegments ) || 8; + tubularSegments = Math.floor( tubularSegments ) || 6; + arc = arc || Math.PI * 2; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // helper variables + + var center = new Vector3(); + var vertex = new Vector3(); + var normal = new Vector3(); + + // generate vertices, normals and uvs + + for ( var j = 0; j <= radialSegments; j ++ ) { + + for ( var i = 0; i <= tubularSegments; i ++ ) { + + var u = i / tubularSegments * arc; + var v = j / radialSegments * Math.PI * 2; + + // vertex + + vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); + vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); + vertex.z = tube * Math.sin( v ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + center.x = radius * Math.cos( u ); + center.y = radius * Math.sin( u ); + normal.subVectors( vertex, center ).normalize(); + + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( i / tubularSegments ); + uvs.push( j / radialSegments ); + + } + + } + + // generate indices + + for ( var j$1 = 1; j$1 <= radialSegments; j$1 ++ ) { + + for ( var i$1 = 1; i$1 <= tubularSegments; i$1 ++ ) { + + // indices + + var a = ( tubularSegments + 1 ) * j$1 + i$1 - 1; + var b = ( tubularSegments + 1 ) * ( j$1 - 1 ) + i$1 - 1; + var c = ( tubularSegments + 1 ) * ( j$1 - 1 ) + i$1; + var d = ( tubularSegments + 1 ) * j$1 + i$1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + TorusBufferGeometry.prototype.constructor = TorusBufferGeometry; + + /** + * Port from https://github.com/mapbox/earcut (v2.2.2) + */ + + var Earcut = { + + triangulate: function ( data, holeIndices, dim ) { + + dim = dim || 2; + + var hasHoles = holeIndices && holeIndices.length, + outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length, + outerNode = linkedList( data, 0, outerLen, dim, true ), + triangles = []; + + if ( ! outerNode || outerNode.next === outerNode.prev ) { return triangles; } + + var minX, minY, maxX, maxY, x, y, invSize; + + if ( hasHoles ) { outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); } + + // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + if ( data.length > 80 * dim ) { + + minX = maxX = data[ 0 ]; + minY = maxY = data[ 1 ]; + + for ( var i = dim; i < outerLen; i += dim ) { + + x = data[ i ]; + y = data[ i + 1 ]; + if ( x < minX ) { minX = x; } + if ( y < minY ) { minY = y; } + if ( x > maxX ) { maxX = x; } + if ( y > maxY ) { maxY = y; } + + } + + // minX, minY and invSize are later used to transform coords into integers for z-order calculation + invSize = Math.max( maxX - minX, maxY - minY ); + invSize = invSize !== 0 ? 1 / invSize : 0; + + } + + earcutLinked( outerNode, triangles, dim, minX, minY, invSize ); + + return triangles; + + } + + }; + + // create a circular doubly linked list from polygon points in the specified winding order + function linkedList( data, start, end, dim, clockwise ) { + + var i, last; + + if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) { + + for ( i = start; i < end; i += dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); } + + } else { + + for ( i = end - dim; i >= start; i -= dim ) { last = insertNode( i, data[ i ], data[ i + 1 ], last ); } + + } + + if ( last && equals( last, last.next ) ) { + + removeNode( last ); + last = last.next; + + } + + return last; + + } + + // eliminate colinear or duplicate points + function filterPoints( start, end ) { + + if ( ! start ) { return start; } + if ( ! end ) { end = start; } + + var p = start, + again; + do { + + again = false; + + if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) { + + removeNode( p ); + p = end = p.prev; + if ( p === p.next ) { break; } + again = true; + + } else { + + p = p.next; + + } + + } while ( again || p !== end ); + + return end; + + } + + // main ear slicing loop which triangulates a polygon (given as a linked list) + function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) { + + if ( ! ear ) { return; } + + // interlink polygon nodes in z-order + if ( ! pass && invSize ) { indexCurve( ear, minX, minY, invSize ); } + + var stop = ear, + prev, next; + + // iterate through ears, slicing them one by one + while ( ear.prev !== ear.next ) { + + prev = ear.prev; + next = ear.next; + + if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) { + + // cut off the triangle + triangles.push( prev.i / dim ); + triangles.push( ear.i / dim ); + triangles.push( next.i / dim ); + + removeNode( ear ); + + // skipping the next vertex leads to less sliver triangles + ear = next.next; + stop = next.next; + + continue; + + } + + ear = next; + + // if we looped through the whole remaining polygon and can't find any more ears + if ( ear === stop ) { + + // try filtering points and slicing again + if ( ! pass ) { + + earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 ); + + // if this didn't work, try curing all small self-intersections locally + + } else if ( pass === 1 ) { + + ear = cureLocalIntersections( filterPoints( ear ), triangles, dim ); + earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 ); + + // as a last resort, try splitting the remaining polygon into two + + } else if ( pass === 2 ) { + + splitEarcut( ear, triangles, dim, minX, minY, invSize ); + + } + + break; + + } + + } + + } + + // check whether a polygon node forms a valid ear with adjacent nodes + function isEar( ear ) { + + var a = ear.prev, + b = ear, + c = ear.next; + + if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear + + // now make sure we don't have other points inside the potential ear + var p = ear.next.next; + + while ( p !== ear.prev ) { + + if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && + area( p.prev, p, p.next ) >= 0 ) { return false; } + p = p.next; + + } + + return true; + + } + + function isEarHashed( ear, minX, minY, invSize ) { + + var a = ear.prev, + b = ear, + c = ear.next; + + if ( area( a, b, c ) >= 0 ) { return false; } // reflex, can't be an ear + + // triangle bbox; min & max are calculated like this for speed + var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ), + minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ), + maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ), + maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y ); + + // z-order range for the current triangle bbox; + var minZ = zOrder( minTX, minTY, minX, minY, invSize ), + maxZ = zOrder( maxTX, maxTY, minX, minY, invSize ); + + var p = ear.prevZ, + n = ear.nextZ; + + // look for points inside the triangle in both directions + while ( p && p.z >= minZ && n && n.z <= maxZ ) { + + if ( p !== ear.prev && p !== ear.next && + pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && + area( p.prev, p, p.next ) >= 0 ) { return false; } + p = p.prevZ; + + if ( n !== ear.prev && n !== ear.next && + pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && + area( n.prev, n, n.next ) >= 0 ) { return false; } + n = n.nextZ; + + } + + // look for remaining points in decreasing z-order + while ( p && p.z >= minZ ) { + + if ( p !== ear.prev && p !== ear.next && + pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && + area( p.prev, p, p.next ) >= 0 ) { return false; } + p = p.prevZ; + + } + + // look for remaining points in increasing z-order + while ( n && n.z <= maxZ ) { + + if ( n !== ear.prev && n !== ear.next && + pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y ) && + area( n.prev, n, n.next ) >= 0 ) { return false; } + n = n.nextZ; + + } + + return true; + + } + + // go through all polygon nodes and cure small local self-intersections + function cureLocalIntersections( start, triangles, dim ) { + + var p = start; + do { + + var a = p.prev, + b = p.next.next; + + if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) { + + triangles.push( a.i / dim ); + triangles.push( p.i / dim ); + triangles.push( b.i / dim ); + + // remove two nodes involved + removeNode( p ); + removeNode( p.next ); + + p = start = b; + + } + + p = p.next; + + } while ( p !== start ); + + return filterPoints( p ); + + } + + // try splitting polygon into two and triangulate them independently + function splitEarcut( start, triangles, dim, minX, minY, invSize ) { + + // look for a valid diagonal that divides the polygon into two + var a = start; + do { + + var b = a.next.next; + while ( b !== a.prev ) { + + if ( a.i !== b.i && isValidDiagonal( a, b ) ) { + + // split the polygon in two by the diagonal + var c = splitPolygon( a, b ); + + // filter colinear points around the cuts + a = filterPoints( a, a.next ); + c = filterPoints( c, c.next ); + + // run earcut on each half + earcutLinked( a, triangles, dim, minX, minY, invSize ); + earcutLinked( c, triangles, dim, minX, minY, invSize ); + return; + + } + + b = b.next; + + } + + a = a.next; + + } while ( a !== start ); + + } + + // link every hole into the outer loop, producing a single-ring polygon without holes + function eliminateHoles( data, holeIndices, outerNode, dim ) { + + var queue = [], + i, len, start, end, list; + + for ( i = 0, len = holeIndices.length; i < len; i ++ ) { + + start = holeIndices[ i ] * dim; + end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length; + list = linkedList( data, start, end, dim, false ); + if ( list === list.next ) { list.steiner = true; } + queue.push( getLeftmost( list ) ); + + } + + queue.sort( compareX ); + + // process holes from left to right + for ( i = 0; i < queue.length; i ++ ) { + + eliminateHole( queue[ i ], outerNode ); + outerNode = filterPoints( outerNode, outerNode.next ); + + } + + return outerNode; + + } + + function compareX( a, b ) { + + return a.x - b.x; + + } + + // find a bridge between vertices that connects hole with an outer ring and and link it + function eliminateHole( hole, outerNode ) { + + outerNode = findHoleBridge( hole, outerNode ); + if ( outerNode ) { + + var b = splitPolygon( outerNode, hole ); + + // filter collinear points around the cuts + filterPoints( outerNode, outerNode.next ); + filterPoints( b, b.next ); + + } + + } + + // David Eberly's algorithm for finding a bridge between hole and outer polygon + function findHoleBridge( hole, outerNode ) { + + var p = outerNode, + hx = hole.x, + hy = hole.y, + qx = - Infinity, + m; + + // find a segment intersected by a ray from the hole's leftmost point to the left; + // segment's endpoint with lesser x will be potential connection point + do { + + if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) { + + var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y ); + if ( x <= hx && x > qx ) { + + qx = x; + if ( x === hx ) { + + if ( hy === p.y ) { return p; } + if ( hy === p.next.y ) { return p.next; } + + } + + m = p.x < p.next.x ? p : p.next; + + } + + } + + p = p.next; + + } while ( p !== outerNode ); + + if ( ! m ) { return null; } + + if ( hx === qx ) { return m; } // hole touches outer segment; pick leftmost endpoint + + // look for points inside the triangle of hole point, segment intersection and endpoint; + // if there are no points found, we have a valid connection; + // otherwise choose the point of the minimum angle with the ray as connection point + + var stop = m, + mx = m.x, + my = m.y, + tanMin = Infinity, + tan; + + p = m; + + do { + + if ( hx >= p.x && p.x >= mx && hx !== p.x && + pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) { + + tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential + + if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) { + + m = p; + tanMin = tan; + + } + + } + + p = p.next; + + } while ( p !== stop ); + + return m; + + } + + // whether sector in vertex m contains sector in vertex p in the same coordinates + function sectorContainsSector( m, p ) { + + return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0; + + } + + // interlink polygon nodes in z-order + function indexCurve( start, minX, minY, invSize ) { + + var p = start; + do { + + if ( p.z === null ) { p.z = zOrder( p.x, p.y, minX, minY, invSize ); } + p.prevZ = p.prev; + p.nextZ = p.next; + p = p.next; + + } while ( p !== start ); + + p.prevZ.nextZ = null; + p.prevZ = null; + + sortLinked( p ); + + } + + // Simon Tatham's linked list merge sort algorithm + // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html + function sortLinked( list ) { + + var i, p, q, e, tail, numMerges, pSize, qSize, + inSize = 1; + + do { + + p = list; + list = null; + tail = null; + numMerges = 0; + + while ( p ) { + + numMerges ++; + q = p; + pSize = 0; + for ( i = 0; i < inSize; i ++ ) { + + pSize ++; + q = q.nextZ; + if ( ! q ) { break; } + + } + + qSize = inSize; + + while ( pSize > 0 || ( qSize > 0 && q ) ) { + + if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) { + + e = p; + p = p.nextZ; + pSize --; + + } else { + + e = q; + q = q.nextZ; + qSize --; + + } + + if ( tail ) { tail.nextZ = e; } + else { list = e; } + + e.prevZ = tail; + tail = e; + + } + + p = q; + + } + + tail.nextZ = null; + inSize *= 2; + + } while ( numMerges > 1 ); + + return list; + + } + + // z-order of a point given coords and inverse of the longer side of data bbox + function zOrder( x, y, minX, minY, invSize ) { + + // coords are transformed into non-negative 15-bit integer range + x = 32767 * ( x - minX ) * invSize; + y = 32767 * ( y - minY ) * invSize; + + x = ( x | ( x << 8 ) ) & 0x00FF00FF; + x = ( x | ( x << 4 ) ) & 0x0F0F0F0F; + x = ( x | ( x << 2 ) ) & 0x33333333; + x = ( x | ( x << 1 ) ) & 0x55555555; + + y = ( y | ( y << 8 ) ) & 0x00FF00FF; + y = ( y | ( y << 4 ) ) & 0x0F0F0F0F; + y = ( y | ( y << 2 ) ) & 0x33333333; + y = ( y | ( y << 1 ) ) & 0x55555555; + + return x | ( y << 1 ); + + } + + // find the leftmost node of a polygon ring + function getLeftmost( start ) { + + var p = start, + leftmost = start; + do { + + if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) { leftmost = p; } + p = p.next; + + } while ( p !== start ); + + return leftmost; + + } + + // check if a point lies within a convex triangle + function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) { + + return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 && + ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 && + ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0; + + } + + // check if a diagonal between two polygon nodes is valid (lies in polygon interior) + function isValidDiagonal( a, b ) { + + return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges + ( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible + ( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors + equals( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case + + } + + // signed area of a triangle + function area( p, q, r ) { + + return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y ); + + } + + // check if two points are equal + function equals( p1, p2 ) { + + return p1.x === p2.x && p1.y === p2.y; + + } + + // check if two segments intersect + function intersects( p1, q1, p2, q2 ) { + + var o1 = sign( area( p1, q1, p2 ) ); + var o2 = sign( area( p1, q1, q2 ) ); + var o3 = sign( area( p2, q2, p1 ) ); + var o4 = sign( area( p2, q2, q1 ) ); + + if ( o1 !== o2 && o3 !== o4 ) { return true; } // general case + + if ( o1 === 0 && onSegment( p1, p2, q1 ) ) { return true; } // p1, q1 and p2 are collinear and p2 lies on p1q1 + if ( o2 === 0 && onSegment( p1, q2, q1 ) ) { return true; } // p1, q1 and q2 are collinear and q2 lies on p1q1 + if ( o3 === 0 && onSegment( p2, p1, q2 ) ) { return true; } // p2, q2 and p1 are collinear and p1 lies on p2q2 + if ( o4 === 0 && onSegment( p2, q1, q2 ) ) { return true; } // p2, q2 and q1 are collinear and q1 lies on p2q2 + + return false; + + } + + // for collinear points p, q, r, check if point q lies on segment pr + function onSegment( p, q, r ) { + + return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y ); + + } + + function sign( num ) { + + return num > 0 ? 1 : num < 0 ? - 1 : 0; + + } + + // check if a polygon diagonal intersects any polygon segments + function intersectsPolygon( a, b ) { + + var p = a; + do { + + if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && + intersects( p, p.next, a, b ) ) { return true; } + p = p.next; + + } while ( p !== a ); + + return false; + + } + + // check if a polygon diagonal is locally inside the polygon + function locallyInside( a, b ) { + + return area( a.prev, a, a.next ) < 0 ? + area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 : + area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0; + + } + + // check if the middle point of a polygon diagonal is inside the polygon + function middleInside( a, b ) { + + var p = a, + inside = false, + px = ( a.x + b.x ) / 2, + py = ( a.y + b.y ) / 2; + do { + + if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y && + ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) + { inside = ! inside; } + p = p.next; + + } while ( p !== a ); + + return inside; + + } + + // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; + // if one belongs to the outer ring and another to a hole, it merges it into a single ring + function splitPolygon( a, b ) { + + var a2 = new Node( a.i, a.x, a.y ), + b2 = new Node( b.i, b.x, b.y ), + an = a.next, + bp = b.prev; + + a.next = b; + b.prev = a; + + a2.next = an; + an.prev = a2; + + b2.next = a2; + a2.prev = b2; + + bp.next = b2; + b2.prev = bp; + + return b2; + + } + + // create a node and optionally link it with previous one (in a circular doubly linked list) + function insertNode( i, x, y, last ) { + + var p = new Node( i, x, y ); + + if ( ! last ) { + + p.prev = p; + p.next = p; + + } else { + + p.next = last.next; + p.prev = last; + last.next.prev = p; + last.next = p; + + } + + return p; + + } + + function removeNode( p ) { + + p.next.prev = p.prev; + p.prev.next = p.next; + + if ( p.prevZ ) { p.prevZ.nextZ = p.nextZ; } + if ( p.nextZ ) { p.nextZ.prevZ = p.prevZ; } + + } + + function Node( i, x, y ) { + + // vertex index in coordinates array + this.i = i; + + // vertex coordinates + this.x = x; + this.y = y; + + // previous and next vertex nodes in a polygon ring + this.prev = null; + this.next = null; + + // z-order curve value + this.z = null; + + // previous and next nodes in z-order + this.prevZ = null; + this.nextZ = null; + + // indicates whether this is a steiner point + this.steiner = false; + + } + + function signedArea( data, start, end, dim ) { + + var sum = 0; + for ( var i = start, j = end - dim; i < end; i += dim ) { + + sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] ); + j = i; + + } + + return sum; + + } + + var ShapeUtils = { + + // calculate area of the contour polygon + + area: function ( contour ) { + + var n = contour.length; + var a = 0.0; + + for ( var p = n - 1, q = 0; q < n; p = q ++ ) { + + a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; + + } + + return a * 0.5; + + }, + + isClockWise: function ( pts ) { + + return ShapeUtils.area( pts ) < 0; + + }, + + triangulateShape: function ( contour, holes ) { + + var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] + var holeIndices = []; // array of hole indices + var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] + + removeDupEndPts( contour ); + addContour( vertices, contour ); + + // + + var holeIndex = contour.length; + + holes.forEach( removeDupEndPts ); + + for ( var i = 0; i < holes.length; i ++ ) { + + holeIndices.push( holeIndex ); + holeIndex += holes[ i ].length; + addContour( vertices, holes[ i ] ); + + } + + // + + var triangles = Earcut.triangulate( vertices, holeIndices ); + + // + + for ( var i$1 = 0; i$1 < triangles.length; i$1 += 3 ) { + + faces.push( triangles.slice( i$1, i$1 + 3 ) ); + + } + + return faces; + + } + + }; + + function removeDupEndPts( points ) { + + var l = points.length; + + if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { + + points.pop(); + + } + + } + + function addContour( vertices, contour ) { + + for ( var i = 0; i < contour.length; i ++ ) { + + vertices.push( contour[ i ].x ); + vertices.push( contour[ i ].y ); + + } + + } + + /** + * Creates extruded geometry from a path shape. + * + * parameters = { + * + * curveSegments: , // number of points on the curves + * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too + * depth: , // Depth to extrude the shape + * + * bevelEnabled: , // turn on bevel + * bevelThickness: , // how deep into the original shape bevel goes + * bevelSize: , // how far from shape outline (including bevelOffset) is bevel + * bevelOffset: , // how far from shape outline does bevel start + * bevelSegments: , // number of bevel layers + * + * extrudePath: // curve to extrude shape along + * + * UVGenerator: // object that provides UV generator functions + * + * } + */ + + // ExtrudeGeometry + + function ExtrudeGeometry( shapes, options ) { + + Geometry.call( this ); + + this.type = 'ExtrudeGeometry'; + + this.parameters = { + shapes: shapes, + options: options + }; + + this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) ); + this.mergeVertices(); + + } + + ExtrudeGeometry.prototype = Object.create( Geometry.prototype ); + ExtrudeGeometry.prototype.constructor = ExtrudeGeometry; + + ExtrudeGeometry.prototype.toJSON = function () { + + var data = Geometry.prototype.toJSON.call( this ); + + var shapes = this.parameters.shapes; + var options = this.parameters.options; + + return toJSON( shapes, options, data ); + + }; + + // ExtrudeBufferGeometry + + function ExtrudeBufferGeometry( shapes, options ) { + + BufferGeometry.call( this ); + + this.type = 'ExtrudeBufferGeometry'; + + this.parameters = { + shapes: shapes, + options: options + }; + + shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; + + var scope = this; + + var verticesArray = []; + var uvArray = []; + + for ( var i = 0, l = shapes.length; i < l; i ++ ) { + + var shape = shapes[ i ]; + addShape( shape ); + + } + + // build geometry + + this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); + + this.computeVertexNormals(); + + // functions + + function addShape( shape ) { + + var placeholder = []; + + // options + + var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; + var steps = options.steps !== undefined ? options.steps : 1; + var depth = options.depth !== undefined ? options.depth : 100; + + var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; + var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; + var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; + var bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; + var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; + + var extrudePath = options.extrudePath; + + var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; + + // deprecated options + + if ( options.amount !== undefined ) { + + console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' ); + depth = options.amount; + + } + + // + + var extrudePts, extrudeByPath = false; + var splineTube, binormal, normal, position2; + + if ( extrudePath ) { + + extrudePts = extrudePath.getSpacedPoints( steps ); + + extrudeByPath = true; + bevelEnabled = false; // bevels not supported for path extrusion + + // SETUP TNB variables + + // TODO1 - have a .isClosed in spline? + + splineTube = extrudePath.computeFrenetFrames( steps, false ); + + // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); + + binormal = new Vector3(); + normal = new Vector3(); + position2 = new Vector3(); + + } + + // Safeguards if bevels are not enabled + + if ( ! bevelEnabled ) { + + bevelSegments = 0; + bevelThickness = 0; + bevelSize = 0; + bevelOffset = 0; + + } + + // Variables initialization + + var shapePoints = shape.extractPoints( curveSegments ); + + var vertices = shapePoints.shape; + var holes = shapePoints.holes; + + var reverse = ! ShapeUtils.isClockWise( vertices ); + + if ( reverse ) { + + vertices = vertices.reverse(); + + // Maybe we should also check if holes are in the opposite direction, just to be safe ... + + for ( var h = 0, hl = holes.length; h < hl; h ++ ) { + + var ahole = holes[ h ]; + + if ( ShapeUtils.isClockWise( ahole ) ) { + + holes[ h ] = ahole.reverse(); + + } + + } + + } + + + var faces = ShapeUtils.triangulateShape( vertices, holes ); + + /* Vertices */ + + var contour = vertices; // vertices has all points but contour has only points of circumference + + for ( var h$1 = 0, hl$1 = holes.length; h$1 < hl$1; h$1 ++ ) { + + var ahole$1 = holes[ h$1 ]; + + vertices = vertices.concat( ahole$1 ); + + } + + + function scalePt2( pt, vec, size ) { + + if ( ! vec ) { console.error( "THREE.ExtrudeGeometry: vec does not exist" ); } + + return vec.clone().multiplyScalar( size ).add( pt ); + + } + + var vlen = vertices.length, flen = faces.length; + + + // Find directions for point movement + + + function getBevelVec( inPt, inPrev, inNext ) { + + // computes for inPt the corresponding point inPt' on a new contour + // shifted by 1 unit (length of normalized vector) to the left + // if we walk along contour clockwise, this new contour is outside the old one + // + // inPt' is the intersection of the two lines parallel to the two + // adjacent edges of inPt at a distance of 1 unit on the left side. + + var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt + + // good reading for geometry algorithms (here: line-line intersection) + // http://geomalgorithms.com/a05-_intersect-1.html + + var v_prev_x = inPt.x - inPrev.x, + v_prev_y = inPt.y - inPrev.y; + var v_next_x = inNext.x - inPt.x, + v_next_y = inNext.y - inPt.y; + + var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); + + // check for collinear edges + var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); + + if ( Math.abs( collinear0 ) > Number.EPSILON ) { + + // not collinear + + // length of vectors for normalizing + + var v_prev_len = Math.sqrt( v_prev_lensq ); + var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); + + // shift adjacent points by unit vectors to the left + + var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); + var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); + + var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); + var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); + + // scaling factor for v_prev to intersection point + + var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - + ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / + ( v_prev_x * v_next_y - v_prev_y * v_next_x ); + + // vector from inPt to intersection point + + v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); + v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); + + // Don't normalize!, otherwise sharp corners become ugly + // but prevent crazy spikes + var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); + if ( v_trans_lensq <= 2 ) { + + return new Vector2( v_trans_x, v_trans_y ); + + } else { + + shrink_by = Math.sqrt( v_trans_lensq / 2 ); + + } + + } else { + + // handle special case of collinear edges + + var direction_eq = false; // assumes: opposite + + if ( v_prev_x > Number.EPSILON ) { + + if ( v_next_x > Number.EPSILON ) { + + direction_eq = true; + + } + + } else { + + if ( v_prev_x < - Number.EPSILON ) { + + if ( v_next_x < - Number.EPSILON ) { + + direction_eq = true; + + } + + } else { + + if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { + + direction_eq = true; + + } + + } + + } + + if ( direction_eq ) { + + // console.log("Warning: lines are a straight sequence"); + v_trans_x = - v_prev_y; + v_trans_y = v_prev_x; + shrink_by = Math.sqrt( v_prev_lensq ); + + } else { + + // console.log("Warning: lines are a straight spike"); + v_trans_x = v_prev_x; + v_trans_y = v_prev_y; + shrink_by = Math.sqrt( v_prev_lensq / 2 ); + + } + + } + + return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); + + } + + + var contourMovements = []; + + for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { + + if ( j === il ) { j = 0; } + if ( k === il ) { k = 0; } + + // (j)---(i)---(k) + // console.log('i,j,k', i, j , k) + + contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); + + } + + var holesMovements = []; + var oneHoleMovements, verticesMovements = contourMovements.concat(); + + for ( var h$2 = 0, hl$2 = holes.length; h$2 < hl$2; h$2 ++ ) { + + var ahole$2 = holes[ h$2 ]; + + oneHoleMovements = []; + + for ( var i$1 = 0, il$1 = ahole$2.length, j$1 = il$1 - 1, k$1 = i$1 + 1; i$1 < il$1; i$1 ++, j$1 ++, k$1 ++ ) { + + if ( j$1 === il$1 ) { j$1 = 0; } + if ( k$1 === il$1 ) { k$1 = 0; } + + // (j)---(i)---(k) + oneHoleMovements[ i$1 ] = getBevelVec( ahole$2[ i$1 ], ahole$2[ j$1 ], ahole$2[ k$1 ] ); + + } + + holesMovements.push( oneHoleMovements ); + verticesMovements = verticesMovements.concat( oneHoleMovements ); + + } + + + // Loop bevelSegments, 1 for the front, 1 for the back + + for ( var b = 0; b < bevelSegments; b ++ ) { + + //for ( b = bevelSegments; b > 0; b -- ) { + + var t = b / bevelSegments; + var z = bevelThickness * Math.cos( t * Math.PI / 2 ); + var bs$1 = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; + + // contract shape + + for ( var i$2 = 0, il$2 = contour.length; i$2 < il$2; i$2 ++ ) { + + var vert = scalePt2( contour[ i$2 ], contourMovements[ i$2 ], bs$1 ); + + v( vert.x, vert.y, - z ); + + } + + // expand holes + + for ( var h$3 = 0, hl$3 = holes.length; h$3 < hl$3; h$3 ++ ) { + + var ahole$3 = holes[ h$3 ]; + oneHoleMovements = holesMovements[ h$3 ]; + + for ( var i$3 = 0, il$3 = ahole$3.length; i$3 < il$3; i$3 ++ ) { + + var vert$1 = scalePt2( ahole$3[ i$3 ], oneHoleMovements[ i$3 ], bs$1 ); + + v( vert$1.x, vert$1.y, - z ); + + } + + } + + } + + var bs = bevelSize + bevelOffset; + + // Back facing vertices + + for ( var i$4 = 0; i$4 < vlen; i$4 ++ ) { + + var vert$2 = bevelEnabled ? scalePt2( vertices[ i$4 ], verticesMovements[ i$4 ], bs ) : vertices[ i$4 ]; + + if ( ! extrudeByPath ) { + + v( vert$2.x, vert$2.y, 0 ); + + } else { + + // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); + + normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert$2.x ); + binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert$2.y ); + + position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); + + v( position2.x, position2.y, position2.z ); + + } + + } + + // Add stepped vertices... + // Including front facing vertices + + for ( var s = 1; s <= steps; s ++ ) { + + for ( var i$5 = 0; i$5 < vlen; i$5 ++ ) { + + var vert$3 = bevelEnabled ? scalePt2( vertices[ i$5 ], verticesMovements[ i$5 ], bs ) : vertices[ i$5 ]; + + if ( ! extrudeByPath ) { + + v( vert$3.x, vert$3.y, depth / steps * s ); + + } else { + + // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); + + normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert$3.x ); + binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert$3.y ); + + position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); + + v( position2.x, position2.y, position2.z ); + + } + + } + + } + + + // Add bevel segments planes + + //for ( b = 1; b <= bevelSegments; b ++ ) { + for ( var b$1 = bevelSegments - 1; b$1 >= 0; b$1 -- ) { + + var t$1 = b$1 / bevelSegments; + var z$1 = bevelThickness * Math.cos( t$1 * Math.PI / 2 ); + var bs$2 = bevelSize * Math.sin( t$1 * Math.PI / 2 ) + bevelOffset; + + // contract shape + + for ( var i$6 = 0, il$4 = contour.length; i$6 < il$4; i$6 ++ ) { + + var vert$4 = scalePt2( contour[ i$6 ], contourMovements[ i$6 ], bs$2 ); + v( vert$4.x, vert$4.y, depth + z$1 ); + + } + + // expand holes + + for ( var h$4 = 0, hl$4 = holes.length; h$4 < hl$4; h$4 ++ ) { + + var ahole$4 = holes[ h$4 ]; + oneHoleMovements = holesMovements[ h$4 ]; + + for ( var i$7 = 0, il$5 = ahole$4.length; i$7 < il$5; i$7 ++ ) { + + var vert$5 = scalePt2( ahole$4[ i$7 ], oneHoleMovements[ i$7 ], bs$2 ); + + if ( ! extrudeByPath ) { + + v( vert$5.x, vert$5.y, depth + z$1 ); + + } else { + + v( vert$5.x, vert$5.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z$1 ); + + } + + } + + } + + } + + /* Faces */ + + // Top and bottom faces + + buildLidFaces(); + + // Sides faces + + buildSideFaces(); + + + ///// Internal functions + + function buildLidFaces() { + + var start = verticesArray.length / 3; + + if ( bevelEnabled ) { + + var layer = 0; // steps + 1 + var offset = vlen * layer; + + // Bottom faces + + for ( var i = 0; i < flen; i ++ ) { + + var face = faces[ i ]; + f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); + + } + + layer = steps + bevelSegments * 2; + offset = vlen * layer; + + // Top faces + + for ( var i$1 = 0; i$1 < flen; i$1 ++ ) { + + var face$1 = faces[ i$1 ]; + f3( face$1[ 0 ] + offset, face$1[ 1 ] + offset, face$1[ 2 ] + offset ); + + } + + } else { + + // Bottom faces + + for ( var i$2 = 0; i$2 < flen; i$2 ++ ) { + + var face$2 = faces[ i$2 ]; + f3( face$2[ 2 ], face$2[ 1 ], face$2[ 0 ] ); + + } + + // Top faces + + for ( var i$3 = 0; i$3 < flen; i$3 ++ ) { + + var face$3 = faces[ i$3 ]; + f3( face$3[ 0 ] + vlen * steps, face$3[ 1 ] + vlen * steps, face$3[ 2 ] + vlen * steps ); + + } + + } + + scope.addGroup( start, verticesArray.length / 3 - start, 0 ); + + } + + // Create faces for the z-sides of the shape + + function buildSideFaces() { + + var start = verticesArray.length / 3; + var layeroffset = 0; + sidewalls( contour, layeroffset ); + layeroffset += contour.length; + + for ( var h = 0, hl = holes.length; h < hl; h ++ ) { + + var ahole = holes[ h ]; + sidewalls( ahole, layeroffset ); + + //, true + layeroffset += ahole.length; + + } + + + scope.addGroup( start, verticesArray.length / 3 - start, 1 ); + + + } + + function sidewalls( contour, layeroffset ) { + + var i = contour.length; + + while ( -- i >= 0 ) { + + var j = i; + var k = i - 1; + if ( k < 0 ) { k = contour.length - 1; } + + //console.log('b', i,j, i-1, k,vertices.length); + + for ( var s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { + + var slen1 = vlen * s; + var slen2 = vlen * ( s + 1 ); + + var a = layeroffset + j + slen1, + b = layeroffset + k + slen1, + c = layeroffset + k + slen2, + d = layeroffset + j + slen2; + + f4( a, b, c, d ); + + } + + } + + } + + function v( x, y, z ) { + + placeholder.push( x ); + placeholder.push( y ); + placeholder.push( z ); + + } + + + function f3( a, b, c ) { + + addVertex( a ); + addVertex( b ); + addVertex( c ); + + var nextIndex = verticesArray.length / 3; + var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); + + addUV( uvs[ 0 ] ); + addUV( uvs[ 1 ] ); + addUV( uvs[ 2 ] ); + + } + + function f4( a, b, c, d ) { + + addVertex( a ); + addVertex( b ); + addVertex( d ); + + addVertex( b ); + addVertex( c ); + addVertex( d ); + + + var nextIndex = verticesArray.length / 3; + var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); + + addUV( uvs[ 0 ] ); + addUV( uvs[ 1 ] ); + addUV( uvs[ 3 ] ); + + addUV( uvs[ 1 ] ); + addUV( uvs[ 2 ] ); + addUV( uvs[ 3 ] ); + + } + + function addVertex( index ) { + + verticesArray.push( placeholder[ index * 3 + 0 ] ); + verticesArray.push( placeholder[ index * 3 + 1 ] ); + verticesArray.push( placeholder[ index * 3 + 2 ] ); + + } + + + function addUV( vector2 ) { + + uvArray.push( vector2.x ); + uvArray.push( vector2.y ); + + } + + } + + } + + ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry; + + ExtrudeBufferGeometry.prototype.toJSON = function () { + + var data = BufferGeometry.prototype.toJSON.call( this ); + + var shapes = this.parameters.shapes; + var options = this.parameters.options; + + return toJSON( shapes, options, data ); + + }; + + // + + var WorldUVGenerator = { + + generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { + + var a_x = vertices[ indexA * 3 ]; + var a_y = vertices[ indexA * 3 + 1 ]; + var b_x = vertices[ indexB * 3 ]; + var b_y = vertices[ indexB * 3 + 1 ]; + var c_x = vertices[ indexC * 3 ]; + var c_y = vertices[ indexC * 3 + 1 ]; + + return [ + new Vector2( a_x, a_y ), + new Vector2( b_x, b_y ), + new Vector2( c_x, c_y ) + ]; + + }, + + generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { + + var a_x = vertices[ indexA * 3 ]; + var a_y = vertices[ indexA * 3 + 1 ]; + var a_z = vertices[ indexA * 3 + 2 ]; + var b_x = vertices[ indexB * 3 ]; + var b_y = vertices[ indexB * 3 + 1 ]; + var b_z = vertices[ indexB * 3 + 2 ]; + var c_x = vertices[ indexC * 3 ]; + var c_y = vertices[ indexC * 3 + 1 ]; + var c_z = vertices[ indexC * 3 + 2 ]; + var d_x = vertices[ indexD * 3 ]; + var d_y = vertices[ indexD * 3 + 1 ]; + var d_z = vertices[ indexD * 3 + 2 ]; + + if ( Math.abs( a_y - b_y ) < 0.01 ) { + + return [ + new Vector2( a_x, 1 - a_z ), + new Vector2( b_x, 1 - b_z ), + new Vector2( c_x, 1 - c_z ), + new Vector2( d_x, 1 - d_z ) + ]; + + } else { + + return [ + new Vector2( a_y, 1 - a_z ), + new Vector2( b_y, 1 - b_z ), + new Vector2( c_y, 1 - c_z ), + new Vector2( d_y, 1 - d_z ) + ]; + + } + + } + }; + + function toJSON( shapes, options, data ) { + + // + + data.shapes = []; + + if ( Array.isArray( shapes ) ) { + + for ( var i = 0, l = shapes.length; i < l; i ++ ) { + + var shape = shapes[ i ]; + + data.shapes.push( shape.uuid ); + + } + + } else { + + data.shapes.push( shapes.uuid ); + + } + + // + + if ( options.extrudePath !== undefined ) { data.options.extrudePath = options.extrudePath.toJSON(); } + + return data; + + } + + /** + * Text = 3D Text + * + * parameters = { + * font: , // font + * + * size: , // size of the text + * height: , // thickness to extrude text + * curveSegments: , // number of points on the curves + * + * bevelEnabled: , // turn on bevel + * bevelThickness: , // how deep into text bevel goes + * bevelSize: , // how far from text outline (including bevelOffset) is bevel + * bevelOffset: // how far from text outline does bevel start + * } + */ + + // TextGeometry + + function TextGeometry( text, parameters ) { + + Geometry.call( this ); + + this.type = 'TextGeometry'; + + this.parameters = { + text: text, + parameters: parameters + }; + + this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) ); + this.mergeVertices(); + + } + + TextGeometry.prototype = Object.create( Geometry.prototype ); + TextGeometry.prototype.constructor = TextGeometry; + + // TextBufferGeometry + + function TextBufferGeometry( text, parameters ) { + + parameters = parameters || {}; + + var font = parameters.font; + + if ( ! ( font && font.isFont ) ) { + + console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' ); + return new Geometry(); + + } + + var shapes = font.generateShapes( text, parameters.size ); + + // translate parameters to ExtrudeGeometry API + + parameters.depth = parameters.height !== undefined ? parameters.height : 50; + + // defaults + + if ( parameters.bevelThickness === undefined ) { parameters.bevelThickness = 10; } + if ( parameters.bevelSize === undefined ) { parameters.bevelSize = 8; } + if ( parameters.bevelEnabled === undefined ) { parameters.bevelEnabled = false; } + + ExtrudeBufferGeometry.call( this, shapes, parameters ); + + this.type = 'TextBufferGeometry'; + + } + + TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype ); + TextBufferGeometry.prototype.constructor = TextBufferGeometry; + + // SphereGeometry + + function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { + + Geometry.call( this ); + + this.type = 'SphereGeometry'; + + this.parameters = { + radius: radius, + widthSegments: widthSegments, + heightSegments: heightSegments, + phiStart: phiStart, + phiLength: phiLength, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ); + this.mergeVertices(); + + } + + SphereGeometry.prototype = Object.create( Geometry.prototype ); + SphereGeometry.prototype.constructor = SphereGeometry; + + // SphereBufferGeometry + + function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { + + BufferGeometry.call( this ); + + this.type = 'SphereBufferGeometry'; + + this.parameters = { + radius: radius, + widthSegments: widthSegments, + heightSegments: heightSegments, + phiStart: phiStart, + phiLength: phiLength, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + radius = radius || 1; + + widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 ); + heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 ); + + phiStart = phiStart !== undefined ? phiStart : 0; + phiLength = phiLength !== undefined ? phiLength : Math.PI * 2; + + thetaStart = thetaStart !== undefined ? thetaStart : 0; + thetaLength = thetaLength !== undefined ? thetaLength : Math.PI; + + var thetaEnd = Math.min( thetaStart + thetaLength, Math.PI ); + + var index = 0; + var grid = []; + + var vertex = new Vector3(); + var normal = new Vector3(); + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // generate vertices, normals and uvs + + for ( var iy = 0; iy <= heightSegments; iy ++ ) { + + var verticesRow = []; + + var v = iy / heightSegments; + + // special case for the poles + + var uOffset = 0; + + if ( iy == 0 && thetaStart == 0 ) { + + uOffset = 0.5 / widthSegments; + + } else if ( iy == heightSegments && thetaEnd == Math.PI ) { + + uOffset = - 0.5 / widthSegments; + + } + + for ( var ix = 0; ix <= widthSegments; ix ++ ) { + + var u = ix / widthSegments; + + // vertex + + vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); + vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); + vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normal.copy( vertex ).normalize(); + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( u + uOffset, 1 - v ); + + verticesRow.push( index ++ ); + + } + + grid.push( verticesRow ); + + } + + // indices + + for ( var iy$1 = 0; iy$1 < heightSegments; iy$1 ++ ) { + + for ( var ix$1 = 0; ix$1 < widthSegments; ix$1 ++ ) { + + var a = grid[ iy$1 ][ ix$1 + 1 ]; + var b = grid[ iy$1 ][ ix$1 ]; + var c = grid[ iy$1 + 1 ][ ix$1 ]; + var d = grid[ iy$1 + 1 ][ ix$1 + 1 ]; + + if ( iy$1 !== 0 || thetaStart > 0 ) { indices.push( a, b, d ); } + if ( iy$1 !== heightSegments - 1 || thetaEnd < Math.PI ) { indices.push( b, c, d ); } + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + SphereBufferGeometry.prototype.constructor = SphereBufferGeometry; + + // RingGeometry + + function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { + + Geometry.call( this ); + + this.type = 'RingGeometry'; + + this.parameters = { + innerRadius: innerRadius, + outerRadius: outerRadius, + thetaSegments: thetaSegments, + phiSegments: phiSegments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ); + this.mergeVertices(); + + } + + RingGeometry.prototype = Object.create( Geometry.prototype ); + RingGeometry.prototype.constructor = RingGeometry; + + // RingBufferGeometry + + function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { + + BufferGeometry.call( this ); + + this.type = 'RingBufferGeometry'; + + this.parameters = { + innerRadius: innerRadius, + outerRadius: outerRadius, + thetaSegments: thetaSegments, + phiSegments: phiSegments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + innerRadius = innerRadius || 0.5; + outerRadius = outerRadius || 1; + + thetaStart = thetaStart !== undefined ? thetaStart : 0; + thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; + + thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8; + phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // some helper variables + + var radius = innerRadius; + var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); + var vertex = new Vector3(); + var uv = new Vector2(); + + // generate vertices, normals and uvs + + for ( var j = 0; j <= phiSegments; j ++ ) { + + for ( var i = 0; i <= thetaSegments; i ++ ) { + + // values are generate from the inside of the ring to the outside + + var segment = thetaStart + i / thetaSegments * thetaLength; + + // vertex + + vertex.x = radius * Math.cos( segment ); + vertex.y = radius * Math.sin( segment ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normals.push( 0, 0, 1 ); + + // uv + + uv.x = ( vertex.x / outerRadius + 1 ) / 2; + uv.y = ( vertex.y / outerRadius + 1 ) / 2; + + uvs.push( uv.x, uv.y ); + + } + + // increase the radius for next row of vertices + + radius += radiusStep; + + } + + // indices + + for ( var j$1 = 0; j$1 < phiSegments; j$1 ++ ) { + + var thetaSegmentLevel = j$1 * ( thetaSegments + 1 ); + + for ( var i$1 = 0; i$1 < thetaSegments; i$1 ++ ) { + + var segment$1 = i$1 + thetaSegmentLevel; + + var a = segment$1; + var b = segment$1 + thetaSegments + 1; + var c = segment$1 + thetaSegments + 2; + var d = segment$1 + 1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + RingBufferGeometry.prototype.constructor = RingBufferGeometry; + + // LatheGeometry + + function LatheGeometry( points, segments, phiStart, phiLength ) { + + Geometry.call( this ); + + this.type = 'LatheGeometry'; + + this.parameters = { + points: points, + segments: segments, + phiStart: phiStart, + phiLength: phiLength + }; + + this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) ); + this.mergeVertices(); + + } + + LatheGeometry.prototype = Object.create( Geometry.prototype ); + LatheGeometry.prototype.constructor = LatheGeometry; + + // LatheBufferGeometry + + function LatheBufferGeometry( points, segments, phiStart, phiLength ) { + + BufferGeometry.call( this ); + + this.type = 'LatheBufferGeometry'; + + this.parameters = { + points: points, + segments: segments, + phiStart: phiStart, + phiLength: phiLength + }; + + segments = Math.floor( segments ) || 12; + phiStart = phiStart || 0; + phiLength = phiLength || Math.PI * 2; + + // clamp phiLength so it's in range of [ 0, 2PI ] + + phiLength = MathUtils.clamp( phiLength, 0, Math.PI * 2 ); + + + // buffers + + var indices = []; + var vertices = []; + var uvs = []; + + // helper variables + + var inverseSegments = 1.0 / segments; + var vertex = new Vector3(); + var uv = new Vector2(); + + // generate vertices and uvs + + for ( var i = 0; i <= segments; i ++ ) { + + var phi = phiStart + i * inverseSegments * phiLength; + + var sin = Math.sin( phi ); + var cos = Math.cos( phi ); + + for ( var j = 0; j <= ( points.length - 1 ); j ++ ) { + + // vertex + + vertex.x = points[ j ].x * sin; + vertex.y = points[ j ].y; + vertex.z = points[ j ].x * cos; + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // uv + + uv.x = i / segments; + uv.y = j / ( points.length - 1 ); + + uvs.push( uv.x, uv.y ); + + + } + + } + + // indices + + for ( var i$1 = 0; i$1 < segments; i$1 ++ ) { + + for ( var j$1 = 0; j$1 < ( points.length - 1 ); j$1 ++ ) { + + var base = j$1 + i$1 * points.length; + + var a = base; + var b = base + points.length; + var c = base + points.length + 1; + var d = base + 1; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + // generate normals + + this.computeVertexNormals(); + + // if the geometry is closed, we need to average the normals along the seam. + // because the corresponding vertices are identical (but still have different UVs). + + if ( phiLength === Math.PI * 2 ) { + + var normals = this.attributes.normal.array; + var n1 = new Vector3(); + var n2 = new Vector3(); + var n = new Vector3(); + + // this is the buffer offset for the last line of vertices + + var base$1 = segments * points.length * 3; + + for ( var i$2 = 0, j$2 = 0; i$2 < points.length; i$2 ++, j$2 += 3 ) { + + // select the normal of the vertex in the first line + + n1.x = normals[ j$2 + 0 ]; + n1.y = normals[ j$2 + 1 ]; + n1.z = normals[ j$2 + 2 ]; + + // select the normal of the vertex in the last line + + n2.x = normals[ base$1 + j$2 + 0 ]; + n2.y = normals[ base$1 + j$2 + 1 ]; + n2.z = normals[ base$1 + j$2 + 2 ]; + + // average normals + + n.addVectors( n1, n2 ).normalize(); + + // assign the new values to both normals + + normals[ j$2 + 0 ] = normals[ base$1 + j$2 + 0 ] = n.x; + normals[ j$2 + 1 ] = normals[ base$1 + j$2 + 1 ] = n.y; + normals[ j$2 + 2 ] = normals[ base$1 + j$2 + 2 ] = n.z; + + } + + } + + } + + LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + LatheBufferGeometry.prototype.constructor = LatheBufferGeometry; + + // ShapeGeometry + + function ShapeGeometry( shapes, curveSegments ) { + + Geometry.call( this ); + + this.type = 'ShapeGeometry'; + + if ( typeof curveSegments === 'object' ) { + + console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' ); + + curveSegments = curveSegments.curveSegments; + + } + + this.parameters = { + shapes: shapes, + curveSegments: curveSegments + }; + + this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) ); + this.mergeVertices(); + + } + + ShapeGeometry.prototype = Object.create( Geometry.prototype ); + ShapeGeometry.prototype.constructor = ShapeGeometry; + + ShapeGeometry.prototype.toJSON = function () { + + var data = Geometry.prototype.toJSON.call( this ); + + var shapes = this.parameters.shapes; + + return toJSON$1( shapes, data ); + + }; + + // ShapeBufferGeometry + + function ShapeBufferGeometry( shapes, curveSegments ) { + + BufferGeometry.call( this ); + + this.type = 'ShapeBufferGeometry'; + + this.parameters = { + shapes: shapes, + curveSegments: curveSegments + }; + + curveSegments = curveSegments || 12; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // helper variables + + var groupStart = 0; + var groupCount = 0; + + // allow single and array values for "shapes" parameter + + if ( Array.isArray( shapes ) === false ) { + + addShape( shapes ); + + } else { + + for ( var i = 0; i < shapes.length; i ++ ) { + + addShape( shapes[ i ] ); + + this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support + + groupStart += groupCount; + groupCount = 0; + + } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + + // helper functions + + function addShape( shape ) { + + var indexOffset = vertices.length / 3; + var points = shape.extractPoints( curveSegments ); + + var shapeVertices = points.shape; + var shapeHoles = points.holes; + + // check direction of vertices + + if ( ShapeUtils.isClockWise( shapeVertices ) === false ) { + + shapeVertices = shapeVertices.reverse(); + + } + + for ( var i = 0, l = shapeHoles.length; i < l; i ++ ) { + + var shapeHole = shapeHoles[ i ]; + + if ( ShapeUtils.isClockWise( shapeHole ) === true ) { + + shapeHoles[ i ] = shapeHole.reverse(); + + } + + } + + var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles ); + + // join vertices of inner and outer paths to a single array + + for ( var i$1 = 0, l$1 = shapeHoles.length; i$1 < l$1; i$1 ++ ) { + + var shapeHole$1 = shapeHoles[ i$1 ]; + shapeVertices = shapeVertices.concat( shapeHole$1 ); + + } + + // vertices, normals, uvs + + for ( var i$2 = 0, l$2 = shapeVertices.length; i$2 < l$2; i$2 ++ ) { + + var vertex = shapeVertices[ i$2 ]; + + vertices.push( vertex.x, vertex.y, 0 ); + normals.push( 0, 0, 1 ); + uvs.push( vertex.x, vertex.y ); // world uvs + + } + + // incides + + for ( var i$3 = 0, l$3 = faces.length; i$3 < l$3; i$3 ++ ) { + + var face = faces[ i$3 ]; + + var a = face[ 0 ] + indexOffset; + var b = face[ 1 ] + indexOffset; + var c = face[ 2 ] + indexOffset; + + indices.push( a, b, c ); + groupCount += 3; + + } + + } + + } + + ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry; + + ShapeBufferGeometry.prototype.toJSON = function () { + + var data = BufferGeometry.prototype.toJSON.call( this ); + + var shapes = this.parameters.shapes; + + return toJSON$1( shapes, data ); + + }; + + // + + function toJSON$1( shapes, data ) { + + data.shapes = []; + + if ( Array.isArray( shapes ) ) { + + for ( var i = 0, l = shapes.length; i < l; i ++ ) { + + var shape = shapes[ i ]; + + data.shapes.push( shape.uuid ); + + } + + } else { + + data.shapes.push( shapes.uuid ); + + } + + return data; + + } + + function EdgesGeometry( geometry, thresholdAngle ) { + + BufferGeometry.call( this ); + + this.type = 'EdgesGeometry'; + + this.parameters = { + thresholdAngle: thresholdAngle + }; + + thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1; + + // buffer + + var vertices = []; + + // helper variables + + var thresholdDot = Math.cos( MathUtils.DEG2RAD * thresholdAngle ); + var edge = [ 0, 0 ], edges = {}; + var edge1, edge2, key; + var keys = [ 'a', 'b', 'c' ]; + + // prepare source geometry + + var geometry2; + + if ( geometry.isBufferGeometry ) { + + geometry2 = new Geometry(); + geometry2.fromBufferGeometry( geometry ); + + } else { + + geometry2 = geometry.clone(); + + } + + geometry2.mergeVertices(); + geometry2.computeFaceNormals(); + + var sourceVertices = geometry2.vertices; + var faces = geometry2.faces; + + // now create a data structure where each entry represents an edge with its adjoining faces + + for ( var i = 0, l = faces.length; i < l; i ++ ) { + + var face = faces[ i ]; + + for ( var j = 0; j < 3; j ++ ) { + + edge1 = face[ keys[ j ] ]; + edge2 = face[ keys[ ( j + 1 ) % 3 ] ]; + edge[ 0 ] = Math.min( edge1, edge2 ); + edge[ 1 ] = Math.max( edge1, edge2 ); + + key = edge[ 0 ] + ',' + edge[ 1 ]; + + if ( edges[ key ] === undefined ) { + + edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined }; + + } else { + + edges[ key ].face2 = i; + + } + + } + + } + + // generate vertices + + for ( key in edges ) { + + var e = edges[ key ]; + + // an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree. + + if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) { + + var vertex = sourceVertices[ e.index1 ]; + vertices.push( vertex.x, vertex.y, vertex.z ); + + vertex = sourceVertices[ e.index2 ]; + vertices.push( vertex.x, vertex.y, vertex.z ); + + } + + } + + // build geometry + + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + + } + + EdgesGeometry.prototype = Object.create( BufferGeometry.prototype ); + EdgesGeometry.prototype.constructor = EdgesGeometry; + + // CylinderGeometry + + function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { + + Geometry.call( this ); + + this.type = 'CylinderGeometry'; + + this.parameters = { + radiusTop: radiusTop, + radiusBottom: radiusBottom, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ); + this.mergeVertices(); + + } + + CylinderGeometry.prototype = Object.create( Geometry.prototype ); + CylinderGeometry.prototype.constructor = CylinderGeometry; + + // CylinderBufferGeometry + + function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { + + BufferGeometry.call( this ); + + this.type = 'CylinderBufferGeometry'; + + this.parameters = { + radiusTop: radiusTop, + radiusBottom: radiusBottom, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + var scope = this; + + radiusTop = radiusTop !== undefined ? radiusTop : 1; + radiusBottom = radiusBottom !== undefined ? radiusBottom : 1; + height = height || 1; + + radialSegments = Math.floor( radialSegments ) || 8; + heightSegments = Math.floor( heightSegments ) || 1; + + openEnded = openEnded !== undefined ? openEnded : false; + thetaStart = thetaStart !== undefined ? thetaStart : 0.0; + thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // helper variables + + var index = 0; + var indexArray = []; + var halfHeight = height / 2; + var groupStart = 0; + + // generate geometry + + generateTorso(); + + if ( openEnded === false ) { + + if ( radiusTop > 0 ) { generateCap( true ); } + if ( radiusBottom > 0 ) { generateCap( false ); } + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + function generateTorso() { + + var normal = new Vector3(); + var vertex = new Vector3(); + + var groupCount = 0; + + // this will be used to calculate the normal + var slope = ( radiusBottom - radiusTop ) / height; + + // generate vertices, normals and uvs + + for ( var y = 0; y <= heightSegments; y ++ ) { + + var indexRow = []; + + var v = y / heightSegments; + + // calculate the radius of the current row + + var radius = v * ( radiusBottom - radiusTop ) + radiusTop; + + for ( var x = 0; x <= radialSegments; x ++ ) { + + var u = x / radialSegments; + + var theta = u * thetaLength + thetaStart; + + var sinTheta = Math.sin( theta ); + var cosTheta = Math.cos( theta ); + + // vertex + + vertex.x = radius * sinTheta; + vertex.y = - v * height + halfHeight; + vertex.z = radius * cosTheta; + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normal.set( sinTheta, slope, cosTheta ).normalize(); + normals.push( normal.x, normal.y, normal.z ); + + // uv + + uvs.push( u, 1 - v ); + + // save index of vertex in respective row + + indexRow.push( index ++ ); + + } + + // now save vertices of the row in our index array + + indexArray.push( indexRow ); + + } + + // generate indices + + for ( var x$1 = 0; x$1 < radialSegments; x$1 ++ ) { + + for ( var y$1 = 0; y$1 < heightSegments; y$1 ++ ) { + + // we use the index array to access the correct indices + + var a = indexArray[ y$1 ][ x$1 ]; + var b = indexArray[ y$1 + 1 ][ x$1 ]; + var c = indexArray[ y$1 + 1 ][ x$1 + 1 ]; + var d = indexArray[ y$1 ][ x$1 + 1 ]; + + // faces + + indices.push( a, b, d ); + indices.push( b, c, d ); + + // update group counter + + groupCount += 6; + + } + + } + + // add a group to the geometry. this will ensure multi material support + + scope.addGroup( groupStart, groupCount, 0 ); + + // calculate new start value for groups + + groupStart += groupCount; + + } + + function generateCap( top ) { + + var centerIndexStart, centerIndexEnd; + + var uv = new Vector2(); + var vertex = new Vector3(); + + var groupCount = 0; + + var radius = ( top === true ) ? radiusTop : radiusBottom; + var sign = ( top === true ) ? 1 : - 1; + + // save the index of the first center vertex + centerIndexStart = index; + + // first we generate the center vertex data of the cap. + // because the geometry needs one set of uvs per face, + // we must generate a center vertex per face/segment + + for ( var x = 1; x <= radialSegments; x ++ ) { + + // vertex + + vertices.push( 0, halfHeight * sign, 0 ); + + // normal + + normals.push( 0, sign, 0 ); + + // uv + + uvs.push( 0.5, 0.5 ); + + // increase index + + index ++; + + } + + // save the index of the last center vertex + + centerIndexEnd = index; + + // now we generate the surrounding vertices, normals and uvs + + for ( var x$1 = 0; x$1 <= radialSegments; x$1 ++ ) { + + var u = x$1 / radialSegments; + var theta = u * thetaLength + thetaStart; + + var cosTheta = Math.cos( theta ); + var sinTheta = Math.sin( theta ); + + // vertex + + vertex.x = radius * sinTheta; + vertex.y = halfHeight * sign; + vertex.z = radius * cosTheta; + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normals.push( 0, sign, 0 ); + + // uv + + uv.x = ( cosTheta * 0.5 ) + 0.5; + uv.y = ( sinTheta * 0.5 * sign ) + 0.5; + uvs.push( uv.x, uv.y ); + + // increase index + + index ++; + + } + + // generate indices + + for ( var x$2 = 0; x$2 < radialSegments; x$2 ++ ) { + + var c = centerIndexStart + x$2; + var i = centerIndexEnd + x$2; + + if ( top === true ) { + + // face top + + indices.push( i, i + 1, c ); + + } else { + + // face bottom + + indices.push( i + 1, i, c ); + + } + + groupCount += 3; + + } + + // add a group to the geometry. this will ensure multi material support + + scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); + + // calculate new start value for groups + + groupStart += groupCount; + + } + + } + + CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry; + + // ConeGeometry + + function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { + + CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); + + this.type = 'ConeGeometry'; + + this.parameters = { + radius: radius, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + } + + ConeGeometry.prototype = Object.create( CylinderGeometry.prototype ); + ConeGeometry.prototype.constructor = ConeGeometry; + + // ConeBufferGeometry + + function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { + + CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); + + this.type = 'ConeBufferGeometry'; + + this.parameters = { + radius: radius, + height: height, + radialSegments: radialSegments, + heightSegments: heightSegments, + openEnded: openEnded, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + } + + ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype ); + ConeBufferGeometry.prototype.constructor = ConeBufferGeometry; + + // CircleGeometry + + function CircleGeometry( radius, segments, thetaStart, thetaLength ) { + + Geometry.call( this ); + + this.type = 'CircleGeometry'; + + this.parameters = { + radius: radius, + segments: segments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) ); + this.mergeVertices(); + + } + + CircleGeometry.prototype = Object.create( Geometry.prototype ); + CircleGeometry.prototype.constructor = CircleGeometry; + + // CircleBufferGeometry + + function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) { + + BufferGeometry.call( this ); + + this.type = 'CircleBufferGeometry'; + + this.parameters = { + radius: radius, + segments: segments, + thetaStart: thetaStart, + thetaLength: thetaLength + }; + + radius = radius || 1; + segments = segments !== undefined ? Math.max( 3, segments ) : 8; + + thetaStart = thetaStart !== undefined ? thetaStart : 0; + thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2; + + // buffers + + var indices = []; + var vertices = []; + var normals = []; + var uvs = []; + + // helper variables + + var vertex = new Vector3(); + var uv = new Vector2(); + + // center point + + vertices.push( 0, 0, 0 ); + normals.push( 0, 0, 1 ); + uvs.push( 0.5, 0.5 ); + + for ( var s = 0, i = 3; s <= segments; s ++, i += 3 ) { + + var segment = thetaStart + s / segments * thetaLength; + + // vertex + + vertex.x = radius * Math.cos( segment ); + vertex.y = radius * Math.sin( segment ); + + vertices.push( vertex.x, vertex.y, vertex.z ); + + // normal + + normals.push( 0, 0, 1 ); + + // uvs + + uv.x = ( vertices[ i ] / radius + 1 ) / 2; + uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2; + + uvs.push( uv.x, uv.y ); + + } + + // indices + + for ( var i$1 = 1; i$1 <= segments; i$1 ++ ) { + + indices.push( i$1, i$1 + 1, 0 ); + + } + + // build geometry + + this.setIndex( indices ); + this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); + this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); + + } + + CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype ); + CircleBufferGeometry.prototype.constructor = CircleBufferGeometry; + + var Geometries = /*#__PURE__*/Object.freeze({ + __proto__: null, + WireframeGeometry: WireframeGeometry, + ParametricGeometry: ParametricGeometry, + ParametricBufferGeometry: ParametricBufferGeometry, + TetrahedronGeometry: TetrahedronGeometry, + TetrahedronBufferGeometry: TetrahedronBufferGeometry, + OctahedronGeometry: OctahedronGeometry, + OctahedronBufferGeometry: OctahedronBufferGeometry, + IcosahedronGeometry: IcosahedronGeometry, + IcosahedronBufferGeometry: IcosahedronBufferGeometry, + DodecahedronGeometry: DodecahedronGeometry, + DodecahedronBufferGeometry: DodecahedronBufferGeometry, + PolyhedronGeometry: PolyhedronGeometry, + PolyhedronBufferGeometry: PolyhedronBufferGeometry, + TubeGeometry: TubeGeometry, + TubeBufferGeometry: TubeBufferGeometry, + TorusKnotGeometry: TorusKnotGeometry, + TorusKnotBufferGeometry: TorusKnotBufferGeometry, + TorusGeometry: TorusGeometry, + TorusBufferGeometry: TorusBufferGeometry, + TextGeometry: TextGeometry, + TextBufferGeometry: TextBufferGeometry, + SphereGeometry: SphereGeometry, + SphereBufferGeometry: SphereBufferGeometry, + RingGeometry: RingGeometry, + RingBufferGeometry: RingBufferGeometry, + PlaneGeometry: PlaneGeometry, + PlaneBufferGeometry: PlaneBufferGeometry, + LatheGeometry: LatheGeometry, + LatheBufferGeometry: LatheBufferGeometry, + ShapeGeometry: ShapeGeometry, + ShapeBufferGeometry: ShapeBufferGeometry, + ExtrudeGeometry: ExtrudeGeometry, + ExtrudeBufferGeometry: ExtrudeBufferGeometry, + EdgesGeometry: EdgesGeometry, + ConeGeometry: ConeGeometry, + ConeBufferGeometry: ConeBufferGeometry, + CylinderGeometry: CylinderGeometry, + CylinderBufferGeometry: CylinderBufferGeometry, + CircleGeometry: CircleGeometry, + CircleBufferGeometry: CircleBufferGeometry, + BoxGeometry: BoxGeometry, + BoxBufferGeometry: BoxBufferGeometry + }); + + /** + * parameters = { + * color: + * } + */ + + function ShadowMaterial( parameters ) { + + Material.call( this ); + + this.type = 'ShadowMaterial'; + + this.color = new Color( 0x000000 ); + this.transparent = true; + + this.setValues( parameters ); + + } + + ShadowMaterial.prototype = Object.create( Material.prototype ); + ShadowMaterial.prototype.constructor = ShadowMaterial; + + ShadowMaterial.prototype.isShadowMaterial = true; + + ShadowMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + return this; + + }; + + function RawShaderMaterial( parameters ) { + + ShaderMaterial.call( this, parameters ); + + this.type = 'RawShaderMaterial'; + + } + + RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype ); + RawShaderMaterial.prototype.constructor = RawShaderMaterial; + + RawShaderMaterial.prototype.isRawShaderMaterial = true; + + /** + * parameters = { + * color: , + * roughness: , + * metalness: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * roughnessMap: new THREE.Texture( ), + * + * metalnessMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * envMapIntensity: + * + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function MeshStandardMaterial( parameters ) { + + Material.call( this ); + + this.defines = { 'STANDARD': '' }; + + this.type = 'MeshStandardMaterial'; + + this.color = new Color( 0xffffff ); // diffuse + this.roughness = 1.0; + this.metalness = 0.0; + + this.map = null; + + this.lightMap = null; + this.lightMapIntensity = 1.0; + + this.aoMap = null; + this.aoMapIntensity = 1.0; + + this.emissive = new Color( 0x000000 ); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + + this.bumpMap = null; + this.bumpScale = 1; + + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2( 1, 1 ); + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.roughnessMap = null; + + this.metalnessMap = null; + + this.alphaMap = null; + + this.envMap = null; + this.envMapIntensity = 1.0; + + this.refractionRatio = 0.98; + + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + + this.skinning = false; + this.morphTargets = false; + this.morphNormals = false; + + this.vertexTangents = false; + + this.setValues( parameters ); + + } + + MeshStandardMaterial.prototype = Object.create( Material.prototype ); + MeshStandardMaterial.prototype.constructor = MeshStandardMaterial; + + MeshStandardMaterial.prototype.isMeshStandardMaterial = true; + + MeshStandardMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.defines = { 'STANDARD': '' }; + + this.color.copy( source.color ); + this.roughness = source.roughness; + this.metalness = source.metalness; + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.roughnessMap = source.roughnessMap; + + this.metalnessMap = source.metalnessMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.envMapIntensity = source.envMapIntensity; + + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + this.vertexTangents = source.vertexTangents; + + return this; + + }; + + /** + * parameters = { + * clearcoat: , + * clearcoatMap: new THREE.Texture( ), + * clearcoatRoughness: , + * clearcoatRoughnessMap: new THREE.Texture( ), + * clearcoatNormalScale: , + * clearcoatNormalMap: new THREE.Texture( ), + * + * reflectivity: , + * + * sheen: , + * + * transmission: , + * transmissionMap: new THREE.Texture( ) + * } + */ + + function MeshPhysicalMaterial( parameters ) { + + MeshStandardMaterial.call( this ); + + this.defines = { + + 'STANDARD': '', + 'PHYSICAL': '' + + }; + + this.type = 'MeshPhysicalMaterial'; + + this.clearcoat = 0.0; + this.clearcoatMap = null; + this.clearcoatRoughness = 0.0; + this.clearcoatRoughnessMap = null; + this.clearcoatNormalScale = new Vector2( 1, 1 ); + this.clearcoatNormalMap = null; + + this.reflectivity = 0.5; // maps to F0 = 0.04 + + this.sheen = null; // null will disable sheen bsdf + + this.transmission = 0.0; + this.transmissionMap = null; + + this.setValues( parameters ); + + } + + MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype ); + MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial; + + MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true; + + MeshPhysicalMaterial.prototype.copy = function ( source ) { + + MeshStandardMaterial.prototype.copy.call( this, source ); + + this.defines = { + + 'STANDARD': '', + 'PHYSICAL': '' + + }; + + this.clearcoat = source.clearcoat; + this.clearcoatMap = source.clearcoatMap; + this.clearcoatRoughness = source.clearcoatRoughness; + this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; + this.clearcoatNormalMap = source.clearcoatNormalMap; + this.clearcoatNormalScale.copy( source.clearcoatNormalScale ); + + this.reflectivity = source.reflectivity; + + if ( source.sheen ) { + + this.sheen = ( this.sheen || new Color() ).copy( source.sheen ); + + } else { + + this.sheen = null; + + } + + this.transmission = source.transmission; + this.transmissionMap = source.transmissionMap; + + return this; + + }; + + /** + * parameters = { + * color: , + * specular: , + * shininess: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.MultiplyOperation, + * reflectivity: , + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function MeshPhongMaterial( parameters ) { + + Material.call( this ); + + this.type = 'MeshPhongMaterial'; + + this.color = new Color( 0xffffff ); // diffuse + this.specular = new Color( 0x111111 ); + this.shininess = 30; + + this.map = null; + + this.lightMap = null; + this.lightMapIntensity = 1.0; + + this.aoMap = null; + this.aoMapIntensity = 1.0; + + this.emissive = new Color( 0x000000 ); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + + this.bumpMap = null; + this.bumpScale = 1; + + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2( 1, 1 ); + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.specularMap = null; + + this.alphaMap = null; + + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + + this.skinning = false; + this.morphTargets = false; + this.morphNormals = false; + + this.setValues( parameters ); + + } + + MeshPhongMaterial.prototype = Object.create( Material.prototype ); + MeshPhongMaterial.prototype.constructor = MeshPhongMaterial; + + MeshPhongMaterial.prototype.isMeshPhongMaterial = true; + + MeshPhongMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + this.specular.copy( source.specular ); + this.shininess = source.shininess; + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.specularMap = source.specularMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + return this; + + }; + + /** + * parameters = { + * color: , + * + * map: new THREE.Texture( ), + * gradientMap: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * alphaMap: new THREE.Texture( ), + * + * wireframe: , + * wireframeLinewidth: , + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function MeshToonMaterial( parameters ) { + + Material.call( this ); + + this.defines = { 'TOON': '' }; + + this.type = 'MeshToonMaterial'; + + this.color = new Color( 0xffffff ); + + this.map = null; + this.gradientMap = null; + + this.lightMap = null; + this.lightMapIntensity = 1.0; + + this.aoMap = null; + this.aoMapIntensity = 1.0; + + this.emissive = new Color( 0x000000 ); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + + this.bumpMap = null; + this.bumpScale = 1; + + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2( 1, 1 ); + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.alphaMap = null; + + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + + this.skinning = false; + this.morphTargets = false; + this.morphNormals = false; + + this.setValues( parameters ); + + } + + MeshToonMaterial.prototype = Object.create( Material.prototype ); + MeshToonMaterial.prototype.constructor = MeshToonMaterial; + + MeshToonMaterial.prototype.isMeshToonMaterial = true; + + MeshToonMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + this.map = source.map; + this.gradientMap = source.gradientMap; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.alphaMap = source.alphaMap; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + return this; + + }; + + /** + * parameters = { + * opacity: , + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * wireframe: , + * wireframeLinewidth: + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function MeshNormalMaterial( parameters ) { + + Material.call( this ); + + this.type = 'MeshNormalMaterial'; + + this.bumpMap = null; + this.bumpScale = 1; + + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2( 1, 1 ); + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.wireframe = false; + this.wireframeLinewidth = 1; + + this.fog = false; + + this.skinning = false; + this.morphTargets = false; + this.morphNormals = false; + + this.setValues( parameters ); + + } + + MeshNormalMaterial.prototype = Object.create( Material.prototype ); + MeshNormalMaterial.prototype.constructor = MeshNormalMaterial; + + MeshNormalMaterial.prototype.isMeshNormalMaterial = true; + + MeshNormalMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + return this; + + }; + + /** + * parameters = { + * color: , + * opacity: , + * + * map: new THREE.Texture( ), + * + * lightMap: new THREE.Texture( ), + * lightMapIntensity: + * + * aoMap: new THREE.Texture( ), + * aoMapIntensity: + * + * emissive: , + * emissiveIntensity: + * emissiveMap: new THREE.Texture( ), + * + * specularMap: new THREE.Texture( ), + * + * alphaMap: new THREE.Texture( ), + * + * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), + * combine: THREE.Multiply, + * reflectivity: , + * refractionRatio: , + * + * wireframe: , + * wireframeLinewidth: , + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function MeshLambertMaterial( parameters ) { + + Material.call( this ); + + this.type = 'MeshLambertMaterial'; + + this.color = new Color( 0xffffff ); // diffuse + + this.map = null; + + this.lightMap = null; + this.lightMapIntensity = 1.0; + + this.aoMap = null; + this.aoMapIntensity = 1.0; + + this.emissive = new Color( 0x000000 ); + this.emissiveIntensity = 1.0; + this.emissiveMap = null; + + this.specularMap = null; + + this.alphaMap = null; + + this.envMap = null; + this.combine = MultiplyOperation; + this.reflectivity = 1; + this.refractionRatio = 0.98; + + this.wireframe = false; + this.wireframeLinewidth = 1; + this.wireframeLinecap = 'round'; + this.wireframeLinejoin = 'round'; + + this.skinning = false; + this.morphTargets = false; + this.morphNormals = false; + + this.setValues( parameters ); + + } + + MeshLambertMaterial.prototype = Object.create( Material.prototype ); + MeshLambertMaterial.prototype.constructor = MeshLambertMaterial; + + MeshLambertMaterial.prototype.isMeshLambertMaterial = true; + + MeshLambertMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + + this.map = source.map; + + this.lightMap = source.lightMap; + this.lightMapIntensity = source.lightMapIntensity; + + this.aoMap = source.aoMap; + this.aoMapIntensity = source.aoMapIntensity; + + this.emissive.copy( source.emissive ); + this.emissiveMap = source.emissiveMap; + this.emissiveIntensity = source.emissiveIntensity; + + this.specularMap = source.specularMap; + + this.alphaMap = source.alphaMap; + + this.envMap = source.envMap; + this.combine = source.combine; + this.reflectivity = source.reflectivity; + this.refractionRatio = source.refractionRatio; + + this.wireframe = source.wireframe; + this.wireframeLinewidth = source.wireframeLinewidth; + this.wireframeLinecap = source.wireframeLinecap; + this.wireframeLinejoin = source.wireframeLinejoin; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + return this; + + }; + + /** + * parameters = { + * color: , + * opacity: , + * + * matcap: new THREE.Texture( ), + * + * map: new THREE.Texture( ), + * + * bumpMap: new THREE.Texture( ), + * bumpScale: , + * + * normalMap: new THREE.Texture( ), + * normalMapType: THREE.TangentSpaceNormalMap, + * normalScale: , + * + * displacementMap: new THREE.Texture( ), + * displacementScale: , + * displacementBias: , + * + * alphaMap: new THREE.Texture( ), + * + * skinning: , + * morphTargets: , + * morphNormals: + * } + */ + + function MeshMatcapMaterial( parameters ) { + + Material.call( this ); + + this.defines = { 'MATCAP': '' }; + + this.type = 'MeshMatcapMaterial'; + + this.color = new Color( 0xffffff ); // diffuse + + this.matcap = null; + + this.map = null; + + this.bumpMap = null; + this.bumpScale = 1; + + this.normalMap = null; + this.normalMapType = TangentSpaceNormalMap; + this.normalScale = new Vector2( 1, 1 ); + + this.displacementMap = null; + this.displacementScale = 1; + this.displacementBias = 0; + + this.alphaMap = null; + + this.skinning = false; + this.morphTargets = false; + this.morphNormals = false; + + this.setValues( parameters ); + + } + + MeshMatcapMaterial.prototype = Object.create( Material.prototype ); + MeshMatcapMaterial.prototype.constructor = MeshMatcapMaterial; + + MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true; + + MeshMatcapMaterial.prototype.copy = function ( source ) { + + Material.prototype.copy.call( this, source ); + + this.defines = { 'MATCAP': '' }; + + this.color.copy( source.color ); + + this.matcap = source.matcap; + + this.map = source.map; + + this.bumpMap = source.bumpMap; + this.bumpScale = source.bumpScale; + + this.normalMap = source.normalMap; + this.normalMapType = source.normalMapType; + this.normalScale.copy( source.normalScale ); + + this.displacementMap = source.displacementMap; + this.displacementScale = source.displacementScale; + this.displacementBias = source.displacementBias; + + this.alphaMap = source.alphaMap; + + this.skinning = source.skinning; + this.morphTargets = source.morphTargets; + this.morphNormals = source.morphNormals; + + return this; + + }; + + /** + * parameters = { + * color: , + * opacity: , + * + * linewidth: , + * + * scale: , + * dashSize: , + * gapSize: + * } + */ + + function LineDashedMaterial( parameters ) { + + LineBasicMaterial.call( this ); + + this.type = 'LineDashedMaterial'; + + this.scale = 1; + this.dashSize = 3; + this.gapSize = 1; + + this.setValues( parameters ); + + } + + LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype ); + LineDashedMaterial.prototype.constructor = LineDashedMaterial; + + LineDashedMaterial.prototype.isLineDashedMaterial = true; + + LineDashedMaterial.prototype.copy = function ( source ) { + + LineBasicMaterial.prototype.copy.call( this, source ); + + this.scale = source.scale; + this.dashSize = source.dashSize; + this.gapSize = source.gapSize; + + return this; + + }; + + var Materials = /*#__PURE__*/Object.freeze({ + __proto__: null, + ShadowMaterial: ShadowMaterial, + SpriteMaterial: SpriteMaterial, + RawShaderMaterial: RawShaderMaterial, + ShaderMaterial: ShaderMaterial, + PointsMaterial: PointsMaterial, + MeshPhysicalMaterial: MeshPhysicalMaterial, + MeshStandardMaterial: MeshStandardMaterial, + MeshPhongMaterial: MeshPhongMaterial, + MeshToonMaterial: MeshToonMaterial, + MeshNormalMaterial: MeshNormalMaterial, + MeshLambertMaterial: MeshLambertMaterial, + MeshDepthMaterial: MeshDepthMaterial, + MeshDistanceMaterial: MeshDistanceMaterial, + MeshBasicMaterial: MeshBasicMaterial, + MeshMatcapMaterial: MeshMatcapMaterial, + LineDashedMaterial: LineDashedMaterial, + LineBasicMaterial: LineBasicMaterial, + Material: Material + }); + + var AnimationUtils = { + + // same as Array.prototype.slice, but also works on typed arrays + arraySlice: function ( array, from, to ) { + + if ( AnimationUtils.isTypedArray( array ) ) { + + // in ios9 array.subarray(from, undefined) will return empty array + // but array.subarray(from) or array.subarray(from, len) is correct + return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) ); + + } + + return array.slice( from, to ); + + }, + + // converts an array to a specific type + convertArray: function ( array, type, forceClone ) { + + if ( ! array || // let 'undefined' and 'null' pass + ! forceClone && array.constructor === type ) { return array; } + + if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { + + return new type( array ); // create typed array + + } + + return Array.prototype.slice.call( array ); // create Array + + }, + + isTypedArray: function ( object ) { + + return ArrayBuffer.isView( object ) && + ! ( object instanceof DataView ); + + }, + + // returns an array by which times and values can be sorted + getKeyframeOrder: function ( times ) { + + function compareTime( i, j ) { + + return times[ i ] - times[ j ]; + + } + + var n = times.length; + var result = new Array( n ); + for ( var i = 0; i !== n; ++ i ) { result[ i ] = i; } + + result.sort( compareTime ); + + return result; + + }, + + // uses the array previously returned by 'getKeyframeOrder' to sort data + sortedArray: function ( values, stride, order ) { + + var nValues = values.length; + var result = new values.constructor( nValues ); + + for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { + + var srcOffset = order[ i ] * stride; + + for ( var j = 0; j !== stride; ++ j ) { + + result[ dstOffset ++ ] = values[ srcOffset + j ]; + + } + + } + + return result; + + }, + + // function for parsing AOS keyframe formats + flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) { + + var i = 1, key = jsonKeys[ 0 ]; + + while ( key !== undefined && key[ valuePropertyName ] === undefined ) { + + key = jsonKeys[ i ++ ]; + + } + + if ( key === undefined ) { return; } // no data + + var value = key[ valuePropertyName ]; + if ( value === undefined ) { return; } // no data + + if ( Array.isArray( value ) ) { + + do { + + value = key[ valuePropertyName ]; + + if ( value !== undefined ) { + + times.push( key.time ); + values.push.apply( values, value ); // push all elements + + } + + key = jsonKeys[ i ++ ]; + + } while ( key !== undefined ); + + } else if ( value.toArray !== undefined ) { + + // ...assume THREE.Math-ish + + do { + + value = key[ valuePropertyName ]; + + if ( value !== undefined ) { + + times.push( key.time ); + value.toArray( values, values.length ); + + } + + key = jsonKeys[ i ++ ]; + + } while ( key !== undefined ); + + } else { + + // otherwise push as-is + + do { + + value = key[ valuePropertyName ]; + + if ( value !== undefined ) { + + times.push( key.time ); + values.push( value ); + + } + + key = jsonKeys[ i ++ ]; + + } while ( key !== undefined ); + + } + + }, + + subclip: function ( sourceClip, name, startFrame, endFrame, fps ) { + + fps = fps || 30; + + var clip = sourceClip.clone(); + + clip.name = name; + + var tracks = []; + + for ( var i = 0; i < clip.tracks.length; ++ i ) { + + var track = clip.tracks[ i ]; + var valueSize = track.getValueSize(); + + var times = []; + var values = []; + + for ( var j = 0; j < track.times.length; ++ j ) { + + var frame = track.times[ j ] * fps; + + if ( frame < startFrame || frame >= endFrame ) { continue; } + + times.push( track.times[ j ] ); + + for ( var k = 0; k < valueSize; ++ k ) { + + values.push( track.values[ j * valueSize + k ] ); + + } + + } + + if ( times.length === 0 ) { continue; } + + track.times = AnimationUtils.convertArray( times, track.times.constructor ); + track.values = AnimationUtils.convertArray( values, track.values.constructor ); + + tracks.push( track ); + + } + + clip.tracks = tracks; + + // find minimum .times value across all tracks in the trimmed clip + + var minStartTime = Infinity; + + for ( var i$1 = 0; i$1 < clip.tracks.length; ++ i$1 ) { + + if ( minStartTime > clip.tracks[ i$1 ].times[ 0 ] ) { + + minStartTime = clip.tracks[ i$1 ].times[ 0 ]; + + } + + } + + // shift all tracks such that clip begins at t=0 + + for ( var i$2 = 0; i$2 < clip.tracks.length; ++ i$2 ) { + + clip.tracks[ i$2 ].shift( - 1 * minStartTime ); + + } + + clip.resetDuration(); + + return clip; + + }, + + makeClipAdditive: function ( targetClip, referenceFrame, referenceClip, fps ) { + + if ( referenceFrame === undefined ) { referenceFrame = 0; } + if ( referenceClip === undefined ) { referenceClip = targetClip; } + if ( fps === undefined || fps <= 0 ) { fps = 30; } + + var numTracks = targetClip.tracks.length; + var referenceTime = referenceFrame / fps; + + // Make each track's values relative to the values at the reference frame + var loop = function ( i ) { + + var referenceTrack = referenceClip.tracks[ i ]; + var referenceTrackType = referenceTrack.ValueTypeName; + + // Skip this track if it's non-numeric + if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) { return; } + + // Find the track in the target clip whose name and type matches the reference track + var targetTrack = targetClip.tracks.find( function ( track ) { + + return track.name === referenceTrack.name + && track.ValueTypeName === referenceTrackType; + + } ); + + if ( targetTrack === undefined ) { return; } + + var valueSize = referenceTrack.getValueSize(); + var lastIndex = referenceTrack.times.length - 1; + var referenceValue = (void 0); + + // Find the value to subtract out of the track + if ( referenceTime <= referenceTrack.times[ 0 ] ) { + + // Reference frame is earlier than the first keyframe, so just use the first keyframe + referenceValue = AnimationUtils.arraySlice( referenceTrack.values, 0, referenceTrack.valueSize ); + + } else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) { + + // Reference frame is after the last keyframe, so just use the last keyframe + var startIndex = lastIndex * valueSize; + referenceValue = AnimationUtils.arraySlice( referenceTrack.values, startIndex ); + + } else { + + // Interpolate to the reference value + var interpolant = referenceTrack.createInterpolant(); + interpolant.evaluate( referenceTime ); + referenceValue = interpolant.resultBuffer; + + } + + // Conjugate the quaternion + if ( referenceTrackType === 'quaternion' ) { + + var referenceQuat = new Quaternion( + referenceValue[ 0 ], + referenceValue[ 1 ], + referenceValue[ 2 ], + referenceValue[ 3 ] + ).normalize().conjugate(); + referenceQuat.toArray( referenceValue ); + + } + + // Subtract the reference value from all of the track values + + var numTimes = targetTrack.times.length; + for ( var j = 0; j < numTimes; ++ j ) { + + var valueStart = j * valueSize; + + if ( referenceTrackType === 'quaternion' ) { + + // Multiply the conjugate for quaternion track types + Quaternion.multiplyQuaternionsFlat( + targetTrack.values, + valueStart, + referenceValue, + 0, + targetTrack.values, + valueStart + ); + + } else { + + // Subtract each value for all other numeric track types + for ( var k = 0; k < valueSize; ++ k ) { + + targetTrack.values[ valueStart + k ] -= referenceValue[ k ]; + + } + + } + + } + + }; + + for ( var i = 0; i < numTracks; ++ i ) loop( i ); + + targetClip.blendMode = AdditiveAnimationBlendMode; + + return targetClip; + + } + + }; + + /** + * Abstract base class of interpolants over parametric samples. + * + * The parameter domain is one dimensional, typically the time or a path + * along a curve defined by the data. + * + * The sample values can have any dimensionality and derived classes may + * apply special interpretations to the data. + * + * This class provides the interval seek in a Template Method, deferring + * the actual interpolation to derived classes. + * + * Time complexity is O(1) for linear access crossing at most two points + * and O(log N) for random access, where N is the number of positions. + * + * References: + * + * http://www.oodesign.com/template-method-pattern.html + * + */ + + function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + this.parameterPositions = parameterPositions; + this._cachedIndex = 0; + + this.resultBuffer = resultBuffer !== undefined ? + resultBuffer : new sampleValues.constructor( sampleSize ); + this.sampleValues = sampleValues; + this.valueSize = sampleSize; + + } + + Object.assign( Interpolant.prototype, { + + evaluate: function ( t ) { + + var pp = this.parameterPositions, + i1 = this._cachedIndex, + + t1 = pp[ i1 ], + t0 = pp[ i1 - 1 ]; + + validate_interval: { + + seek: { + + var right; + + linear_scan: { + + //- See http://jsperf.com/comparison-to-undefined/3 + //- slower code: + //- + //- if ( t >= t1 || t1 === undefined ) { + forward_scan: if ( ! ( t < t1 ) ) { + + for ( var giveUpAt = i1 + 2; ; ) { + + if ( t1 === undefined ) { + + if ( t < t0 ) { break forward_scan; } + + // after end + + i1 = pp.length; + this._cachedIndex = i1; + return this.afterEnd_( i1 - 1, t, t0 ); + + } + + if ( i1 === giveUpAt ) { break; } // this loop + + t0 = t1; + t1 = pp[ ++ i1 ]; + + if ( t < t1 ) { + + // we have arrived at the sought interval + break seek; + + } + + } + + // prepare binary search on the right side of the index + right = pp.length; + break linear_scan; + + } + + //- slower code: + //- if ( t < t0 || t0 === undefined ) { + if ( ! ( t >= t0 ) ) { + + // looping? + + var t1global = pp[ 1 ]; + + if ( t < t1global ) { + + i1 = 2; // + 1, using the scan for the details + t0 = t1global; + + } + + // linear reverse scan + + for ( var giveUpAt$1 = i1 - 2; ; ) { + + if ( t0 === undefined ) { + + // before start + + this._cachedIndex = 0; + return this.beforeStart_( 0, t, t1 ); + + } + + if ( i1 === giveUpAt$1 ) { break; } // this loop + + t1 = t0; + t0 = pp[ -- i1 - 1 ]; + + if ( t >= t0 ) { + + // we have arrived at the sought interval + break seek; + + } + + } + + // prepare binary search on the left side of the index + right = i1; + i1 = 0; + break linear_scan; + + } + + // the interval is valid + + break validate_interval; + + } // linear scan + + // binary search + + while ( i1 < right ) { + + var mid = ( i1 + right ) >>> 1; + + if ( t < pp[ mid ] ) { + + right = mid; + + } else { + + i1 = mid + 1; + + } + + } + + t1 = pp[ i1 ]; + t0 = pp[ i1 - 1 ]; + + // check boundary cases, again + + if ( t0 === undefined ) { + + this._cachedIndex = 0; + return this.beforeStart_( 0, t, t1 ); + + } + + if ( t1 === undefined ) { + + i1 = pp.length; + this._cachedIndex = i1; + return this.afterEnd_( i1 - 1, t0, t ); + + } + + } // seek + + this._cachedIndex = i1; + + this.intervalChanged_( i1, t0, t1 ); + + } // validate_interval + + return this.interpolate_( i1, t0, t, t1 ); + + }, + + settings: null, // optional, subclass-specific settings structure + // Note: The indirection allows central control of many interpolants. + + // --- Protected interface + + DefaultSettings_: {}, + + getSettings_: function () { + + return this.settings || this.DefaultSettings_; + + }, + + copySampleValue_: function ( index ) { + + // copies a sample value to the result buffer + + var result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + offset = index * stride; + + for ( var i = 0; i !== stride; ++ i ) { + + result[ i ] = values[ offset + i ]; + + } + + return result; + + }, + + // Template methods for derived classes: + + interpolate_: function ( /* i1, t0, t, t1 */ ) { + + throw new Error( 'call to abstract method' ); + // implementations shall return this.resultBuffer + + }, + + intervalChanged_: function ( /* i1, t0, t1 */ ) { + + // empty + + } + + } ); + + // DECLARE ALIAS AFTER assign prototype + Object.assign( Interpolant.prototype, { + + //( 0, t, t0 ), returns this.resultBuffer + beforeStart_: Interpolant.prototype.copySampleValue_, + + //( N-1, tN-1, t ), returns this.resultBuffer + afterEnd_: Interpolant.prototype.copySampleValue_, + + } ); + + /** + * Fast and simple cubic spline interpolant. + * + * It was derived from a Hermitian construction setting the first derivative + * at each sample position to the linear slope between neighboring positions + * over their parameter interval. + */ + + function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); + + this._weightPrev = - 0; + this._offsetPrev = - 0; + this._weightNext = - 0; + this._offsetNext = - 0; + + } + + CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { + + constructor: CubicInterpolant, + + DefaultSettings_: { + + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + + }, + + intervalChanged_: function ( i1, t0, t1 ) { + + var pp = this.parameterPositions, + iPrev = i1 - 2, + iNext = i1 + 1, + + tPrev = pp[ iPrev ], + tNext = pp[ iNext ]; + + if ( tPrev === undefined ) { + + switch ( this.getSettings_().endingStart ) { + + case ZeroSlopeEnding: + + // f'(t0) = 0 + iPrev = i1; + tPrev = 2 * t0 - t1; + + break; + + case WrapAroundEnding: + + // use the other end of the curve + iPrev = pp.length - 2; + tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; + + break; + + default: // ZeroCurvatureEnding + + // f''(t0) = 0 a.k.a. Natural Spline + iPrev = i1; + tPrev = t1; + + } + + } + + if ( tNext === undefined ) { + + switch ( this.getSettings_().endingEnd ) { + + case ZeroSlopeEnding: + + // f'(tN) = 0 + iNext = i1; + tNext = 2 * t1 - t0; + + break; + + case WrapAroundEnding: + + // use the other end of the curve + iNext = 1; + tNext = t1 + pp[ 1 ] - pp[ 0 ]; + + break; + + default: // ZeroCurvatureEnding + + // f''(tN) = 0, a.k.a. Natural Spline + iNext = i1 - 1; + tNext = t0; + + } + + } + + var halfDt = ( t1 - t0 ) * 0.5, + stride = this.valueSize; + + this._weightPrev = halfDt / ( t0 - tPrev ); + this._weightNext = halfDt / ( tNext - t1 ); + this._offsetPrev = iPrev * stride; + this._offsetNext = iNext * stride; + + }, + + interpolate_: function ( i1, t0, t, t1 ) { + + var result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + + o1 = i1 * stride, o0 = o1 - stride, + oP = this._offsetPrev, oN = this._offsetNext, + wP = this._weightPrev, wN = this._weightNext, + + p = ( t - t0 ) / ( t1 - t0 ), + pp = p * p, + ppp = pp * p; + + // evaluate polynomials + + var sP = - wP * ppp + 2 * wP * pp - wP * p; + var s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1; + var s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; + var sN = wN * ppp - wN * pp; + + // combine data linearly + + for ( var i = 0; i !== stride; ++ i ) { + + result[ i ] = + sP * values[ oP + i ] + + s0 * values[ o0 + i ] + + s1 * values[ o1 + i ] + + sN * values[ oN + i ]; + + } + + return result; + + } + + } ); + + function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { + + constructor: LinearInterpolant, + + interpolate_: function ( i1, t0, t, t1 ) { + + var result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + + offset1 = i1 * stride, + offset0 = offset1 - stride, + + weight1 = ( t - t0 ) / ( t1 - t0 ), + weight0 = 1 - weight1; + + for ( var i = 0; i !== stride; ++ i ) { + + result[ i ] = + values[ offset0 + i ] * weight0 + + values[ offset1 + i ] * weight1; + + } + + return result; + + } + + } ); + + /** + * + * Interpolant that evaluates to the sample value at the position preceeding + * the parameter. + */ + + function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { + + constructor: DiscreteInterpolant, + + interpolate_: function ( i1 /*, t0, t, t1 */ ) { + + return this.copySampleValue_( i1 - 1 ); + + } + + } ); + + function KeyframeTrack( name, times, values, interpolation ) { + + if ( name === undefined ) { throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); } + if ( times === undefined || times.length === 0 ) { throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); } + + this.name = name; + + this.times = AnimationUtils.convertArray( times, this.TimeBufferType ); + this.values = AnimationUtils.convertArray( values, this.ValueBufferType ); + + this.setInterpolation( interpolation || this.DefaultInterpolation ); + + } + + // Static methods + + Object.assign( KeyframeTrack, { + + // Serialization (in static context, because of constructor invocation + // and automatic invocation of .toJSON): + + toJSON: function ( track ) { + + var trackType = track.constructor; + + var json; + + // derived classes can define a static toJSON method + if ( trackType.toJSON !== undefined ) { + + json = trackType.toJSON( track ); + + } else { + + // by default, we assume the data can be serialized as-is + json = { + + 'name': track.name, + 'times': AnimationUtils.convertArray( track.times, Array ), + 'values': AnimationUtils.convertArray( track.values, Array ) + + }; + + var interpolation = track.getInterpolation(); + + if ( interpolation !== track.DefaultInterpolation ) { + + json.interpolation = interpolation; + + } + + } + + json.type = track.ValueTypeName; // mandatory + + return json; + + } + + } ); + + Object.assign( KeyframeTrack.prototype, { + + constructor: KeyframeTrack, + + TimeBufferType: Float32Array, + + ValueBufferType: Float32Array, + + DefaultInterpolation: InterpolateLinear, + + InterpolantFactoryMethodDiscrete: function ( result ) { + + return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); + + }, + + InterpolantFactoryMethodLinear: function ( result ) { + + return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); + + }, + + InterpolantFactoryMethodSmooth: function ( result ) { + + return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); + + }, + + setInterpolation: function ( interpolation ) { + + var factoryMethod; + + switch ( interpolation ) { + + case InterpolateDiscrete: + + factoryMethod = this.InterpolantFactoryMethodDiscrete; + + break; + + case InterpolateLinear: + + factoryMethod = this.InterpolantFactoryMethodLinear; + + break; + + case InterpolateSmooth: + + factoryMethod = this.InterpolantFactoryMethodSmooth; + + break; + + } + + if ( factoryMethod === undefined ) { + + var message = "unsupported interpolation for " + + this.ValueTypeName + " keyframe track named " + this.name; + + if ( this.createInterpolant === undefined ) { + + // fall back to default, unless the default itself is messed up + if ( interpolation !== this.DefaultInterpolation ) { + + this.setInterpolation( this.DefaultInterpolation ); + + } else { + + throw new Error( message ); // fatal, in this case + + } + + } + + console.warn( 'THREE.KeyframeTrack:', message ); + return this; + + } + + this.createInterpolant = factoryMethod; + + return this; + + }, + + getInterpolation: function () { + + switch ( this.createInterpolant ) { + + case this.InterpolantFactoryMethodDiscrete: + + return InterpolateDiscrete; + + case this.InterpolantFactoryMethodLinear: + + return InterpolateLinear; + + case this.InterpolantFactoryMethodSmooth: + + return InterpolateSmooth; + + } + + }, + + getValueSize: function () { + + return this.values.length / this.times.length; + + }, + + // move all keyframes either forwards or backwards in time + shift: function ( timeOffset ) { + + if ( timeOffset !== 0.0 ) { + + var times = this.times; + + for ( var i = 0, n = times.length; i !== n; ++ i ) { + + times[ i ] += timeOffset; + + } + + } + + return this; + + }, + + // scale all keyframe times by a factor (useful for frame <-> seconds conversions) + scale: function ( timeScale ) { + + if ( timeScale !== 1.0 ) { + + var times = this.times; + + for ( var i = 0, n = times.length; i !== n; ++ i ) { + + times[ i ] *= timeScale; + + } + + } + + return this; + + }, + + // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. + // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values + trim: function ( startTime, endTime ) { + + var times = this.times, + nKeys = times.length; + + var from = 0, + to = nKeys - 1; + + while ( from !== nKeys && times[ from ] < startTime ) { + + ++ from; + + } + + while ( to !== - 1 && times[ to ] > endTime ) { + + -- to; + + } + + ++ to; // inclusive -> exclusive bound + + if ( from !== 0 || to !== nKeys ) { + + // empty tracks are forbidden, so keep at least one keyframe + if ( from >= to ) { + + to = Math.max( to, 1 ); + from = to - 1; + + } + + var stride = this.getValueSize(); + this.times = AnimationUtils.arraySlice( times, from, to ); + this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride ); + + } + + return this; + + }, + + // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable + validate: function () { + + var valid = true; + + var valueSize = this.getValueSize(); + if ( valueSize - Math.floor( valueSize ) !== 0 ) { + + console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); + valid = false; + + } + + var times = this.times, + values = this.values, + + nKeys = times.length; + + if ( nKeys === 0 ) { + + console.error( 'THREE.KeyframeTrack: Track is empty.', this ); + valid = false; + + } + + var prevTime = null; + + for ( var i = 0; i !== nKeys; i ++ ) { + + var currTime = times[ i ]; + + if ( typeof currTime === 'number' && isNaN( currTime ) ) { + + console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); + valid = false; + break; + + } + + if ( prevTime !== null && prevTime > currTime ) { + + console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); + valid = false; + break; + + } + + prevTime = currTime; + + } + + if ( values !== undefined ) { + + if ( AnimationUtils.isTypedArray( values ) ) { + + for ( var i$1 = 0, n = values.length; i$1 !== n; ++ i$1 ) { + + var value = values[ i$1 ]; + + if ( isNaN( value ) ) { + + console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i$1, value ); + valid = false; + break; + + } + + } + + } + + } + + return valid; + + }, + + // removes equivalent sequential keys as common in morph target sequences + // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) + optimize: function () { + + // times or values may be shared with other tracks, so overwriting is unsafe + var times = AnimationUtils.arraySlice( this.times ), + values = AnimationUtils.arraySlice( this.values ), + stride = this.getValueSize(), + + smoothInterpolation = this.getInterpolation() === InterpolateSmooth, + + lastIndex = times.length - 1; + + var writeIndex = 1; + + for ( var i = 1; i < lastIndex; ++ i ) { + + var keep = false; + + var time = times[ i ]; + var timeNext = times[ i + 1 ]; + + // remove adjacent keyframes scheduled at the same time + + if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) { + + if ( ! smoothInterpolation ) { + + // remove unnecessary keyframes same as their neighbors + + var offset = i * stride, + offsetP = offset - stride, + offsetN = offset + stride; + + for ( var j = 0; j !== stride; ++ j ) { + + var value = values[ offset + j ]; + + if ( value !== values[ offsetP + j ] || + value !== values[ offsetN + j ] ) { + + keep = true; + break; + + } + + } + + } else { + + keep = true; + + } + + } + + // in-place compaction + + if ( keep ) { + + if ( i !== writeIndex ) { + + times[ writeIndex ] = times[ i ]; + + var readOffset = i * stride, + writeOffset = writeIndex * stride; + + for ( var j$1 = 0; j$1 !== stride; ++ j$1 ) { + + values[ writeOffset + j$1 ] = values[ readOffset + j$1 ]; + + } + + } + + ++ writeIndex; + + } + + } + + // flush last keyframe (compaction looks ahead) + + if ( lastIndex > 0 ) { + + times[ writeIndex ] = times[ lastIndex ]; + + for ( var readOffset$1 = lastIndex * stride, writeOffset$1 = writeIndex * stride, j$2 = 0; j$2 !== stride; ++ j$2 ) { + + values[ writeOffset$1 + j$2 ] = values[ readOffset$1 + j$2 ]; + + } + + ++ writeIndex; + + } + + if ( writeIndex !== times.length ) { + + this.times = AnimationUtils.arraySlice( times, 0, writeIndex ); + this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride ); + + } else { + + this.times = times; + this.values = values; + + } + + return this; + + }, + + clone: function () { + + var times = AnimationUtils.arraySlice( this.times, 0 ); + var values = AnimationUtils.arraySlice( this.values, 0 ); + + var TypedKeyframeTrack = this.constructor; + var track = new TypedKeyframeTrack( this.name, times, values ); + + // Interpolant argument to constructor is not saved, so copy the factory method directly. + track.createInterpolant = this.createInterpolant; + + return track; + + } + + } ); + + /** + * A Track of Boolean keyframe values. + */ + + function BooleanKeyframeTrack( name, times, values ) { + + KeyframeTrack.call( this, name, times, values ); + + } + + BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { + + constructor: BooleanKeyframeTrack, + + ValueTypeName: 'bool', + ValueBufferType: Array, + + DefaultInterpolation: InterpolateDiscrete, + + InterpolantFactoryMethodLinear: undefined, + InterpolantFactoryMethodSmooth: undefined + + // Note: Actually this track could have a optimized / compressed + // representation of a single value and a custom interpolant that + // computes "firstValue ^ isOdd( index )". + + } ); + + /** + * A Track of keyframe values that represent color. + */ + + function ColorKeyframeTrack( name, times, values, interpolation ) { + + KeyframeTrack.call( this, name, times, values, interpolation ); + + } + + ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { + + constructor: ColorKeyframeTrack, + + ValueTypeName: 'color' + + // ValueBufferType is inherited + + // DefaultInterpolation is inherited + + // Note: Very basic implementation and nothing special yet. + // However, this is the place for color space parameterization. + + } ); + + /** + * A Track of numeric keyframe values. + */ + + function NumberKeyframeTrack( name, times, values, interpolation ) { + + KeyframeTrack.call( this, name, times, values, interpolation ); + + } + + NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { + + constructor: NumberKeyframeTrack, + + ValueTypeName: 'number' + + // ValueBufferType is inherited + + // DefaultInterpolation is inherited + + } ); + + /** + * Spherical linear unit quaternion interpolant. + */ + + function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), { + + constructor: QuaternionLinearInterpolant, + + interpolate_: function ( i1, t0, t, t1 ) { + + var result = this.resultBuffer, + values = this.sampleValues, + stride = this.valueSize, + + alpha = ( t - t0 ) / ( t1 - t0 ); + + var offset = i1 * stride; + + for ( var end = offset + stride; offset !== end; offset += 4 ) { + + Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); + + } + + return result; + + } + + } ); + + /** + * A Track of quaternion keyframe values. + */ + + function QuaternionKeyframeTrack( name, times, values, interpolation ) { + + KeyframeTrack.call( this, name, times, values, interpolation ); + + } + + QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { + + constructor: QuaternionKeyframeTrack, + + ValueTypeName: 'quaternion', + + // ValueBufferType is inherited + + DefaultInterpolation: InterpolateLinear, + + InterpolantFactoryMethodLinear: function ( result ) { + + return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); + + }, + + InterpolantFactoryMethodSmooth: undefined // not yet implemented + + } ); + + /** + * A Track that interpolates Strings + */ + + function StringKeyframeTrack( name, times, values, interpolation ) { + + KeyframeTrack.call( this, name, times, values, interpolation ); + + } + + StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { + + constructor: StringKeyframeTrack, + + ValueTypeName: 'string', + ValueBufferType: Array, + + DefaultInterpolation: InterpolateDiscrete, + + InterpolantFactoryMethodLinear: undefined, + + InterpolantFactoryMethodSmooth: undefined + + } ); + + /** + * A Track of vectored keyframe values. + */ + + function VectorKeyframeTrack( name, times, values, interpolation ) { + + KeyframeTrack.call( this, name, times, values, interpolation ); + + } + + VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), { + + constructor: VectorKeyframeTrack, + + ValueTypeName: 'vector' + + // ValueBufferType is inherited + + // DefaultInterpolation is inherited + + } ); + + function AnimationClip( name, duration, tracks, blendMode ) { + + this.name = name; + this.tracks = tracks; + this.duration = ( duration !== undefined ) ? duration : - 1; + this.blendMode = ( blendMode !== undefined ) ? blendMode : NormalAnimationBlendMode; + + this.uuid = MathUtils.generateUUID(); + + // this means it should figure out its duration by scanning the tracks + if ( this.duration < 0 ) { + + this.resetDuration(); + + } + + } + + function getTrackTypeForValueTypeName( typeName ) { + + switch ( typeName.toLowerCase() ) { + + case 'scalar': + case 'double': + case 'float': + case 'number': + case 'integer': + + return NumberKeyframeTrack; + + case 'vector': + case 'vector2': + case 'vector3': + case 'vector4': + + return VectorKeyframeTrack; + + case 'color': + + return ColorKeyframeTrack; + + case 'quaternion': + + return QuaternionKeyframeTrack; + + case 'bool': + case 'boolean': + + return BooleanKeyframeTrack; + + case 'string': + + return StringKeyframeTrack; + + } + + throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName ); + + } + + function parseKeyframeTrack( json ) { + + if ( json.type === undefined ) { + + throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' ); + + } + + var trackType = getTrackTypeForValueTypeName( json.type ); + + if ( json.times === undefined ) { + + var times = [], values = []; + + AnimationUtils.flattenJSON( json.keys, times, values, 'value' ); + + json.times = times; + json.values = values; + + } + + // derived classes can define a static parse method + if ( trackType.parse !== undefined ) { + + return trackType.parse( json ); + + } else { + + // by default, we assume a constructor compatible with the base + return new trackType( json.name, json.times, json.values, json.interpolation ); + + } + + } + + Object.assign( AnimationClip, { + + parse: function ( json ) { + + var tracks = [], + jsonTracks = json.tracks, + frameTime = 1.0 / ( json.fps || 1.0 ); + + for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) { + + tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) ); + + } + + return new AnimationClip( json.name, json.duration, tracks, json.blendMode ); + + }, + + toJSON: function ( clip ) { + + var tracks = [], + clipTracks = clip.tracks; + + var json = { + + 'name': clip.name, + 'duration': clip.duration, + 'tracks': tracks, + 'uuid': clip.uuid, + 'blendMode': clip.blendMode + + }; + + for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) { + + tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); + + } + + return json; + + }, + + CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) { + + var numMorphTargets = morphTargetSequence.length; + var tracks = []; + + for ( var i = 0; i < numMorphTargets; i ++ ) { + + var times = []; + var values = []; + + times.push( + ( i + numMorphTargets - 1 ) % numMorphTargets, + i, + ( i + 1 ) % numMorphTargets ); + + values.push( 0, 1, 0 ); + + var order = AnimationUtils.getKeyframeOrder( times ); + times = AnimationUtils.sortedArray( times, 1, order ); + values = AnimationUtils.sortedArray( values, 1, order ); + + // if there is a key at the first frame, duplicate it as the + // last frame as well for perfect loop. + if ( ! noLoop && times[ 0 ] === 0 ) { + + times.push( numMorphTargets ); + values.push( values[ 0 ] ); + + } + + tracks.push( + new NumberKeyframeTrack( + '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', + times, values + ).scale( 1.0 / fps ) ); + + } + + return new AnimationClip( name, - 1, tracks ); + + }, + + findByName: function ( objectOrClipArray, name ) { + + var clipArray = objectOrClipArray; + + if ( ! Array.isArray( objectOrClipArray ) ) { + + var o = objectOrClipArray; + clipArray = o.geometry && o.geometry.animations || o.animations; + + } + + for ( var i = 0; i < clipArray.length; i ++ ) { + + if ( clipArray[ i ].name === name ) { + + return clipArray[ i ]; + + } + + } + + return null; + + }, + + CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) { + + var animationToMorphTargets = {}; + + // tested with https://regex101.com/ on trick sequences + // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 + var pattern = /^([\w-]*?)([\d]+)$/; + + // sort morph target names into animation groups based + // patterns like Walk_001, Walk_002, Run_001, Run_002 + for ( var i = 0, il = morphTargets.length; i < il; i ++ ) { + + var morphTarget = morphTargets[ i ]; + var parts = morphTarget.name.match( pattern ); + + if ( parts && parts.length > 1 ) { + + var name = parts[ 1 ]; + + var animationMorphTargets = animationToMorphTargets[ name ]; + + if ( ! animationMorphTargets ) { + + animationToMorphTargets[ name ] = animationMorphTargets = []; + + } + + animationMorphTargets.push( morphTarget ); + + } + + } + + var clips = []; + + for ( var name$1 in animationToMorphTargets ) { + + clips.push( AnimationClip.CreateFromMorphTargetSequence( name$1, animationToMorphTargets[ name$1 ], fps, noLoop ) ); + + } + + return clips; + + }, + + // parse the animation.hierarchy format + parseAnimation: function ( animation, bones ) { + + if ( ! animation ) { + + console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); + return null; + + } + + var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { + + // only return track if there are actually keys. + if ( animationKeys.length !== 0 ) { + + var times = []; + var values = []; + + AnimationUtils.flattenJSON( animationKeys, times, values, propertyName ); + + // empty keys are filtered out, so check again + if ( times.length !== 0 ) { + + destTracks.push( new trackType( trackName, times, values ) ); + + } + + } + + }; + + var tracks = []; + + var clipName = animation.name || 'default'; + var fps = animation.fps || 30; + var blendMode = animation.blendMode; + + // automatic length determination in AnimationClip. + var duration = animation.length || - 1; + + var hierarchyTracks = animation.hierarchy || []; + + for ( var h = 0; h < hierarchyTracks.length; h ++ ) { + + var animationKeys = hierarchyTracks[ h ].keys; + + // skip empty tracks + if ( ! animationKeys || animationKeys.length === 0 ) { continue; } + + // process morph targets + if ( animationKeys[ 0 ].morphTargets ) { + + // figure out all morph targets used in this track + var morphTargetNames = {}; + + var k = (void 0); + + for ( k = 0; k < animationKeys.length; k ++ ) { + + if ( animationKeys[ k ].morphTargets ) { + + for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { + + morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1; + + } + + } + + } + + // create a track for each morph target with all zero + // morphTargetInfluences except for the keys in which + // the morphTarget is named. + for ( var morphTargetName in morphTargetNames ) { + + var times = []; + var values = []; + + for ( var m$1 = 0; m$1 !== animationKeys[ k ].morphTargets.length; ++ m$1 ) { + + var animationKey = animationKeys[ k ]; + + times.push( animationKey.time ); + values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); + + } + + tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); + + } + + duration = morphTargetNames.length * ( fps || 1.0 ); + + } else { + + // ...assume skeletal animation + + var boneName = '.bones[' + bones[ h ].name + ']'; + + addNonemptyTrack( + VectorKeyframeTrack, boneName + '.position', + animationKeys, 'pos', tracks ); + + addNonemptyTrack( + QuaternionKeyframeTrack, boneName + '.quaternion', + animationKeys, 'rot', tracks ); + + addNonemptyTrack( + VectorKeyframeTrack, boneName + '.scale', + animationKeys, 'scl', tracks ); + + } + + } + + if ( tracks.length === 0 ) { + + return null; + + } + + var clip = new AnimationClip( clipName, duration, tracks, blendMode ); + + return clip; + + } + + } ); + + Object.assign( AnimationClip.prototype, { + + resetDuration: function () { + + var tracks = this.tracks; + var duration = 0; + + for ( var i = 0, n = tracks.length; i !== n; ++ i ) { + + var track = this.tracks[ i ]; + + duration = Math.max( duration, track.times[ track.times.length - 1 ] ); + + } + + this.duration = duration; + + return this; + + }, + + trim: function () { + + for ( var i = 0; i < this.tracks.length; i ++ ) { + + this.tracks[ i ].trim( 0, this.duration ); + + } + + return this; + + }, + + validate: function () { + + var valid = true; + + for ( var i = 0; i < this.tracks.length; i ++ ) { + + valid = valid && this.tracks[ i ].validate(); + + } + + return valid; + + }, + + optimize: function () { + + for ( var i = 0; i < this.tracks.length; i ++ ) { + + this.tracks[ i ].optimize(); + + } + + return this; + + }, + + clone: function () { + + var tracks = []; + + for ( var i = 0; i < this.tracks.length; i ++ ) { + + tracks.push( this.tracks[ i ].clone() ); + + } + + return new AnimationClip( this.name, this.duration, tracks, this.blendMode ); + + } + + } ); + + var Cache = { + + enabled: false, + + files: {}, + + add: function ( key, file ) { + + if ( this.enabled === false ) { return; } + + // console.log( 'THREE.Cache', 'Adding key:', key ); + + this.files[ key ] = file; + + }, + + get: function ( key ) { + + if ( this.enabled === false ) { return; } + + // console.log( 'THREE.Cache', 'Checking key:', key ); + + return this.files[ key ]; + + }, + + remove: function ( key ) { + + delete this.files[ key ]; + + }, + + clear: function () { + + this.files = {}; + + } + + }; + + function LoadingManager( onLoad, onProgress, onError ) { + + var scope = this; + + var isLoading = false; + var itemsLoaded = 0; + var itemsTotal = 0; + var urlModifier = undefined; + var handlers = []; + + // Refer to #5689 for the reason why we don't set .onStart + // in the constructor + + this.onStart = undefined; + this.onLoad = onLoad; + this.onProgress = onProgress; + this.onError = onError; + + this.itemStart = function ( url ) { + + itemsTotal ++; + + if ( isLoading === false ) { + + if ( scope.onStart !== undefined ) { + + scope.onStart( url, itemsLoaded, itemsTotal ); + + } + + } + + isLoading = true; + + }; + + this.itemEnd = function ( url ) { + + itemsLoaded ++; + + if ( scope.onProgress !== undefined ) { + + scope.onProgress( url, itemsLoaded, itemsTotal ); + + } + + if ( itemsLoaded === itemsTotal ) { + + isLoading = false; + + if ( scope.onLoad !== undefined ) { + + scope.onLoad(); + + } + + } + + }; + + this.itemError = function ( url ) { + + if ( scope.onError !== undefined ) { + + scope.onError( url ); + + } + + }; + + this.resolveURL = function ( url ) { + + if ( urlModifier ) { + + return urlModifier( url ); + + } + + return url; + + }; + + this.setURLModifier = function ( transform ) { + + urlModifier = transform; + + return this; + + }; + + this.addHandler = function ( regex, loader ) { + + handlers.push( regex, loader ); + + return this; + + }; + + this.removeHandler = function ( regex ) { + + var index = handlers.indexOf( regex ); + + if ( index !== - 1 ) { + + handlers.splice( index, 2 ); + + } + + return this; + + }; + + this.getHandler = function ( file ) { + + for ( var i = 0, l = handlers.length; i < l; i += 2 ) { + + var regex = handlers[ i ]; + var loader = handlers[ i + 1 ]; + + if ( regex.global ) { regex.lastIndex = 0; } // see #17920 + + if ( regex.test( file ) ) { + + return loader; + + } + + } + + return null; + + }; + + } + + var DefaultLoadingManager = new LoadingManager(); + + function Loader( manager ) { + + this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; + + this.crossOrigin = 'anonymous'; + this.path = ''; + this.resourcePath = ''; + this.requestHeader = {}; + + } + + Object.assign( Loader.prototype, { + + load: function ( /* url, onLoad, onProgress, onError */ ) {}, + + loadAsync: function ( url, onProgress ) { + + var scope = this; + + return new Promise( function ( resolve, reject ) { + + scope.load( url, resolve, onProgress, reject ); + + } ); + + }, + + parse: function ( /* data */ ) {}, + + setCrossOrigin: function ( crossOrigin ) { + + this.crossOrigin = crossOrigin; + return this; + + }, + + setPath: function ( path ) { + + this.path = path; + return this; + + }, + + setResourcePath: function ( resourcePath ) { + + this.resourcePath = resourcePath; + return this; + + }, + + setRequestHeader: function ( requestHeader ) { + + this.requestHeader = requestHeader; + return this; + + } + + } ); + + var loading = {}; + + function FileLoader( manager ) { + + Loader.call( this, manager ); + + } + + FileLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: FileLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + if ( url === undefined ) { url = ''; } + + if ( this.path !== undefined ) { url = this.path + url; } + + url = this.manager.resolveURL( url ); + + var scope = this; + + var cached = Cache.get( url ); + + if ( cached !== undefined ) { + + scope.manager.itemStart( url ); + + setTimeout( function () { + + if ( onLoad ) { onLoad( cached ); } + + scope.manager.itemEnd( url ); + + }, 0 ); + + return cached; + + } + + // Check if request is duplicate + + if ( loading[ url ] !== undefined ) { + + loading[ url ].push( { + + onLoad: onLoad, + onProgress: onProgress, + onError: onError + + } ); + + return; + + } + + // Check for data: URI + var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/; + var dataUriRegexResult = url.match( dataUriRegex ); + var request; + + // Safari can not handle Data URIs through XMLHttpRequest so process manually + if ( dataUriRegexResult ) { + + var mimeType = dataUriRegexResult[ 1 ]; + var isBase64 = !! dataUriRegexResult[ 2 ]; + + var data = dataUriRegexResult[ 3 ]; + data = decodeURIComponent( data ); + + if ( isBase64 ) { data = atob( data ); } + + try { + + var response; + var responseType = ( this.responseType || '' ).toLowerCase(); + + switch ( responseType ) { + + case 'arraybuffer': + case 'blob': + + var view = new Uint8Array( data.length ); + + for ( var i = 0; i < data.length; i ++ ) { + + view[ i ] = data.charCodeAt( i ); + + } + + if ( responseType === 'blob' ) { + + response = new Blob( [ view.buffer ], { type: mimeType } ); + + } else { + + response = view.buffer; + + } + + break; + + case 'document': + + var parser = new DOMParser(); + response = parser.parseFromString( data, mimeType ); + + break; + + case 'json': + + response = JSON.parse( data ); + + break; + + default: // 'text' or other + + response = data; + + break; + + } + + // Wait for next browser tick like standard XMLHttpRequest event dispatching does + setTimeout( function () { + + if ( onLoad ) { onLoad( response ); } + + scope.manager.itemEnd( url ); + + }, 0 ); + + } catch ( error ) { + + // Wait for next browser tick like standard XMLHttpRequest event dispatching does + setTimeout( function () { + + if ( onError ) { onError( error ); } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + }, 0 ); + + } + + } else { + + // Initialise array for duplicate requests + + loading[ url ] = []; + + loading[ url ].push( { + + onLoad: onLoad, + onProgress: onProgress, + onError: onError + + } ); + + request = new XMLHttpRequest(); + + request.open( 'GET', url, true ); + + request.addEventListener( 'load', function ( event ) { + + var response = this.response; + + var callbacks = loading[ url ]; + + delete loading[ url ]; + + if ( this.status === 200 || this.status === 0 ) { + + // Some browsers return HTTP Status 0 when using non-http protocol + // e.g. 'file://' or 'data://'. Handle as success. + + if ( this.status === 0 ) { console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); } + + // Add to cache only on HTTP success, so that we do not cache + // error response bodies as proper responses to requests. + Cache.add( url, response ); + + for ( var i = 0, il = callbacks.length; i < il; i ++ ) { + + var callback = callbacks[ i ]; + if ( callback.onLoad ) { callback.onLoad( response ); } + + } + + scope.manager.itemEnd( url ); + + } else { + + for ( var i$1 = 0, il$1 = callbacks.length; i$1 < il$1; i$1 ++ ) { + + var callback$1 = callbacks[ i$1 ]; + if ( callback$1.onError ) { callback$1.onError( event ); } + + } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } + + }, false ); + + request.addEventListener( 'progress', function ( event ) { + + var callbacks = loading[ url ]; + + for ( var i = 0, il = callbacks.length; i < il; i ++ ) { + + var callback = callbacks[ i ]; + if ( callback.onProgress ) { callback.onProgress( event ); } + + } + + }, false ); + + request.addEventListener( 'error', function ( event ) { + + var callbacks = loading[ url ]; + + delete loading[ url ]; + + for ( var i = 0, il = callbacks.length; i < il; i ++ ) { + + var callback = callbacks[ i ]; + if ( callback.onError ) { callback.onError( event ); } + + } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + }, false ); + + request.addEventListener( 'abort', function ( event ) { + + var callbacks = loading[ url ]; + + delete loading[ url ]; + + for ( var i = 0, il = callbacks.length; i < il; i ++ ) { + + var callback = callbacks[ i ]; + if ( callback.onError ) { callback.onError( event ); } + + } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + }, false ); + + if ( this.responseType !== undefined ) { request.responseType = this.responseType; } + if ( this.withCredentials !== undefined ) { request.withCredentials = this.withCredentials; } + + if ( request.overrideMimeType ) { request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' ); } + + for ( var header in this.requestHeader ) { + + request.setRequestHeader( header, this.requestHeader[ header ] ); + + } + + request.send( null ); + + } + + scope.manager.itemStart( url ); + + return request; + + }, + + setResponseType: function ( value ) { + + this.responseType = value; + return this; + + }, + + setWithCredentials: function ( value ) { + + this.withCredentials = value; + return this; + + }, + + setMimeType: function ( value ) { + + this.mimeType = value; + return this; + + } + + } ); + + function AnimationLoader( manager ) { + + Loader.call( this, manager ); + + } + + AnimationLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: AnimationLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var loader = new FileLoader( scope.manager ); + loader.setPath( scope.path ); + loader.setRequestHeader( scope.requestHeader ); + loader.load( url, function ( text ) { + + try { + + onLoad( scope.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + }, + + parse: function ( json ) { + + var animations = []; + + for ( var i = 0; i < json.length; i ++ ) { + + var clip = AnimationClip.parse( json[ i ] ); + + animations.push( clip ); + + } + + return animations; + + } + + } ); + + /** + * Abstract Base class to block based textures loader (dds, pvr, ...) + * + * Sub classes have to implement the parse() method which will be used in load(). + */ + + function CompressedTextureLoader( manager ) { + + Loader.call( this, manager ); + + } + + CompressedTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: CompressedTextureLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var images = []; + + var texture = new CompressedTexture(); + texture.image = images; + + var loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setResponseType( 'arraybuffer' ); + loader.setRequestHeader( this.requestHeader ); + + var loaded = 0; + + function loadTexture( i ) { + + loader.load( url[ i ], function ( buffer ) { + + var texDatas = scope.parse( buffer, true ); + + images[ i ] = { + width: texDatas.width, + height: texDatas.height, + format: texDatas.format, + mipmaps: texDatas.mipmaps + }; + + loaded += 1; + + if ( loaded === 6 ) { + + if ( texDatas.mipmapCount === 1 ) + { texture.minFilter = LinearFilter; } + + texture.format = texDatas.format; + texture.needsUpdate = true; + + if ( onLoad ) { onLoad( texture ); } + + } + + }, onProgress, onError ); + + } + + if ( Array.isArray( url ) ) { + + for ( var i = 0, il = url.length; i < il; ++ i ) { + + loadTexture( i ); + + } + + } else { + + // compressed cubemap texture stored in a single DDS file + + loader.load( url, function ( buffer ) { + + var texDatas = scope.parse( buffer, true ); + + if ( texDatas.isCubemap ) { + + var faces = texDatas.mipmaps.length / texDatas.mipmapCount; + + for ( var f = 0; f < faces; f ++ ) { + + images[ f ] = { mipmaps: [] }; + + for ( var i = 0; i < texDatas.mipmapCount; i ++ ) { + + images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); + images[ f ].format = texDatas.format; + images[ f ].width = texDatas.width; + images[ f ].height = texDatas.height; + + } + + } + + } else { + + texture.image.width = texDatas.width; + texture.image.height = texDatas.height; + texture.mipmaps = texDatas.mipmaps; + + } + + if ( texDatas.mipmapCount === 1 ) { + + texture.minFilter = LinearFilter; + + } + + texture.format = texDatas.format; + texture.needsUpdate = true; + + if ( onLoad ) { onLoad( texture ); } + + }, onProgress, onError ); + + } + + return texture; + + } + + } ); + + /** + * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) + * + * Sub classes have to implement the parse() method which will be used in load(). + */ + + function DataTextureLoader( manager ) { + + Loader.call( this, manager ); + + } + + DataTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: DataTextureLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var texture = new DataTexture(); + + var loader = new FileLoader( this.manager ); + loader.setResponseType( 'arraybuffer' ); + loader.setRequestHeader( this.requestHeader ); + loader.setPath( this.path ); + loader.load( url, function ( buffer ) { + + var texData = scope.parse( buffer ); + + if ( ! texData ) { return; } + + if ( texData.image !== undefined ) { + + texture.image = texData.image; + + } else if ( texData.data !== undefined ) { + + texture.image.width = texData.width; + texture.image.height = texData.height; + texture.image.data = texData.data; + + } + + texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; + texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; + + texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; + texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; + + texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; + + if ( texData.format !== undefined ) { + + texture.format = texData.format; + + } + + if ( texData.type !== undefined ) { + + texture.type = texData.type; + + } + + if ( texData.mipmaps !== undefined ) { + + texture.mipmaps = texData.mipmaps; + texture.minFilter = LinearMipmapLinearFilter; // presumably... + + } + + if ( texData.mipmapCount === 1 ) { + + texture.minFilter = LinearFilter; + + } + + texture.needsUpdate = true; + + if ( onLoad ) { onLoad( texture, texData ); } + + }, onProgress, onError ); + + + return texture; + + } + + } ); + + function ImageLoader( manager ) { + + Loader.call( this, manager ); + + } + + ImageLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: ImageLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + if ( this.path !== undefined ) { url = this.path + url; } + + url = this.manager.resolveURL( url ); + + var scope = this; + + var cached = Cache.get( url ); + + if ( cached !== undefined ) { + + scope.manager.itemStart( url ); + + setTimeout( function () { + + if ( onLoad ) { onLoad( cached ); } + + scope.manager.itemEnd( url ); + + }, 0 ); + + return cached; + + } + + var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' ); + + function onImageLoad() { + + image.removeEventListener( 'load', onImageLoad, false ); + image.removeEventListener( 'error', onImageError, false ); + + Cache.add( url, this ); + + if ( onLoad ) { onLoad( this ); } + + scope.manager.itemEnd( url ); + + } + + function onImageError( event ) { + + image.removeEventListener( 'load', onImageLoad, false ); + image.removeEventListener( 'error', onImageError, false ); + + if ( onError ) { onError( event ); } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } + + image.addEventListener( 'load', onImageLoad, false ); + image.addEventListener( 'error', onImageError, false ); + + if ( url.substr( 0, 5 ) !== 'data:' ) { + + if ( this.crossOrigin !== undefined ) { image.crossOrigin = this.crossOrigin; } + + } + + scope.manager.itemStart( url ); + + image.src = url; + + return image; + + } + + } ); + + function CubeTextureLoader( manager ) { + + Loader.call( this, manager ); + + } + + CubeTextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: CubeTextureLoader, + + load: function ( urls, onLoad, onProgress, onError ) { + + var texture = new CubeTexture(); + + var loader = new ImageLoader( this.manager ); + loader.setCrossOrigin( this.crossOrigin ); + loader.setPath( this.path ); + + var loaded = 0; + + function loadTexture( i ) { + + loader.load( urls[ i ], function ( image ) { + + texture.images[ i ] = image; + + loaded ++; + + if ( loaded === 6 ) { + + texture.needsUpdate = true; + + if ( onLoad ) { onLoad( texture ); } + + } + + }, undefined, onError ); + + } + + for ( var i = 0; i < urls.length; ++ i ) { + + loadTexture( i ); + + } + + return texture; + + } + + } ); + + function TextureLoader( manager ) { + + Loader.call( this, manager ); + + } + + TextureLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: TextureLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var texture = new Texture(); + + var loader = new ImageLoader( this.manager ); + loader.setCrossOrigin( this.crossOrigin ); + loader.setPath( this.path ); + + loader.load( url, function ( image ) { + + texture.image = image; + + // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. + var isJPEG = url.search( /\.jpe?g($|\?)/i ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0; + + texture.format = isJPEG ? RGBFormat : RGBAFormat; + texture.needsUpdate = true; + + if ( onLoad !== undefined ) { + + onLoad( texture ); + + } + + }, onProgress, onError ); + + return texture; + + } + + } ); + + /** + * Extensible curve object. + * + * Some common of curve methods: + * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) + * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) + * .getPoints(), .getSpacedPoints() + * .getLength() + * .updateArcLengths() + * + * This following curves inherit from THREE.Curve: + * + * -- 2D curves -- + * THREE.ArcCurve + * THREE.CubicBezierCurve + * THREE.EllipseCurve + * THREE.LineCurve + * THREE.QuadraticBezierCurve + * THREE.SplineCurve + * + * -- 3D curves -- + * THREE.CatmullRomCurve3 + * THREE.CubicBezierCurve3 + * THREE.LineCurve3 + * THREE.QuadraticBezierCurve3 + * + * A series of curves can be represented as a THREE.CurvePath. + * + **/ + + function Curve() { + + this.type = 'Curve'; + + this.arcLengthDivisions = 200; + + } + + Object.assign( Curve.prototype, { + + // Virtual base class method to overwrite and implement in subclasses + // - t [0 .. 1] + + getPoint: function ( /* t, optionalTarget */ ) { + + console.warn( 'THREE.Curve: .getPoint() not implemented.' ); + return null; + + }, + + // Get point at relative position in curve according to arc length + // - u [0 .. 1] + + getPointAt: function ( u, optionalTarget ) { + + var t = this.getUtoTmapping( u ); + return this.getPoint( t, optionalTarget ); + + }, + + // Get sequence of points using getPoint( t ) + + getPoints: function ( divisions ) { + + if ( divisions === undefined ) { divisions = 5; } + + var points = []; + + for ( var d = 0; d <= divisions; d ++ ) { + + points.push( this.getPoint( d / divisions ) ); + + } + + return points; + + }, + + // Get sequence of points using getPointAt( u ) + + getSpacedPoints: function ( divisions ) { + + if ( divisions === undefined ) { divisions = 5; } + + var points = []; + + for ( var d = 0; d <= divisions; d ++ ) { + + points.push( this.getPointAt( d / divisions ) ); + + } + + return points; + + }, + + // Get total curve arc length + + getLength: function () { + + var lengths = this.getLengths(); + return lengths[ lengths.length - 1 ]; + + }, + + // Get list of cumulative segment lengths + + getLengths: function ( divisions ) { + + if ( divisions === undefined ) { divisions = this.arcLengthDivisions; } + + if ( this.cacheArcLengths && + ( this.cacheArcLengths.length === divisions + 1 ) && + ! this.needsUpdate ) { + + return this.cacheArcLengths; + + } + + this.needsUpdate = false; + + var cache = []; + var current, last = this.getPoint( 0 ); + var sum = 0; + + cache.push( 0 ); + + for ( var p = 1; p <= divisions; p ++ ) { + + current = this.getPoint( p / divisions ); + sum += current.distanceTo( last ); + cache.push( sum ); + last = current; + + } + + this.cacheArcLengths = cache; + + return cache; // { sums: cache, sum: sum }; Sum is in the last element. + + }, + + updateArcLengths: function () { + + this.needsUpdate = true; + this.getLengths(); + + }, + + // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant + + getUtoTmapping: function ( u, distance ) { + + var arcLengths = this.getLengths(); + + var i = 0, il = arcLengths.length; + + var targetArcLength; // The targeted u distance value to get + + if ( distance ) { + + targetArcLength = distance; + + } else { + + targetArcLength = u * arcLengths[ il - 1 ]; + + } + + // binary search for the index with largest value smaller than target u distance + + var low = 0, high = il - 1, comparison; + + while ( low <= high ) { + + i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats + + comparison = arcLengths[ i ] - targetArcLength; + + if ( comparison < 0 ) { + + low = i + 1; + + } else if ( comparison > 0 ) { + + high = i - 1; + + } else { + + high = i; + break; + + // DONE + + } + + } + + i = high; + + if ( arcLengths[ i ] === targetArcLength ) { + + return i / ( il - 1 ); + + } + + // we could get finer grain at lengths, or use simple interpolation between two points + + var lengthBefore = arcLengths[ i ]; + var lengthAfter = arcLengths[ i + 1 ]; + + var segmentLength = lengthAfter - lengthBefore; + + // determine where we are between the 'before' and 'after' points + + var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; + + // add that fractional amount to t + + var t = ( i + segmentFraction ) / ( il - 1 ); + + return t; + + }, + + // Returns a unit vector tangent at t + // In case any sub curve does not implement its tangent derivation, + // 2 points a small delta apart will be used to find its gradient + // which seems to give a reasonable approximation + + getTangent: function ( t, optionalTarget ) { + + var delta = 0.0001; + var t1 = t - delta; + var t2 = t + delta; + + // Capping in case of danger + + if ( t1 < 0 ) { t1 = 0; } + if ( t2 > 1 ) { t2 = 1; } + + var pt1 = this.getPoint( t1 ); + var pt2 = this.getPoint( t2 ); + + var tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); + + tangent.copy( pt2 ).sub( pt1 ).normalize(); + + return tangent; + + }, + + getTangentAt: function ( u, optionalTarget ) { + + var t = this.getUtoTmapping( u ); + return this.getTangent( t, optionalTarget ); + + }, + + computeFrenetFrames: function ( segments, closed ) { + + // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf + + var normal = new Vector3(); + + var tangents = []; + var normals = []; + var binormals = []; + + var vec = new Vector3(); + var mat = new Matrix4(); + + // compute the tangent vectors for each segment on the curve + + for ( var i = 0; i <= segments; i ++ ) { + + var u = i / segments; + + tangents[ i ] = this.getTangentAt( u, new Vector3() ); + tangents[ i ].normalize(); + + } + + // select an initial normal vector perpendicular to the first tangent vector, + // and in the direction of the minimum tangent xyz component + + normals[ 0 ] = new Vector3(); + binormals[ 0 ] = new Vector3(); + var min = Number.MAX_VALUE; + var tx = Math.abs( tangents[ 0 ].x ); + var ty = Math.abs( tangents[ 0 ].y ); + var tz = Math.abs( tangents[ 0 ].z ); + + if ( tx <= min ) { + + min = tx; + normal.set( 1, 0, 0 ); + + } + + if ( ty <= min ) { + + min = ty; + normal.set( 0, 1, 0 ); + + } + + if ( tz <= min ) { + + normal.set( 0, 0, 1 ); + + } + + vec.crossVectors( tangents[ 0 ], normal ).normalize(); + + normals[ 0 ].crossVectors( tangents[ 0 ], vec ); + binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); + + + // compute the slowly-varying normal and binormal vectors for each segment on the curve + + for ( var i$1 = 1; i$1 <= segments; i$1 ++ ) { + + normals[ i$1 ] = normals[ i$1 - 1 ].clone(); + + binormals[ i$1 ] = binormals[ i$1 - 1 ].clone(); + + vec.crossVectors( tangents[ i$1 - 1 ], tangents[ i$1 ] ); + + if ( vec.length() > Number.EPSILON ) { + + vec.normalize(); + + var theta = Math.acos( MathUtils.clamp( tangents[ i$1 - 1 ].dot( tangents[ i$1 ] ), - 1, 1 ) ); // clamp for floating pt errors + + normals[ i$1 ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); + + } + + binormals[ i$1 ].crossVectors( tangents[ i$1 ], normals[ i$1 ] ); + + } + + // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same + + if ( closed === true ) { + + var theta$1 = Math.acos( MathUtils.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) ); + theta$1 /= segments; + + if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { + + theta$1 = - theta$1; + + } + + for ( var i$2 = 1; i$2 <= segments; i$2 ++ ) { + + // twist a little... + normals[ i$2 ].applyMatrix4( mat.makeRotationAxis( tangents[ i$2 ], theta$1 * i$2 ) ); + binormals[ i$2 ].crossVectors( tangents[ i$2 ], normals[ i$2 ] ); + + } + + } + + return { + tangents: tangents, + normals: normals, + binormals: binormals + }; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( source ) { + + this.arcLengthDivisions = source.arcLengthDivisions; + + return this; + + }, + + toJSON: function () { + + var data = { + metadata: { + version: 4.5, + type: 'Curve', + generator: 'Curve.toJSON' + } + }; + + data.arcLengthDivisions = this.arcLengthDivisions; + data.type = this.type; + + return data; + + }, + + fromJSON: function ( json ) { + + this.arcLengthDivisions = json.arcLengthDivisions; + + return this; + + } + + } ); + + function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { + + Curve.call( this ); + + this.type = 'EllipseCurve'; + + this.aX = aX || 0; + this.aY = aY || 0; + + this.xRadius = xRadius || 1; + this.yRadius = yRadius || 1; + + this.aStartAngle = aStartAngle || 0; + this.aEndAngle = aEndAngle || 2 * Math.PI; + + this.aClockwise = aClockwise || false; + + this.aRotation = aRotation || 0; + + } + + EllipseCurve.prototype = Object.create( Curve.prototype ); + EllipseCurve.prototype.constructor = EllipseCurve; + + EllipseCurve.prototype.isEllipseCurve = true; + + EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector2(); + + var twoPi = Math.PI * 2; + var deltaAngle = this.aEndAngle - this.aStartAngle; + var samePoints = Math.abs( deltaAngle ) < Number.EPSILON; + + // ensures that deltaAngle is 0 .. 2 PI + while ( deltaAngle < 0 ) { deltaAngle += twoPi; } + while ( deltaAngle > twoPi ) { deltaAngle -= twoPi; } + + if ( deltaAngle < Number.EPSILON ) { + + if ( samePoints ) { + + deltaAngle = 0; + + } else { + + deltaAngle = twoPi; + + } + + } + + if ( this.aClockwise === true && ! samePoints ) { + + if ( deltaAngle === twoPi ) { + + deltaAngle = - twoPi; + + } else { + + deltaAngle = deltaAngle - twoPi; + + } + + } + + var angle = this.aStartAngle + t * deltaAngle; + var x = this.aX + this.xRadius * Math.cos( angle ); + var y = this.aY + this.yRadius * Math.sin( angle ); + + if ( this.aRotation !== 0 ) { + + var cos = Math.cos( this.aRotation ); + var sin = Math.sin( this.aRotation ); + + var tx = x - this.aX; + var ty = y - this.aY; + + // Rotate the point about the center of the ellipse. + x = tx * cos - ty * sin + this.aX; + y = tx * sin + ty * cos + this.aY; + + } + + return point.set( x, y ); + + }; + + EllipseCurve.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.aX = source.aX; + this.aY = source.aY; + + this.xRadius = source.xRadius; + this.yRadius = source.yRadius; + + this.aStartAngle = source.aStartAngle; + this.aEndAngle = source.aEndAngle; + + this.aClockwise = source.aClockwise; + + this.aRotation = source.aRotation; + + return this; + + }; + + + EllipseCurve.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.aX = this.aX; + data.aY = this.aY; + + data.xRadius = this.xRadius; + data.yRadius = this.yRadius; + + data.aStartAngle = this.aStartAngle; + data.aEndAngle = this.aEndAngle; + + data.aClockwise = this.aClockwise; + + data.aRotation = this.aRotation; + + return data; + + }; + + EllipseCurve.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.aX = json.aX; + this.aY = json.aY; + + this.xRadius = json.xRadius; + this.yRadius = json.yRadius; + + this.aStartAngle = json.aStartAngle; + this.aEndAngle = json.aEndAngle; + + this.aClockwise = json.aClockwise; + + this.aRotation = json.aRotation; + + return this; + + }; + + function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { + + EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); + + this.type = 'ArcCurve'; + + } + + ArcCurve.prototype = Object.create( EllipseCurve.prototype ); + ArcCurve.prototype.constructor = ArcCurve; + + ArcCurve.prototype.isArcCurve = true; + + /** + * Centripetal CatmullRom Curve - which is useful for avoiding + * cusps and self-intersections in non-uniform catmull rom curves. + * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf + * + * curve.type accepts centripetal(default), chordal and catmullrom + * curve.tension is used for catmullrom which defaults to 0.5 + */ + + + /* + Based on an optimized c++ solution in + - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ + - http://ideone.com/NoEbVM + + This CubicPoly class could be used for reusing some variables and calculations, + but for three.js curve use, it could be possible inlined and flatten into a single function call + which can be placed in CurveUtils. + */ + + function CubicPoly() { + + var c0 = 0, c1 = 0, c2 = 0, c3 = 0; + + /* + * Compute coefficients for a cubic polynomial + * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 + * such that + * p(0) = x0, p(1) = x1 + * and + * p'(0) = t0, p'(1) = t1. + */ + function init( x0, x1, t0, t1 ) { + + c0 = x0; + c1 = t0; + c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1; + c3 = 2 * x0 - 2 * x1 + t0 + t1; + + } + + return { + + initCatmullRom: function ( x0, x1, x2, x3, tension ) { + + init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); + + }, + + initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { + + // compute tangents when parameterized in [t1,t2] + var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; + var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; + + // rescale tangents for parametrization in [0,1] + t1 *= dt1; + t2 *= dt1; + + init( x1, x2, t1, t2 ); + + }, + + calc: function ( t ) { + + var t2 = t * t; + var t3 = t2 * t; + return c0 + c1 * t + c2 * t2 + c3 * t3; + + } + + }; + + } + + // + + var tmp = new Vector3(); + var px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly(); + + function CatmullRomCurve3( points, closed, curveType, tension ) { + + Curve.call( this ); + + this.type = 'CatmullRomCurve3'; + + this.points = points || []; + this.closed = closed || false; + this.curveType = curveType || 'centripetal'; + this.tension = ( tension !== undefined ) ? tension : 0.5; + + } + + CatmullRomCurve3.prototype = Object.create( Curve.prototype ); + CatmullRomCurve3.prototype.constructor = CatmullRomCurve3; + + CatmullRomCurve3.prototype.isCatmullRomCurve3 = true; + + CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector3(); + + var points = this.points; + var l = points.length; + + var p = ( l - ( this.closed ? 0 : 1 ) ) * t; + var intPoint = Math.floor( p ); + var weight = p - intPoint; + + if ( this.closed ) { + + intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; + + } else if ( weight === 0 && intPoint === l - 1 ) { + + intPoint = l - 2; + weight = 1; + + } + + var p0, p1, p2, p3; // 4 points + + if ( this.closed || intPoint > 0 ) { + + p0 = points[ ( intPoint - 1 ) % l ]; + + } else { + + // extrapolate first point + tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); + p0 = tmp; + + } + + p1 = points[ intPoint % l ]; + p2 = points[ ( intPoint + 1 ) % l ]; + + if ( this.closed || intPoint + 2 < l ) { + + p3 = points[ ( intPoint + 2 ) % l ]; + + } else { + + // extrapolate last point + tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); + p3 = tmp; + + } + + if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { + + // init Centripetal / Chordal Catmull-Rom + var pow = this.curveType === 'chordal' ? 0.5 : 0.25; + var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); + var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); + var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); + + // safety check for repeated points + if ( dt1 < 1e-4 ) { dt1 = 1.0; } + if ( dt0 < 1e-4 ) { dt0 = dt1; } + if ( dt2 < 1e-4 ) { dt2 = dt1; } + + px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); + py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); + pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); + + } else if ( this.curveType === 'catmullrom' ) { + + px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); + py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); + pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); + + } + + point.set( + px.calc( weight ), + py.calc( weight ), + pz.calc( weight ) + ); + + return point; + + }; + + CatmullRomCurve3.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.points = []; + + for ( var i = 0, l = source.points.length; i < l; i ++ ) { + + var point = source.points[ i ]; + + this.points.push( point.clone() ); + + } + + this.closed = source.closed; + this.curveType = source.curveType; + this.tension = source.tension; + + return this; + + }; + + CatmullRomCurve3.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.points = []; + + for ( var i = 0, l = this.points.length; i < l; i ++ ) { + + var point = this.points[ i ]; + data.points.push( point.toArray() ); + + } + + data.closed = this.closed; + data.curveType = this.curveType; + data.tension = this.tension; + + return data; + + }; + + CatmullRomCurve3.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.points = []; + + for ( var i = 0, l = json.points.length; i < l; i ++ ) { + + var point = json.points[ i ]; + this.points.push( new Vector3().fromArray( point ) ); + + } + + this.closed = json.closed; + this.curveType = json.curveType; + this.tension = json.tension; + + return this; + + }; + + /** + * Bezier Curves formulas obtained from + * http://en.wikipedia.org/wiki/Bézier_curve + */ + + function CatmullRom( t, p0, p1, p2, p3 ) { + + var v0 = ( p2 - p0 ) * 0.5; + var v1 = ( p3 - p1 ) * 0.5; + var t2 = t * t; + var t3 = t * t2; + return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; + + } + + // + + function QuadraticBezierP0( t, p ) { + + var k = 1 - t; + return k * k * p; + + } + + function QuadraticBezierP1( t, p ) { + + return 2 * ( 1 - t ) * t * p; + + } + + function QuadraticBezierP2( t, p ) { + + return t * t * p; + + } + + function QuadraticBezier( t, p0, p1, p2 ) { + + return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + + QuadraticBezierP2( t, p2 ); + + } + + // + + function CubicBezierP0( t, p ) { + + var k = 1 - t; + return k * k * k * p; + + } + + function CubicBezierP1( t, p ) { + + var k = 1 - t; + return 3 * k * k * t * p; + + } + + function CubicBezierP2( t, p ) { + + return 3 * ( 1 - t ) * t * t * p; + + } + + function CubicBezierP3( t, p ) { + + return t * t * t * p; + + } + + function CubicBezier( t, p0, p1, p2, p3 ) { + + return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + + CubicBezierP3( t, p3 ); + + } + + function CubicBezierCurve( v0, v1, v2, v3 ) { + + Curve.call( this ); + + this.type = 'CubicBezierCurve'; + + this.v0 = v0 || new Vector2(); + this.v1 = v1 || new Vector2(); + this.v2 = v2 || new Vector2(); + this.v3 = v3 || new Vector2(); + + } + + CubicBezierCurve.prototype = Object.create( Curve.prototype ); + CubicBezierCurve.prototype.constructor = CubicBezierCurve; + + CubicBezierCurve.prototype.isCubicBezierCurve = true; + + CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector2(); + + var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; + + point.set( + CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), + CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) + ); + + return point; + + }; + + CubicBezierCurve.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + this.v3.copy( source.v3 ); + + return this; + + }; + + CubicBezierCurve.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + + return data; + + }; + + CubicBezierCurve.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + this.v3.fromArray( json.v3 ); + + return this; + + }; + + function CubicBezierCurve3( v0, v1, v2, v3 ) { + + Curve.call( this ); + + this.type = 'CubicBezierCurve3'; + + this.v0 = v0 || new Vector3(); + this.v1 = v1 || new Vector3(); + this.v2 = v2 || new Vector3(); + this.v3 = v3 || new Vector3(); + + } + + CubicBezierCurve3.prototype = Object.create( Curve.prototype ); + CubicBezierCurve3.prototype.constructor = CubicBezierCurve3; + + CubicBezierCurve3.prototype.isCubicBezierCurve3 = true; + + CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector3(); + + var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; + + point.set( + CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), + CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), + CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) + ); + + return point; + + }; + + CubicBezierCurve3.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + this.v3.copy( source.v3 ); + + return this; + + }; + + CubicBezierCurve3.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + data.v3 = this.v3.toArray(); + + return data; + + }; + + CubicBezierCurve3.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + this.v3.fromArray( json.v3 ); + + return this; + + }; + + function LineCurve( v1, v2 ) { + + Curve.call( this ); + + this.type = 'LineCurve'; + + this.v1 = v1 || new Vector2(); + this.v2 = v2 || new Vector2(); + + } + + LineCurve.prototype = Object.create( Curve.prototype ); + LineCurve.prototype.constructor = LineCurve; + + LineCurve.prototype.isLineCurve = true; + + LineCurve.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector2(); + + if ( t === 1 ) { + + point.copy( this.v2 ); + + } else { + + point.copy( this.v2 ).sub( this.v1 ); + point.multiplyScalar( t ).add( this.v1 ); + + } + + return point; + + }; + + // Line curve is linear, so we can overwrite default getPointAt + + LineCurve.prototype.getPointAt = function ( u, optionalTarget ) { + + return this.getPoint( u, optionalTarget ); + + }; + + LineCurve.prototype.getTangent = function ( t, optionalTarget ) { + + var tangent = optionalTarget || new Vector2(); + + tangent.copy( this.v2 ).sub( this.v1 ).normalize(); + + return tangent; + + }; + + LineCurve.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + }; + + LineCurve.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + }; + + LineCurve.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + }; + + function LineCurve3( v1, v2 ) { + + Curve.call( this ); + + this.type = 'LineCurve3'; + + this.v1 = v1 || new Vector3(); + this.v2 = v2 || new Vector3(); + + } + + LineCurve3.prototype = Object.create( Curve.prototype ); + LineCurve3.prototype.constructor = LineCurve3; + + LineCurve3.prototype.isLineCurve3 = true; + + LineCurve3.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector3(); + + if ( t === 1 ) { + + point.copy( this.v2 ); + + } else { + + point.copy( this.v2 ).sub( this.v1 ); + point.multiplyScalar( t ).add( this.v1 ); + + } + + return point; + + }; + + // Line curve is linear, so we can overwrite default getPointAt + + LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) { + + return this.getPoint( u, optionalTarget ); + + }; + + LineCurve3.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + }; + + LineCurve3.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + }; + + LineCurve3.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + }; + + function QuadraticBezierCurve( v0, v1, v2 ) { + + Curve.call( this ); + + this.type = 'QuadraticBezierCurve'; + + this.v0 = v0 || new Vector2(); + this.v1 = v1 || new Vector2(); + this.v2 = v2 || new Vector2(); + + } + + QuadraticBezierCurve.prototype = Object.create( Curve.prototype ); + QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve; + + QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true; + + QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector2(); + + var v0 = this.v0, v1 = this.v1, v2 = this.v2; + + point.set( + QuadraticBezier( t, v0.x, v1.x, v2.x ), + QuadraticBezier( t, v0.y, v1.y, v2.y ) + ); + + return point; + + }; + + QuadraticBezierCurve.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + }; + + QuadraticBezierCurve.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + }; + + QuadraticBezierCurve.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + }; + + function QuadraticBezierCurve3( v0, v1, v2 ) { + + Curve.call( this ); + + this.type = 'QuadraticBezierCurve3'; + + this.v0 = v0 || new Vector3(); + this.v1 = v1 || new Vector3(); + this.v2 = v2 || new Vector3(); + + } + + QuadraticBezierCurve3.prototype = Object.create( Curve.prototype ); + QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3; + + QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true; + + QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector3(); + + var v0 = this.v0, v1 = this.v1, v2 = this.v2; + + point.set( + QuadraticBezier( t, v0.x, v1.x, v2.x ), + QuadraticBezier( t, v0.y, v1.y, v2.y ), + QuadraticBezier( t, v0.z, v1.z, v2.z ) + ); + + return point; + + }; + + QuadraticBezierCurve3.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.v0.copy( source.v0 ); + this.v1.copy( source.v1 ); + this.v2.copy( source.v2 ); + + return this; + + }; + + QuadraticBezierCurve3.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.v0 = this.v0.toArray(); + data.v1 = this.v1.toArray(); + data.v2 = this.v2.toArray(); + + return data; + + }; + + QuadraticBezierCurve3.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.v0.fromArray( json.v0 ); + this.v1.fromArray( json.v1 ); + this.v2.fromArray( json.v2 ); + + return this; + + }; + + function SplineCurve( points ) { + + Curve.call( this ); + + this.type = 'SplineCurve'; + + this.points = points || []; + + } + + SplineCurve.prototype = Object.create( Curve.prototype ); + SplineCurve.prototype.constructor = SplineCurve; + + SplineCurve.prototype.isSplineCurve = true; + + SplineCurve.prototype.getPoint = function ( t, optionalTarget ) { + + var point = optionalTarget || new Vector2(); + + var points = this.points; + var p = ( points.length - 1 ) * t; + + var intPoint = Math.floor( p ); + var weight = p - intPoint; + + var p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; + var p1 = points[ intPoint ]; + var p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; + var p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; + + point.set( + CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), + CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) + ); + + return point; + + }; + + SplineCurve.prototype.copy = function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.points = []; + + for ( var i = 0, l = source.points.length; i < l; i ++ ) { + + var point = source.points[ i ]; + + this.points.push( point.clone() ); + + } + + return this; + + }; + + SplineCurve.prototype.toJSON = function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.points = []; + + for ( var i = 0, l = this.points.length; i < l; i ++ ) { + + var point = this.points[ i ]; + data.points.push( point.toArray() ); + + } + + return data; + + }; + + SplineCurve.prototype.fromJSON = function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.points = []; + + for ( var i = 0, l = json.points.length; i < l; i ++ ) { + + var point = json.points[ i ]; + this.points.push( new Vector2().fromArray( point ) ); + + } + + return this; + + }; + + var Curves = /*#__PURE__*/Object.freeze({ + __proto__: null, + ArcCurve: ArcCurve, + CatmullRomCurve3: CatmullRomCurve3, + CubicBezierCurve: CubicBezierCurve, + CubicBezierCurve3: CubicBezierCurve3, + EllipseCurve: EllipseCurve, + LineCurve: LineCurve, + LineCurve3: LineCurve3, + QuadraticBezierCurve: QuadraticBezierCurve, + QuadraticBezierCurve3: QuadraticBezierCurve3, + SplineCurve: SplineCurve + }); + + /************************************************************** + * Curved Path - a curve path is simply a array of connected + * curves, but retains the api of a curve + **************************************************************/ + + function CurvePath() { + + Curve.call( this ); + + this.type = 'CurvePath'; + + this.curves = []; + this.autoClose = false; // Automatically closes the path + + } + + CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), { + + constructor: CurvePath, + + add: function ( curve ) { + + this.curves.push( curve ); + + }, + + closePath: function () { + + // Add a line curve if start and end of lines are not connected + var startPoint = this.curves[ 0 ].getPoint( 0 ); + var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); + + if ( ! startPoint.equals( endPoint ) ) { + + this.curves.push( new LineCurve( endPoint, startPoint ) ); + + } + + }, + + // To get accurate point with reference to + // entire path distance at time t, + // following has to be done: + + // 1. Length of each sub path have to be known + // 2. Locate and identify type of curve + // 3. Get t for the curve + // 4. Return curve.getPointAt(t') + + getPoint: function ( t ) { + + var d = t * this.getLength(); + var curveLengths = this.getCurveLengths(); + var i = 0; + + // To think about boundaries points. + + while ( i < curveLengths.length ) { + + if ( curveLengths[ i ] >= d ) { + + var diff = curveLengths[ i ] - d; + var curve = this.curves[ i ]; + + var segmentLength = curve.getLength(); + var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; + + return curve.getPointAt( u ); + + } + + i ++; + + } + + return null; + + // loop where sum != 0, sum > d , sum+1 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) { + + points.push( points[ 0 ] ); + + } + + return points; + + }, + + copy: function ( source ) { + + Curve.prototype.copy.call( this, source ); + + this.curves = []; + + for ( var i = 0, l = source.curves.length; i < l; i ++ ) { + + var curve = source.curves[ i ]; + + this.curves.push( curve.clone() ); + + } + + this.autoClose = source.autoClose; + + return this; + + }, + + toJSON: function () { + + var data = Curve.prototype.toJSON.call( this ); + + data.autoClose = this.autoClose; + data.curves = []; + + for ( var i = 0, l = this.curves.length; i < l; i ++ ) { + + var curve = this.curves[ i ]; + data.curves.push( curve.toJSON() ); + + } + + return data; + + }, + + fromJSON: function ( json ) { + + Curve.prototype.fromJSON.call( this, json ); + + this.autoClose = json.autoClose; + this.curves = []; + + for ( var i = 0, l = json.curves.length; i < l; i ++ ) { + + var curve = json.curves[ i ]; + this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) ); + + } + + return this; + + } + + } ); + + function Path( points ) { + + CurvePath.call( this ); + + this.type = 'Path'; + + this.currentPoint = new Vector2(); + + if ( points ) { + + this.setFromPoints( points ); + + } + + } + + Path.prototype = Object.assign( Object.create( CurvePath.prototype ), { + + constructor: Path, + + setFromPoints: function ( points ) { + + this.moveTo( points[ 0 ].x, points[ 0 ].y ); + + for ( var i = 1, l = points.length; i < l; i ++ ) { + + this.lineTo( points[ i ].x, points[ i ].y ); + + } + + return this; + + }, + + moveTo: function ( x, y ) { + + this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? + + return this; + + }, + + lineTo: function ( x, y ) { + + var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); + this.curves.push( curve ); + + this.currentPoint.set( x, y ); + + return this; + + }, + + quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { + + var curve = new QuadraticBezierCurve( + this.currentPoint.clone(), + new Vector2( aCPx, aCPy ), + new Vector2( aX, aY ) + ); + + this.curves.push( curve ); + + this.currentPoint.set( aX, aY ); + + return this; + + }, + + bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { + + var curve = new CubicBezierCurve( + this.currentPoint.clone(), + new Vector2( aCP1x, aCP1y ), + new Vector2( aCP2x, aCP2y ), + new Vector2( aX, aY ) + ); + + this.curves.push( curve ); + + this.currentPoint.set( aX, aY ); + + return this; + + }, + + splineThru: function ( pts /*Array of Vector*/ ) { + + var npts = [ this.currentPoint.clone() ].concat( pts ); + + var curve = new SplineCurve( npts ); + this.curves.push( curve ); + + this.currentPoint.copy( pts[ pts.length - 1 ] ); + + return this; + + }, + + arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { + + var x0 = this.currentPoint.x; + var y0 = this.currentPoint.y; + + this.absarc( aX + x0, aY + y0, aRadius, + aStartAngle, aEndAngle, aClockwise ); + + return this; + + }, + + absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { + + this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); + + return this; + + }, + + ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { + + var x0 = this.currentPoint.x; + var y0 = this.currentPoint.y; + + this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); + + return this; + + }, + + absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { + + var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); + + if ( this.curves.length > 0 ) { + + // if a previous curve is present, attempt to join + var firstPoint = curve.getPoint( 0 ); + + if ( ! firstPoint.equals( this.currentPoint ) ) { + + this.lineTo( firstPoint.x, firstPoint.y ); + + } + + } + + this.curves.push( curve ); + + var lastPoint = curve.getPoint( 1 ); + this.currentPoint.copy( lastPoint ); + + return this; + + }, + + copy: function ( source ) { + + CurvePath.prototype.copy.call( this, source ); + + this.currentPoint.copy( source.currentPoint ); + + return this; + + }, + + toJSON: function () { + + var data = CurvePath.prototype.toJSON.call( this ); + + data.currentPoint = this.currentPoint.toArray(); + + return data; + + }, + + fromJSON: function ( json ) { + + CurvePath.prototype.fromJSON.call( this, json ); + + this.currentPoint.fromArray( json.currentPoint ); + + return this; + + } + + } ); + + function Shape( points ) { + + Path.call( this, points ); + + this.uuid = MathUtils.generateUUID(); + + this.type = 'Shape'; + + this.holes = []; + + } + + Shape.prototype = Object.assign( Object.create( Path.prototype ), { + + constructor: Shape, + + getPointsHoles: function ( divisions ) { + + var holesPts = []; + + for ( var i = 0, l = this.holes.length; i < l; i ++ ) { + + holesPts[ i ] = this.holes[ i ].getPoints( divisions ); + + } + + return holesPts; + + }, + + // get points of shape and holes (keypoints based on segments parameter) + + extractPoints: function ( divisions ) { + + return { + + shape: this.getPoints( divisions ), + holes: this.getPointsHoles( divisions ) + + }; + + }, + + copy: function ( source ) { + + Path.prototype.copy.call( this, source ); + + this.holes = []; + + for ( var i = 0, l = source.holes.length; i < l; i ++ ) { + + var hole = source.holes[ i ]; + + this.holes.push( hole.clone() ); + + } + + return this; + + }, + + toJSON: function () { + + var data = Path.prototype.toJSON.call( this ); + + data.uuid = this.uuid; + data.holes = []; + + for ( var i = 0, l = this.holes.length; i < l; i ++ ) { + + var hole = this.holes[ i ]; + data.holes.push( hole.toJSON() ); + + } + + return data; + + }, + + fromJSON: function ( json ) { + + Path.prototype.fromJSON.call( this, json ); + + this.uuid = json.uuid; + this.holes = []; + + for ( var i = 0, l = json.holes.length; i < l; i ++ ) { + + var hole = json.holes[ i ]; + this.holes.push( new Path().fromJSON( hole ) ); + + } + + return this; + + } + + } ); + + function Light( color, intensity ) { + + Object3D.call( this ); + + this.type = 'Light'; + + this.color = new Color( color ); + this.intensity = intensity !== undefined ? intensity : 1; + + this.receiveShadow = undefined; + + } + + Light.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Light, + + isLight: true, + + copy: function ( source ) { + + Object3D.prototype.copy.call( this, source ); + + this.color.copy( source.color ); + this.intensity = source.intensity; + + return this; + + }, + + toJSON: function ( meta ) { + + var data = Object3D.prototype.toJSON.call( this, meta ); + + data.object.color = this.color.getHex(); + data.object.intensity = this.intensity; + + if ( this.groundColor !== undefined ) { data.object.groundColor = this.groundColor.getHex(); } + + if ( this.distance !== undefined ) { data.object.distance = this.distance; } + if ( this.angle !== undefined ) { data.object.angle = this.angle; } + if ( this.decay !== undefined ) { data.object.decay = this.decay; } + if ( this.penumbra !== undefined ) { data.object.penumbra = this.penumbra; } + + if ( this.shadow !== undefined ) { data.object.shadow = this.shadow.toJSON(); } + + return data; + + } + + } ); + + function HemisphereLight( skyColor, groundColor, intensity ) { + + Light.call( this, skyColor, intensity ); + + this.type = 'HemisphereLight'; + + this.castShadow = undefined; + + this.position.copy( Object3D.DefaultUp ); + this.updateMatrix(); + + this.groundColor = new Color( groundColor ); + + } + + HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: HemisphereLight, + + isHemisphereLight: true, + + copy: function ( source ) { + + Light.prototype.copy.call( this, source ); + + this.groundColor.copy( source.groundColor ); + + return this; + + } + + } ); + + function LightShadow( camera ) { + + this.camera = camera; + + this.bias = 0; + this.normalBias = 0; + this.radius = 1; + + this.mapSize = new Vector2( 512, 512 ); + + this.map = null; + this.mapPass = null; + this.matrix = new Matrix4(); + + this.autoUpdate = true; + this.needsUpdate = false; + + this._frustum = new Frustum(); + this._frameExtents = new Vector2( 1, 1 ); + + this._viewportCount = 1; + + this._viewports = [ + + new Vector4( 0, 0, 1, 1 ) + + ]; + + } + + Object.assign( LightShadow.prototype, { + + _projScreenMatrix: new Matrix4(), + + _lightPositionWorld: new Vector3(), + + _lookTarget: new Vector3(), + + getViewportCount: function () { + + return this._viewportCount; + + }, + + getFrustum: function () { + + return this._frustum; + + }, + + updateMatrices: function ( light ) { + + var shadowCamera = this.camera, + shadowMatrix = this.matrix, + projScreenMatrix = this._projScreenMatrix, + lookTarget = this._lookTarget, + lightPositionWorld = this._lightPositionWorld; + + lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); + shadowCamera.position.copy( lightPositionWorld ); + + lookTarget.setFromMatrixPosition( light.target.matrixWorld ); + shadowCamera.lookAt( lookTarget ); + shadowCamera.updateMatrixWorld(); + + projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); + this._frustum.setFromProjectionMatrix( projScreenMatrix ); + + shadowMatrix.set( + 0.5, 0.0, 0.0, 0.5, + 0.0, 0.5, 0.0, 0.5, + 0.0, 0.0, 0.5, 0.5, + 0.0, 0.0, 0.0, 1.0 + ); + + shadowMatrix.multiply( shadowCamera.projectionMatrix ); + shadowMatrix.multiply( shadowCamera.matrixWorldInverse ); + + }, + + getViewport: function ( viewportIndex ) { + + return this._viewports[ viewportIndex ]; + + }, + + getFrameExtents: function () { + + return this._frameExtents; + + }, + + copy: function ( source ) { + + this.camera = source.camera.clone(); + + this.bias = source.bias; + this.radius = source.radius; + + this.mapSize.copy( source.mapSize ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + toJSON: function () { + + var object = {}; + + if ( this.bias !== 0 ) { object.bias = this.bias; } + if ( this.normalBias !== 0 ) { object.normalBias = this.normalBias; } + if ( this.radius !== 1 ) { object.radius = this.radius; } + if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) { object.mapSize = this.mapSize.toArray(); } + + object.camera = this.camera.toJSON( false ).object; + delete object.camera.matrix; + + return object; + + } + + } ); + + function SpotLightShadow() { + + LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) ); + + } + + SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { + + constructor: SpotLightShadow, + + isSpotLightShadow: true, + + updateMatrices: function ( light ) { + + var camera = this.camera; + + var fov = MathUtils.RAD2DEG * 2 * light.angle; + var aspect = this.mapSize.width / this.mapSize.height; + var far = light.distance || camera.far; + + if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { + + camera.fov = fov; + camera.aspect = aspect; + camera.far = far; + camera.updateProjectionMatrix(); + + } + + LightShadow.prototype.updateMatrices.call( this, light ); + + } + + } ); + + function SpotLight( color, intensity, distance, angle, penumbra, decay ) { + + Light.call( this, color, intensity ); + + this.type = 'SpotLight'; + + this.position.copy( Object3D.DefaultUp ); + this.updateMatrix(); + + this.target = new Object3D(); + + Object.defineProperty( this, 'power', { + get: function () { + + // intensity = power per solid angle. + // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + return this.intensity * Math.PI; + + }, + set: function ( power ) { + + // intensity = power per solid angle. + // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + this.intensity = power / Math.PI; + + } + } ); + + this.distance = ( distance !== undefined ) ? distance : 0; + this.angle = ( angle !== undefined ) ? angle : Math.PI / 3; + this.penumbra = ( penumbra !== undefined ) ? penumbra : 0; + this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. + + this.shadow = new SpotLightShadow(); + + } + + SpotLight.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: SpotLight, + + isSpotLight: true, + + copy: function ( source ) { + + Light.prototype.copy.call( this, source ); + + this.distance = source.distance; + this.angle = source.angle; + this.penumbra = source.penumbra; + this.decay = source.decay; + + this.target = source.target.clone(); + + this.shadow = source.shadow.clone(); + + return this; + + } + + } ); + + function PointLightShadow() { + + LightShadow.call( this, new PerspectiveCamera( 90, 1, 0.5, 500 ) ); + + this._frameExtents = new Vector2( 4, 2 ); + + this._viewportCount = 6; + + this._viewports = [ + // These viewports map a cube-map onto a 2D texture with the + // following orientation: + // + // xzXZ + // y Y + // + // X - Positive x direction + // x - Negative x direction + // Y - Positive y direction + // y - Negative y direction + // Z - Positive z direction + // z - Negative z direction + + // positive X + new Vector4( 2, 1, 1, 1 ), + // negative X + new Vector4( 0, 1, 1, 1 ), + // positive Z + new Vector4( 3, 1, 1, 1 ), + // negative Z + new Vector4( 1, 1, 1, 1 ), + // positive Y + new Vector4( 3, 0, 1, 1 ), + // negative Y + new Vector4( 1, 0, 1, 1 ) + ]; + + this._cubeDirections = [ + new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ), + new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 ) + ]; + + this._cubeUps = [ + new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), + new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, - 1 ) + ]; + + } + + PointLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { + + constructor: PointLightShadow, + + isPointLightShadow: true, + + updateMatrices: function ( light, viewportIndex ) { + + if ( viewportIndex === undefined ) { viewportIndex = 0; } + + var camera = this.camera, + shadowMatrix = this.matrix, + lightPositionWorld = this._lightPositionWorld, + lookTarget = this._lookTarget, + projScreenMatrix = this._projScreenMatrix; + + lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); + camera.position.copy( lightPositionWorld ); + + lookTarget.copy( camera.position ); + lookTarget.add( this._cubeDirections[ viewportIndex ] ); + camera.up.copy( this._cubeUps[ viewportIndex ] ); + camera.lookAt( lookTarget ); + camera.updateMatrixWorld(); + + shadowMatrix.makeTranslation( - lightPositionWorld.x, - lightPositionWorld.y, - lightPositionWorld.z ); + + projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); + this._frustum.setFromProjectionMatrix( projScreenMatrix ); + + } + + } ); + + function PointLight( color, intensity, distance, decay ) { + + Light.call( this, color, intensity ); + + this.type = 'PointLight'; + + Object.defineProperty( this, 'power', { + get: function () { + + // intensity = power per solid angle. + // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + return this.intensity * 4 * Math.PI; + + }, + set: function ( power ) { + + // intensity = power per solid angle. + // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + this.intensity = power / ( 4 * Math.PI ); + + } + } ); + + this.distance = ( distance !== undefined ) ? distance : 0; + this.decay = ( decay !== undefined ) ? decay : 1; // for physically correct lights, should be 2. + + this.shadow = new PointLightShadow(); + + } + + PointLight.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: PointLight, + + isPointLight: true, + + copy: function ( source ) { + + Light.prototype.copy.call( this, source ); + + this.distance = source.distance; + this.decay = source.decay; + + this.shadow = source.shadow.clone(); + + return this; + + } + + } ); + + function OrthographicCamera( left, right, top, bottom, near, far ) { + + Camera.call( this ); + + this.type = 'OrthographicCamera'; + + this.zoom = 1; + this.view = null; + + this.left = ( left !== undefined ) ? left : - 1; + this.right = ( right !== undefined ) ? right : 1; + this.top = ( top !== undefined ) ? top : 1; + this.bottom = ( bottom !== undefined ) ? bottom : - 1; + + this.near = ( near !== undefined ) ? near : 0.1; + this.far = ( far !== undefined ) ? far : 2000; + + this.updateProjectionMatrix(); + + } + + OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), { + + constructor: OrthographicCamera, + + isOrthographicCamera: true, + + copy: function ( source, recursive ) { + + Camera.prototype.copy.call( this, source, recursive ); + + this.left = source.left; + this.right = source.right; + this.top = source.top; + this.bottom = source.bottom; + this.near = source.near; + this.far = source.far; + + this.zoom = source.zoom; + this.view = source.view === null ? null : Object.assign( {}, source.view ); + + return this; + + }, + + setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) { + + if ( this.view === null ) { + + this.view = { + enabled: true, + fullWidth: 1, + fullHeight: 1, + offsetX: 0, + offsetY: 0, + width: 1, + height: 1 + }; + + } + + this.view.enabled = true; + this.view.fullWidth = fullWidth; + this.view.fullHeight = fullHeight; + this.view.offsetX = x; + this.view.offsetY = y; + this.view.width = width; + this.view.height = height; + + this.updateProjectionMatrix(); + + }, + + clearViewOffset: function () { + + if ( this.view !== null ) { + + this.view.enabled = false; + + } + + this.updateProjectionMatrix(); + + }, + + updateProjectionMatrix: function () { + + var dx = ( this.right - this.left ) / ( 2 * this.zoom ); + var dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); + var cx = ( this.right + this.left ) / 2; + var cy = ( this.top + this.bottom ) / 2; + + var left = cx - dx; + var right = cx + dx; + var top = cy + dy; + var bottom = cy - dy; + + if ( this.view !== null && this.view.enabled ) { + + var scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; + var scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; + + left += scaleW * this.view.offsetX; + right = left + scaleW * this.view.width; + top -= scaleH * this.view.offsetY; + bottom = top - scaleH * this.view.height; + + } + + this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far ); + + this.projectionMatrixInverse.getInverse( this.projectionMatrix ); + + }, + + toJSON: function ( meta ) { + + var data = Object3D.prototype.toJSON.call( this, meta ); + + data.object.zoom = this.zoom; + data.object.left = this.left; + data.object.right = this.right; + data.object.top = this.top; + data.object.bottom = this.bottom; + data.object.near = this.near; + data.object.far = this.far; + + if ( this.view !== null ) { data.object.view = Object.assign( {}, this.view ); } + + return data; + + } + + } ); + + function DirectionalLightShadow() { + + LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) ); + + } + + DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), { + + constructor: DirectionalLightShadow, + + isDirectionalLightShadow: true, + + updateMatrices: function ( light ) { + + LightShadow.prototype.updateMatrices.call( this, light ); + + } + + } ); + + function DirectionalLight( color, intensity ) { + + Light.call( this, color, intensity ); + + this.type = 'DirectionalLight'; + + this.position.copy( Object3D.DefaultUp ); + this.updateMatrix(); + + this.target = new Object3D(); + + this.shadow = new DirectionalLightShadow(); + + } + + DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: DirectionalLight, + + isDirectionalLight: true, + + copy: function ( source ) { + + Light.prototype.copy.call( this, source ); + + this.target = source.target.clone(); + + this.shadow = source.shadow.clone(); + + return this; + + } + + } ); + + function AmbientLight( color, intensity ) { + + Light.call( this, color, intensity ); + + this.type = 'AmbientLight'; + + this.castShadow = undefined; + + } + + AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: AmbientLight, + + isAmbientLight: true + + } ); + + function RectAreaLight( color, intensity, width, height ) { + + Light.call( this, color, intensity ); + + this.type = 'RectAreaLight'; + + this.width = ( width !== undefined ) ? width : 10; + this.height = ( height !== undefined ) ? height : 10; + + } + + RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: RectAreaLight, + + isRectAreaLight: true, + + copy: function ( source ) { + + Light.prototype.copy.call( this, source ); + + this.width = source.width; + this.height = source.height; + + return this; + + }, + + toJSON: function ( meta ) { + + var data = Light.prototype.toJSON.call( this, meta ); + + data.object.width = this.width; + data.object.height = this.height; + + return data; + + } + + } ); + + /** + * Primary reference: + * https://graphics.stanford.edu/papers/envmap/envmap.pdf + * + * Secondary reference: + * https://www.ppsloan.org/publications/StupidSH36.pdf + */ + + // 3-band SH defined by 9 coefficients + + function SphericalHarmonics3() { + + this.coefficients = []; + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients.push( new Vector3() ); + + } + + } + + Object.assign( SphericalHarmonics3.prototype, { + + isSphericalHarmonics3: true, + + set: function ( coefficients ) { + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].copy( coefficients[ i ] ); + + } + + return this; + + }, + + zero: function () { + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].set( 0, 0, 0 ); + + } + + return this; + + }, + + // get the radiance in the direction of the normal + // target is a Vector3 + getAt: function ( normal, target ) { + + // normal is assumed to be unit length + + var x = normal.x, y = normal.y, z = normal.z; + + var coeff = this.coefficients; + + // band 0 + target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 ); + + // band 1 + target.addScaledVector( coeff[ 1 ], 0.488603 * y ); + target.addScaledVector( coeff[ 2 ], 0.488603 * z ); + target.addScaledVector( coeff[ 3 ], 0.488603 * x ); + + // band 2 + target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) ); + target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) ); + target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) ); + target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) ); + target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) ); + + return target; + + }, + + // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal + // target is a Vector3 + // https://graphics.stanford.edu/papers/envmap/envmap.pdf + getIrradianceAt: function ( normal, target ) { + + // normal is assumed to be unit length + + var x = normal.x, y = normal.y, z = normal.z; + + var coeff = this.coefficients; + + // band 0 + target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095 + + // band 1 + target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603 + target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z ); + target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x ); + + // band 2 + target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548 + target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z ); + target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3 + target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z ); + target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274 + + return target; + + }, + + add: function ( sh ) { + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].add( sh.coefficients[ i ] ); + + } + + return this; + + }, + + addScaledSH: function ( sh, s ) { + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s ); + + } + + return this; + + }, + + scale: function ( s ) { + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].multiplyScalar( s ); + + } + + return this; + + }, + + lerp: function ( sh, alpha ) { + + for ( var i = 0; i < 9; i ++ ) { + + this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha ); + + } + + return this; + + }, + + equals: function ( sh ) { + + for ( var i = 0; i < 9; i ++ ) { + + if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) { + + return false; + + } + + } + + return true; + + }, + + copy: function ( sh ) { + + return this.set( sh.coefficients ); + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + fromArray: function ( array, offset ) { + + if ( offset === undefined ) { offset = 0; } + + var coefficients = this.coefficients; + + for ( var i = 0; i < 9; i ++ ) { + + coefficients[ i ].fromArray( array, offset + ( i * 3 ) ); + + } + + return this; + + }, + + toArray: function ( array, offset ) { + + if ( array === undefined ) { array = []; } + if ( offset === undefined ) { offset = 0; } + + var coefficients = this.coefficients; + + for ( var i = 0; i < 9; i ++ ) { + + coefficients[ i ].toArray( array, offset + ( i * 3 ) ); + + } + + return array; + + } + + } ); + + Object.assign( SphericalHarmonics3, { + + // evaluate the basis functions + // shBasis is an Array[ 9 ] + getBasisAt: function ( normal, shBasis ) { + + // normal is assumed to be unit length + + var x = normal.x, y = normal.y, z = normal.z; + + // band 0 + shBasis[ 0 ] = 0.282095; + + // band 1 + shBasis[ 1 ] = 0.488603 * y; + shBasis[ 2 ] = 0.488603 * z; + shBasis[ 3 ] = 0.488603 * x; + + // band 2 + shBasis[ 4 ] = 1.092548 * x * y; + shBasis[ 5 ] = 1.092548 * y * z; + shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 ); + shBasis[ 7 ] = 1.092548 * x * z; + shBasis[ 8 ] = 0.546274 * ( x * x - y * y ); + + } + + } ); + + function LightProbe( sh, intensity ) { + + Light.call( this, undefined, intensity ); + + this.type = 'LightProbe'; + + this.sh = ( sh !== undefined ) ? sh : new SphericalHarmonics3(); + + } + + LightProbe.prototype = Object.assign( Object.create( Light.prototype ), { + + constructor: LightProbe, + + isLightProbe: true, + + copy: function ( source ) { + + Light.prototype.copy.call( this, source ); + + this.sh.copy( source.sh ); + + return this; + + }, + + fromJSON: function ( json ) { + + this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); + this.sh.fromArray( json.sh ); + + return this; + + }, + + toJSON: function ( meta ) { + + var data = Light.prototype.toJSON.call( this, meta ); + + data.object.sh = this.sh.toArray(); + + return data; + + } + + } ); + + function MaterialLoader( manager ) { + + Loader.call( this, manager ); + + this.textures = {}; + + } + + MaterialLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: MaterialLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var loader = new FileLoader( scope.manager ); + loader.setPath( scope.path ); + loader.setRequestHeader( scope.requestHeader ); + loader.load( url, function ( text ) { + + try { + + onLoad( scope.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + }, + + parse: function ( json ) { + + var textures = this.textures; + + function getTexture( name ) { + + if ( textures[ name ] === undefined ) { + + console.warn( 'THREE.MaterialLoader: Undefined texture', name ); + + } + + return textures[ name ]; + + } + + var material = new Materials[ json.type ](); + + if ( json.uuid !== undefined ) { material.uuid = json.uuid; } + if ( json.name !== undefined ) { material.name = json.name; } + if ( json.color !== undefined ) { material.color.setHex( json.color ); } + if ( json.roughness !== undefined ) { material.roughness = json.roughness; } + if ( json.metalness !== undefined ) { material.metalness = json.metalness; } + if ( json.sheen !== undefined ) { material.sheen = new Color().setHex( json.sheen ); } + if ( json.emissive !== undefined ) { material.emissive.setHex( json.emissive ); } + if ( json.specular !== undefined ) { material.specular.setHex( json.specular ); } + if ( json.shininess !== undefined ) { material.shininess = json.shininess; } + if ( json.clearcoat !== undefined ) { material.clearcoat = json.clearcoat; } + if ( json.clearcoatRoughness !== undefined ) { material.clearcoatRoughness = json.clearcoatRoughness; } + if ( json.fog !== undefined ) { material.fog = json.fog; } + if ( json.flatShading !== undefined ) { material.flatShading = json.flatShading; } + if ( json.blending !== undefined ) { material.blending = json.blending; } + if ( json.combine !== undefined ) { material.combine = json.combine; } + if ( json.side !== undefined ) { material.side = json.side; } + if ( json.opacity !== undefined ) { material.opacity = json.opacity; } + if ( json.transparent !== undefined ) { material.transparent = json.transparent; } + if ( json.alphaTest !== undefined ) { material.alphaTest = json.alphaTest; } + if ( json.depthTest !== undefined ) { material.depthTest = json.depthTest; } + if ( json.depthWrite !== undefined ) { material.depthWrite = json.depthWrite; } + if ( json.colorWrite !== undefined ) { material.colorWrite = json.colorWrite; } + + if ( json.stencilWrite !== undefined ) { material.stencilWrite = json.stencilWrite; } + if ( json.stencilWriteMask !== undefined ) { material.stencilWriteMask = json.stencilWriteMask; } + if ( json.stencilFunc !== undefined ) { material.stencilFunc = json.stencilFunc; } + if ( json.stencilRef !== undefined ) { material.stencilRef = json.stencilRef; } + if ( json.stencilFuncMask !== undefined ) { material.stencilFuncMask = json.stencilFuncMask; } + if ( json.stencilFail !== undefined ) { material.stencilFail = json.stencilFail; } + if ( json.stencilZFail !== undefined ) { material.stencilZFail = json.stencilZFail; } + if ( json.stencilZPass !== undefined ) { material.stencilZPass = json.stencilZPass; } + + if ( json.wireframe !== undefined ) { material.wireframe = json.wireframe; } + if ( json.wireframeLinewidth !== undefined ) { material.wireframeLinewidth = json.wireframeLinewidth; } + if ( json.wireframeLinecap !== undefined ) { material.wireframeLinecap = json.wireframeLinecap; } + if ( json.wireframeLinejoin !== undefined ) { material.wireframeLinejoin = json.wireframeLinejoin; } + + if ( json.rotation !== undefined ) { material.rotation = json.rotation; } + + if ( json.linewidth !== 1 ) { material.linewidth = json.linewidth; } + if ( json.dashSize !== undefined ) { material.dashSize = json.dashSize; } + if ( json.gapSize !== undefined ) { material.gapSize = json.gapSize; } + if ( json.scale !== undefined ) { material.scale = json.scale; } + + if ( json.polygonOffset !== undefined ) { material.polygonOffset = json.polygonOffset; } + if ( json.polygonOffsetFactor !== undefined ) { material.polygonOffsetFactor = json.polygonOffsetFactor; } + if ( json.polygonOffsetUnits !== undefined ) { material.polygonOffsetUnits = json.polygonOffsetUnits; } + + if ( json.skinning !== undefined ) { material.skinning = json.skinning; } + if ( json.morphTargets !== undefined ) { material.morphTargets = json.morphTargets; } + if ( json.morphNormals !== undefined ) { material.morphNormals = json.morphNormals; } + if ( json.dithering !== undefined ) { material.dithering = json.dithering; } + + if ( json.vertexTangents !== undefined ) { material.vertexTangents = json.vertexTangents; } + + if ( json.visible !== undefined ) { material.visible = json.visible; } + + if ( json.toneMapped !== undefined ) { material.toneMapped = json.toneMapped; } + + if ( json.userData !== undefined ) { material.userData = json.userData; } + + if ( json.vertexColors !== undefined ) { + + if ( typeof json.vertexColors === 'number' ) { + + material.vertexColors = ( json.vertexColors > 0 ) ? true : false; + + } else { + + material.vertexColors = json.vertexColors; + + } + + } + + // Shader Material + + if ( json.uniforms !== undefined ) { + + for ( var name in json.uniforms ) { + + var uniform = json.uniforms[ name ]; + + material.uniforms[ name ] = {}; + + switch ( uniform.type ) { + + case 't': + material.uniforms[ name ].value = getTexture( uniform.value ); + break; + + case 'c': + material.uniforms[ name ].value = new Color().setHex( uniform.value ); + break; + + case 'v2': + material.uniforms[ name ].value = new Vector2().fromArray( uniform.value ); + break; + + case 'v3': + material.uniforms[ name ].value = new Vector3().fromArray( uniform.value ); + break; + + case 'v4': + material.uniforms[ name ].value = new Vector4().fromArray( uniform.value ); + break; + + case 'm3': + material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value ); + + case 'm4': + material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value ); + break; + + default: + material.uniforms[ name ].value = uniform.value; + + } + + } + + } + + if ( json.defines !== undefined ) { material.defines = json.defines; } + if ( json.vertexShader !== undefined ) { material.vertexShader = json.vertexShader; } + if ( json.fragmentShader !== undefined ) { material.fragmentShader = json.fragmentShader; } + + if ( json.extensions !== undefined ) { + + for ( var key in json.extensions ) { + + material.extensions[ key ] = json.extensions[ key ]; + + } + + } + + // Deprecated + + if ( json.shading !== undefined ) { material.flatShading = json.shading === 1; } // THREE.FlatShading + + // for PointsMaterial + + if ( json.size !== undefined ) { material.size = json.size; } + if ( json.sizeAttenuation !== undefined ) { material.sizeAttenuation = json.sizeAttenuation; } + + // maps + + if ( json.map !== undefined ) { material.map = getTexture( json.map ); } + if ( json.matcap !== undefined ) { material.matcap = getTexture( json.matcap ); } + + if ( json.alphaMap !== undefined ) { material.alphaMap = getTexture( json.alphaMap ); } + + if ( json.bumpMap !== undefined ) { material.bumpMap = getTexture( json.bumpMap ); } + if ( json.bumpScale !== undefined ) { material.bumpScale = json.bumpScale; } + + if ( json.normalMap !== undefined ) { material.normalMap = getTexture( json.normalMap ); } + if ( json.normalMapType !== undefined ) { material.normalMapType = json.normalMapType; } + if ( json.normalScale !== undefined ) { + + var normalScale = json.normalScale; + + if ( Array.isArray( normalScale ) === false ) { + + // Blender exporter used to export a scalar. See #7459 + + normalScale = [ normalScale, normalScale ]; + + } + + material.normalScale = new Vector2().fromArray( normalScale ); + + } + + if ( json.displacementMap !== undefined ) { material.displacementMap = getTexture( json.displacementMap ); } + if ( json.displacementScale !== undefined ) { material.displacementScale = json.displacementScale; } + if ( json.displacementBias !== undefined ) { material.displacementBias = json.displacementBias; } + + if ( json.roughnessMap !== undefined ) { material.roughnessMap = getTexture( json.roughnessMap ); } + if ( json.metalnessMap !== undefined ) { material.metalnessMap = getTexture( json.metalnessMap ); } + + if ( json.emissiveMap !== undefined ) { material.emissiveMap = getTexture( json.emissiveMap ); } + if ( json.emissiveIntensity !== undefined ) { material.emissiveIntensity = json.emissiveIntensity; } + + if ( json.specularMap !== undefined ) { material.specularMap = getTexture( json.specularMap ); } + + if ( json.envMap !== undefined ) { material.envMap = getTexture( json.envMap ); } + if ( json.envMapIntensity !== undefined ) { material.envMapIntensity = json.envMapIntensity; } + + if ( json.reflectivity !== undefined ) { material.reflectivity = json.reflectivity; } + if ( json.refractionRatio !== undefined ) { material.refractionRatio = json.refractionRatio; } + + if ( json.lightMap !== undefined ) { material.lightMap = getTexture( json.lightMap ); } + if ( json.lightMapIntensity !== undefined ) { material.lightMapIntensity = json.lightMapIntensity; } + + if ( json.aoMap !== undefined ) { material.aoMap = getTexture( json.aoMap ); } + if ( json.aoMapIntensity !== undefined ) { material.aoMapIntensity = json.aoMapIntensity; } + + if ( json.gradientMap !== undefined ) { material.gradientMap = getTexture( json.gradientMap ); } + + if ( json.clearcoatMap !== undefined ) { material.clearcoatMap = getTexture( json.clearcoatMap ); } + if ( json.clearcoatRoughnessMap !== undefined ) { material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap ); } + if ( json.clearcoatNormalMap !== undefined ) { material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap ); } + if ( json.clearcoatNormalScale !== undefined ) { material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale ); } + + if ( json.transmission !== undefined ) { material.transmission = json.transmission; } + if ( json.transmissionMap !== undefined ) { material.transmissionMap = getTexture( json.transmissionMap ); } + + return material; + + }, + + setTextures: function ( value ) { + + this.textures = value; + return this; + + } + + } ); + + var LoaderUtils = { + + decodeText: function ( array ) { + + if ( typeof TextDecoder !== 'undefined' ) { + + return new TextDecoder().decode( array ); + + } + + // Avoid the String.fromCharCode.apply(null, array) shortcut, which + // throws a "maximum call stack size exceeded" error for large arrays. + + var s = ''; + + for ( var i = 0, il = array.length; i < il; i ++ ) { + + // Implicitly assumes little-endian. + s += String.fromCharCode( array[ i ] ); + + } + + try { + + // merges multi-byte utf-8 characters. + + return decodeURIComponent( escape( s ) ); + + } catch ( e ) { // see #16358 + + return s; + + } + + }, + + extractUrlBase: function ( url ) { + + var index = url.lastIndexOf( '/' ); + + if ( index === - 1 ) { return './'; } + + return url.substr( 0, index + 1 ); + + } + + }; + + function InstancedBufferGeometry() { + + BufferGeometry.call( this ); + + this.type = 'InstancedBufferGeometry'; + this.instanceCount = Infinity; + + } + + InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), { + + constructor: InstancedBufferGeometry, + + isInstancedBufferGeometry: true, + + copy: function ( source ) { + + BufferGeometry.prototype.copy.call( this, source ); + + this.instanceCount = source.instanceCount; + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + toJSON: function () { + + var data = BufferGeometry.prototype.toJSON.call( this ); + + data.instanceCount = this.instanceCount; + + data.isInstancedBufferGeometry = true; + + return data; + + } + + } ); + + function InstancedBufferAttribute( array, itemSize, normalized, meshPerAttribute ) { + + if ( typeof ( normalized ) === 'number' ) { + + meshPerAttribute = normalized; + + normalized = false; + + console.error( 'THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.' ); + + } + + BufferAttribute.call( this, array, itemSize, normalized ); + + this.meshPerAttribute = meshPerAttribute || 1; + + } + + InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), { + + constructor: InstancedBufferAttribute, + + isInstancedBufferAttribute: true, + + copy: function ( source ) { + + BufferAttribute.prototype.copy.call( this, source ); + + this.meshPerAttribute = source.meshPerAttribute; + + return this; + + }, + + toJSON: function () { + + var data = BufferAttribute.prototype.toJSON.call( this ); + + data.meshPerAttribute = this.meshPerAttribute; + + data.isInstancedBufferAttribute = true; + + return data; + + } + + } ); + + function BufferGeometryLoader( manager ) { + + Loader.call( this, manager ); + + } + + BufferGeometryLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: BufferGeometryLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var loader = new FileLoader( scope.manager ); + loader.setPath( scope.path ); + loader.setRequestHeader( scope.requestHeader ); + loader.load( url, function ( text ) { + + try { + + onLoad( scope.parse( JSON.parse( text ) ) ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + }, + + parse: function ( json ) { + + var interleavedBufferMap = {}; + var arrayBufferMap = {}; + + function getInterleavedBuffer( json, uuid ) { + + if ( interleavedBufferMap[ uuid ] !== undefined ) { return interleavedBufferMap[ uuid ]; } + + var interleavedBuffers = json.interleavedBuffers; + var interleavedBuffer = interleavedBuffers[ uuid ]; + + var buffer = getArrayBuffer( json, interleavedBuffer.buffer ); + + var array = new TYPED_ARRAYS[ interleavedBuffer.type ]( buffer ); + var ib = new InterleavedBuffer( array, interleavedBuffer.stride ); + ib.uuid = interleavedBuffer.uuid; + + interleavedBufferMap[ uuid ] = ib; + + return ib; + + } + + function getArrayBuffer( json, uuid ) { + + if ( arrayBufferMap[ uuid ] !== undefined ) { return arrayBufferMap[ uuid ]; } + + var arrayBuffers = json.arrayBuffers; + var arrayBuffer = arrayBuffers[ uuid ]; + + var ab = new Uint32Array( arrayBuffer ).buffer; + + arrayBufferMap[ uuid ] = ab; + + return ab; + + } + + var geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); + + var index = json.data.index; + + if ( index !== undefined ) { + + var typedArray = new TYPED_ARRAYS[ index.type ]( index.array ); + geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); + + } + + var attributes = json.data.attributes; + + for ( var key in attributes ) { + + var attribute = attributes[ key ]; + var bufferAttribute = (void 0); + + if ( attribute.isInterleavedBufferAttribute ) { + + var interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); + bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); + + } else { + + var typedArray$1 = new TYPED_ARRAYS[ attribute.type ]( attribute.array ); + var bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; + bufferAttribute = new bufferAttributeConstr( typedArray$1, attribute.itemSize, attribute.normalized ); + + } + + if ( attribute.name !== undefined ) { bufferAttribute.name = attribute.name; } + geometry.setAttribute( key, bufferAttribute ); + + } + + var morphAttributes = json.data.morphAttributes; + + if ( morphAttributes ) { + + for ( var key$1 in morphAttributes ) { + + var attributeArray = morphAttributes[ key$1 ]; + + var array = []; + + for ( var i = 0, il = attributeArray.length; i < il; i ++ ) { + + var attribute$1 = attributeArray[ i ]; + var bufferAttribute$1 = (void 0); + + if ( attribute$1.isInterleavedBufferAttribute ) { + + var interleavedBuffer$1 = getInterleavedBuffer( json.data, attribute$1.data ); + bufferAttribute$1 = new InterleavedBufferAttribute( interleavedBuffer$1, attribute$1.itemSize, attribute$1.offset, attribute$1.normalized ); + + } else { + + var typedArray$2 = new TYPED_ARRAYS[ attribute$1.type ]( attribute$1.array ); + bufferAttribute$1 = new BufferAttribute( typedArray$2, attribute$1.itemSize, attribute$1.normalized ); + + } + + if ( attribute$1.name !== undefined ) { bufferAttribute$1.name = attribute$1.name; } + array.push( bufferAttribute$1 ); + + } + + geometry.morphAttributes[ key$1 ] = array; + + } + + } + + var morphTargetsRelative = json.data.morphTargetsRelative; + + if ( morphTargetsRelative ) { + + geometry.morphTargetsRelative = true; + + } + + var groups = json.data.groups || json.data.drawcalls || json.data.offsets; + + if ( groups !== undefined ) { + + for ( var i$1 = 0, n = groups.length; i$1 !== n; ++ i$1 ) { + + var group = groups[ i$1 ]; + + geometry.addGroup( group.start, group.count, group.materialIndex ); + + } + + } + + var boundingSphere = json.data.boundingSphere; + + if ( boundingSphere !== undefined ) { + + var center = new Vector3(); + + if ( boundingSphere.center !== undefined ) { + + center.fromArray( boundingSphere.center ); + + } + + geometry.boundingSphere = new Sphere( center, boundingSphere.radius ); + + } + + if ( json.name ) { geometry.name = json.name; } + if ( json.userData ) { geometry.userData = json.userData; } + + return geometry; + + } + + } ); + + var TYPED_ARRAYS = { + Int8Array: Int8Array, + Uint8Array: Uint8Array, + // Workaround for IE11 pre KB2929437. See #11440 + Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array, + Int16Array: Int16Array, + Uint16Array: Uint16Array, + Int32Array: Int32Array, + Uint32Array: Uint32Array, + Float32Array: Float32Array, + Float64Array: Float64Array + }; + + function ObjectLoader( manager ) { + + Loader.call( this, manager ); + + } + + ObjectLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: ObjectLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; + this.resourcePath = this.resourcePath || path; + + var loader = new FileLoader( scope.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.load( url, function ( text ) { + + var json = null; + + try { + + json = JSON.parse( text ); + + } catch ( error ) { + + if ( onError !== undefined ) { onError( error ); } + + console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message ); + + return; + + } + + var metadata = json.metadata; + + if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { + + console.error( 'THREE.ObjectLoader: Can\'t load ' + url ); + return; + + } + + scope.parse( json, onLoad ); + + }, onProgress, onError ); + + }, + + parse: function ( json, onLoad ) { + + var shapes = this.parseShape( json.shapes ); + var geometries = this.parseGeometries( json.geometries, shapes ); + + var images = this.parseImages( json.images, function () { + + if ( onLoad !== undefined ) { onLoad( object ); } + + } ); + + var textures = this.parseTextures( json.textures, images ); + var materials = this.parseMaterials( json.materials, textures ); + + var object = this.parseObject( json.object, geometries, materials ); + + if ( json.animations ) { + + object.animations = this.parseAnimations( json.animations ); + + } + + if ( json.images === undefined || json.images.length === 0 ) { + + if ( onLoad !== undefined ) { onLoad( object ); } + + } + + return object; + + }, + + parseShape: function ( json ) { + + var shapes = {}; + + if ( json !== undefined ) { + + for ( var i = 0, l = json.length; i < l; i ++ ) { + + var shape = new Shape().fromJSON( json[ i ] ); + + shapes[ shape.uuid ] = shape; + + } + + } + + return shapes; + + }, + + parseGeometries: function ( json, shapes ) { + + var geometries = {}; + var geometryShapes; + + if ( json !== undefined ) { + + var bufferGeometryLoader = new BufferGeometryLoader(); + + for ( var i = 0, l = json.length; i < l; i ++ ) { + + var geometry = (void 0); + var data = json[ i ]; + + switch ( data.type ) { + + case 'PlaneGeometry': + case 'PlaneBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.width, + data.height, + data.widthSegments, + data.heightSegments + ); + + break; + + case 'BoxGeometry': + case 'BoxBufferGeometry': + case 'CubeGeometry': // backwards compatible + + geometry = new Geometries[ data.type ]( + data.width, + data.height, + data.depth, + data.widthSegments, + data.heightSegments, + data.depthSegments + ); + + break; + + case 'CircleGeometry': + case 'CircleBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radius, + data.segments, + data.thetaStart, + data.thetaLength + ); + + break; + + case 'CylinderGeometry': + case 'CylinderBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radiusTop, + data.radiusBottom, + data.height, + data.radialSegments, + data.heightSegments, + data.openEnded, + data.thetaStart, + data.thetaLength + ); + + break; + + case 'ConeGeometry': + case 'ConeBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radius, + data.height, + data.radialSegments, + data.heightSegments, + data.openEnded, + data.thetaStart, + data.thetaLength + ); + + break; + + case 'SphereGeometry': + case 'SphereBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radius, + data.widthSegments, + data.heightSegments, + data.phiStart, + data.phiLength, + data.thetaStart, + data.thetaLength + ); + + break; + + case 'DodecahedronGeometry': + case 'DodecahedronBufferGeometry': + case 'IcosahedronGeometry': + case 'IcosahedronBufferGeometry': + case 'OctahedronGeometry': + case 'OctahedronBufferGeometry': + case 'TetrahedronGeometry': + case 'TetrahedronBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radius, + data.detail + ); + + break; + + case 'RingGeometry': + case 'RingBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.innerRadius, + data.outerRadius, + data.thetaSegments, + data.phiSegments, + data.thetaStart, + data.thetaLength + ); + + break; + + case 'TorusGeometry': + case 'TorusBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radius, + data.tube, + data.radialSegments, + data.tubularSegments, + data.arc + ); + + break; + + case 'TorusKnotGeometry': + case 'TorusKnotBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.radius, + data.tube, + data.tubularSegments, + data.radialSegments, + data.p, + data.q + ); + + break; + + case 'TubeGeometry': + case 'TubeBufferGeometry': + + // This only works for built-in curves (e.g. CatmullRomCurve3). + // User defined curves or instances of CurvePath will not be deserialized. + geometry = new Geometries[ data.type ]( + new Curves[ data.path.type ]().fromJSON( data.path ), + data.tubularSegments, + data.radius, + data.radialSegments, + data.closed + ); + + break; + + case 'LatheGeometry': + case 'LatheBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.points, + data.segments, + data.phiStart, + data.phiLength + ); + + break; + + case 'PolyhedronGeometry': + case 'PolyhedronBufferGeometry': + + geometry = new Geometries[ data.type ]( + data.vertices, + data.indices, + data.radius, + data.details + ); + + break; + + case 'ShapeGeometry': + case 'ShapeBufferGeometry': + + geometryShapes = []; + + for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) { + + var shape = shapes[ data.shapes[ j ] ]; + + geometryShapes.push( shape ); + + } + + geometry = new Geometries[ data.type ]( + geometryShapes, + data.curveSegments + ); + + break; + + + case 'ExtrudeGeometry': + case 'ExtrudeBufferGeometry': + + geometryShapes = []; + + for ( var j$1 = 0, jl$1 = data.shapes.length; j$1 < jl$1; j$1 ++ ) { + + var shape$1 = shapes[ data.shapes[ j$1 ] ]; + + geometryShapes.push( shape$1 ); + + } + + var extrudePath = data.options.extrudePath; + + if ( extrudePath !== undefined ) { + + data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); + + } + + geometry = new Geometries[ data.type ]( + geometryShapes, + data.options + ); + + break; + + case 'BufferGeometry': + case 'InstancedBufferGeometry': + + geometry = bufferGeometryLoader.parse( data ); + + break; + + case 'Geometry': + + console.error( 'THREE.ObjectLoader: Loading "Geometry" is not supported anymore.' ); + + break; + + default: + + console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' ); + + continue; + + } + + geometry.uuid = data.uuid; + + if ( data.name !== undefined ) { geometry.name = data.name; } + if ( geometry.isBufferGeometry === true && data.userData !== undefined ) { geometry.userData = data.userData; } + + geometries[ data.uuid ] = geometry; + + } + + } + + return geometries; + + }, + + parseMaterials: function ( json, textures ) { + + var cache = {}; // MultiMaterial + var materials = {}; + + if ( json !== undefined ) { + + var loader = new MaterialLoader(); + loader.setTextures( textures ); + + for ( var i = 0, l = json.length; i < l; i ++ ) { + + var data = json[ i ]; + + if ( data.type === 'MultiMaterial' ) { + + // Deprecated + + var array = []; + + for ( var j = 0; j < data.materials.length; j ++ ) { + + var material = data.materials[ j ]; + + if ( cache[ material.uuid ] === undefined ) { + + cache[ material.uuid ] = loader.parse( material ); + + } + + array.push( cache[ material.uuid ] ); + + } + + materials[ data.uuid ] = array; + + } else { + + if ( cache[ data.uuid ] === undefined ) { + + cache[ data.uuid ] = loader.parse( data ); + + } + + materials[ data.uuid ] = cache[ data.uuid ]; + + } + + } + + } + + return materials; + + }, + + parseAnimations: function ( json ) { + + var animations = []; + + for ( var i = 0; i < json.length; i ++ ) { + + var data = json[ i ]; + + var clip = AnimationClip.parse( data ); + + if ( data.uuid !== undefined ) { clip.uuid = data.uuid; } + + animations.push( clip ); + + } + + return animations; + + }, + + parseImages: function ( json, onLoad ) { + + var scope = this; + var images = {}; + + var loader; + + function loadImage( url ) { + + scope.manager.itemStart( url ); + + return loader.load( url, function () { + + scope.manager.itemEnd( url ); + + }, undefined, function () { + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } ); + + } + + if ( json !== undefined && json.length > 0 ) { + + var manager = new LoadingManager( onLoad ); + + loader = new ImageLoader( manager ); + loader.setCrossOrigin( this.crossOrigin ); + + for ( var i = 0, il = json.length; i < il; i ++ ) { + + var image = json[ i ]; + var url = image.url; + + if ( Array.isArray( url ) ) { + + // load array of images e.g CubeTexture + + images[ image.uuid ] = []; + + for ( var j = 0, jl = url.length; j < jl; j ++ ) { + + var currentUrl = url[ j ]; + + var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( currentUrl ) ? currentUrl : scope.resourcePath + currentUrl; + + images[ image.uuid ].push( loadImage( path ) ); + + } + + } else { + + // load single image + + var path$1 = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.resourcePath + image.url; + + images[ image.uuid ] = loadImage( path$1 ); + + } + + } + + } + + return images; + + }, + + parseTextures: function ( json, images ) { + + function parseConstant( value, type ) { + + if ( typeof value === 'number' ) { return value; } + + console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); + + return type[ value ]; + + } + + var textures = {}; + + if ( json !== undefined ) { + + for ( var i = 0, l = json.length; i < l; i ++ ) { + + var data = json[ i ]; + + if ( data.image === undefined ) { + + console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); + + } + + if ( images[ data.image ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); + + } + + var texture = (void 0); + + if ( Array.isArray( images[ data.image ] ) ) { + + texture = new CubeTexture( images[ data.image ] ); + + } else { + + texture = new Texture( images[ data.image ] ); + + } + + texture.needsUpdate = true; + + texture.uuid = data.uuid; + + if ( data.name !== undefined ) { texture.name = data.name; } + + if ( data.mapping !== undefined ) { texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); } + + if ( data.offset !== undefined ) { texture.offset.fromArray( data.offset ); } + if ( data.repeat !== undefined ) { texture.repeat.fromArray( data.repeat ); } + if ( data.center !== undefined ) { texture.center.fromArray( data.center ); } + if ( data.rotation !== undefined ) { texture.rotation = data.rotation; } + + if ( data.wrap !== undefined ) { + + texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); + texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING ); + + } + + if ( data.format !== undefined ) { texture.format = data.format; } + if ( data.type !== undefined ) { texture.type = data.type; } + if ( data.encoding !== undefined ) { texture.encoding = data.encoding; } + + if ( data.minFilter !== undefined ) { texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); } + if ( data.magFilter !== undefined ) { texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); } + if ( data.anisotropy !== undefined ) { texture.anisotropy = data.anisotropy; } + + if ( data.flipY !== undefined ) { texture.flipY = data.flipY; } + + if ( data.premultiplyAlpha !== undefined ) { texture.premultiplyAlpha = data.premultiplyAlpha; } + if ( data.unpackAlignment !== undefined ) { texture.unpackAlignment = data.unpackAlignment; } + + textures[ data.uuid ] = texture; + + } + + } + + return textures; + + }, + + parseObject: function ( data, geometries, materials ) { + + var object; + + function getGeometry( name ) { + + if ( geometries[ name ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); + + } + + return geometries[ name ]; + + } + + function getMaterial( name ) { + + if ( name === undefined ) { return undefined; } + + if ( Array.isArray( name ) ) { + + var array = []; + + for ( var i = 0, l = name.length; i < l; i ++ ) { + + var uuid = name[ i ]; + + if ( materials[ uuid ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined material', uuid ); + + } + + array.push( materials[ uuid ] ); + + } + + return array; + + } + + if ( materials[ name ] === undefined ) { + + console.warn( 'THREE.ObjectLoader: Undefined material', name ); + + } + + return materials[ name ]; + + } + + var geometry, material; + + switch ( data.type ) { + + case 'Scene': + + object = new Scene(); + + if ( data.background !== undefined ) { + + if ( Number.isInteger( data.background ) ) { + + object.background = new Color( data.background ); + + } + + } + + if ( data.fog !== undefined ) { + + if ( data.fog.type === 'Fog' ) { + + object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); + + } else if ( data.fog.type === 'FogExp2' ) { + + object.fog = new FogExp2( data.fog.color, data.fog.density ); + + } + + } + + break; + + case 'PerspectiveCamera': + + object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); + + if ( data.focus !== undefined ) { object.focus = data.focus; } + if ( data.zoom !== undefined ) { object.zoom = data.zoom; } + if ( data.filmGauge !== undefined ) { object.filmGauge = data.filmGauge; } + if ( data.filmOffset !== undefined ) { object.filmOffset = data.filmOffset; } + if ( data.view !== undefined ) { object.view = Object.assign( {}, data.view ); } + + break; + + case 'OrthographicCamera': + + object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); + + if ( data.zoom !== undefined ) { object.zoom = data.zoom; } + if ( data.view !== undefined ) { object.view = Object.assign( {}, data.view ); } + + break; + + case 'AmbientLight': + + object = new AmbientLight( data.color, data.intensity ); + + break; + + case 'DirectionalLight': + + object = new DirectionalLight( data.color, data.intensity ); + + break; + + case 'PointLight': + + object = new PointLight( data.color, data.intensity, data.distance, data.decay ); + + break; + + case 'RectAreaLight': + + object = new RectAreaLight( data.color, data.intensity, data.width, data.height ); + + break; + + case 'SpotLight': + + object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); + + break; + + case 'HemisphereLight': + + object = new HemisphereLight( data.color, data.groundColor, data.intensity ); + + break; + + case 'LightProbe': + + object = new LightProbe().fromJSON( data ); + + break; + + case 'SkinnedMesh': + + console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' ); + + case 'Mesh': + + geometry = getGeometry( data.geometry ); + material = getMaterial( data.material ); + + object = new Mesh( geometry, material ); + + break; + + case 'InstancedMesh': + + geometry = getGeometry( data.geometry ); + material = getMaterial( data.material ); + var count = data.count; + var instanceMatrix = data.instanceMatrix; + + object = new InstancedMesh( geometry, material, count ); + object.instanceMatrix = new BufferAttribute( new Float32Array( instanceMatrix.array ), 16 ); + + break; + + case 'LOD': + + object = new LOD(); + + break; + + case 'Line': + + object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode ); + + break; + + case 'LineLoop': + + object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'LineSegments': + + object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'PointCloud': + case 'Points': + + object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); + + break; + + case 'Sprite': + + object = new Sprite( getMaterial( data.material ) ); + + break; + + case 'Group': + + object = new Group(); + + break; + + default: + + object = new Object3D(); + + } + + object.uuid = data.uuid; + + if ( data.name !== undefined ) { object.name = data.name; } + + if ( data.matrix !== undefined ) { + + object.matrix.fromArray( data.matrix ); + + if ( data.matrixAutoUpdate !== undefined ) { object.matrixAutoUpdate = data.matrixAutoUpdate; } + if ( object.matrixAutoUpdate ) { object.matrix.decompose( object.position, object.quaternion, object.scale ); } + + } else { + + if ( data.position !== undefined ) { object.position.fromArray( data.position ); } + if ( data.rotation !== undefined ) { object.rotation.fromArray( data.rotation ); } + if ( data.quaternion !== undefined ) { object.quaternion.fromArray( data.quaternion ); } + if ( data.scale !== undefined ) { object.scale.fromArray( data.scale ); } + + } + + if ( data.castShadow !== undefined ) { object.castShadow = data.castShadow; } + if ( data.receiveShadow !== undefined ) { object.receiveShadow = data.receiveShadow; } + + if ( data.shadow ) { + + if ( data.shadow.bias !== undefined ) { object.shadow.bias = data.shadow.bias; } + if ( data.shadow.normalBias !== undefined ) { object.shadow.normalBias = data.shadow.normalBias; } + if ( data.shadow.radius !== undefined ) { object.shadow.radius = data.shadow.radius; } + if ( data.shadow.mapSize !== undefined ) { object.shadow.mapSize.fromArray( data.shadow.mapSize ); } + if ( data.shadow.camera !== undefined ) { object.shadow.camera = this.parseObject( data.shadow.camera ); } + + } + + if ( data.visible !== undefined ) { object.visible = data.visible; } + if ( data.frustumCulled !== undefined ) { object.frustumCulled = data.frustumCulled; } + if ( data.renderOrder !== undefined ) { object.renderOrder = data.renderOrder; } + if ( data.userData !== undefined ) { object.userData = data.userData; } + if ( data.layers !== undefined ) { object.layers.mask = data.layers; } + + if ( data.children !== undefined ) { + + var children = data.children; + + for ( var i = 0; i < children.length; i ++ ) { + + object.add( this.parseObject( children[ i ], geometries, materials ) ); + + } + + } + + if ( data.type === 'LOD' ) { + + if ( data.autoUpdate !== undefined ) { object.autoUpdate = data.autoUpdate; } + + var levels = data.levels; + + for ( var l = 0; l < levels.length; l ++ ) { + + var level = levels[ l ]; + var child = object.getObjectByProperty( 'uuid', level.object ); + + if ( child !== undefined ) { + + object.addLevel( child, level.distance ); + + } + + } + + } + + return object; + + } + + } ); + + var TEXTURE_MAPPING = { + UVMapping: UVMapping, + CubeReflectionMapping: CubeReflectionMapping, + CubeRefractionMapping: CubeRefractionMapping, + EquirectangularReflectionMapping: EquirectangularReflectionMapping, + EquirectangularRefractionMapping: EquirectangularRefractionMapping, + CubeUVReflectionMapping: CubeUVReflectionMapping, + CubeUVRefractionMapping: CubeUVRefractionMapping + }; + + var TEXTURE_WRAPPING = { + RepeatWrapping: RepeatWrapping, + ClampToEdgeWrapping: ClampToEdgeWrapping, + MirroredRepeatWrapping: MirroredRepeatWrapping + }; + + var TEXTURE_FILTER = { + NearestFilter: NearestFilter, + NearestMipmapNearestFilter: NearestMipmapNearestFilter, + NearestMipmapLinearFilter: NearestMipmapLinearFilter, + LinearFilter: LinearFilter, + LinearMipmapNearestFilter: LinearMipmapNearestFilter, + LinearMipmapLinearFilter: LinearMipmapLinearFilter + }; + + function ImageBitmapLoader( manager ) { + + if ( typeof createImageBitmap === 'undefined' ) { + + console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' ); + + } + + if ( typeof fetch === 'undefined' ) { + + console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' ); + + } + + Loader.call( this, manager ); + + this.options = { premultiplyAlpha: 'none' }; + + } + + ImageBitmapLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: ImageBitmapLoader, + + isImageBitmapLoader: true, + + setOptions: function setOptions( options ) { + + this.options = options; + + return this; + + }, + + load: function ( url, onLoad, onProgress, onError ) { + + if ( url === undefined ) { url = ''; } + + if ( this.path !== undefined ) { url = this.path + url; } + + url = this.manager.resolveURL( url ); + + var scope = this; + + var cached = Cache.get( url ); + + if ( cached !== undefined ) { + + scope.manager.itemStart( url ); + + setTimeout( function () { + + if ( onLoad ) { onLoad( cached ); } + + scope.manager.itemEnd( url ); + + }, 0 ); + + return cached; + + } + + fetch( url ).then( function ( res ) { + + return res.blob(); + + } ).then( function ( blob ) { + + return createImageBitmap( blob, scope.options ); + + } ).then( function ( imageBitmap ) { + + Cache.add( url, imageBitmap ); + + if ( onLoad ) { onLoad( imageBitmap ); } + + scope.manager.itemEnd( url ); + + } ).catch( function ( e ) { + + if ( onError ) { onError( e ); } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + } ); + + scope.manager.itemStart( url ); + + } + + } ); + + function ShapePath() { + + this.type = 'ShapePath'; + + this.color = new Color(); + + this.subPaths = []; + this.currentPath = null; + + } + + Object.assign( ShapePath.prototype, { + + moveTo: function ( x, y ) { + + this.currentPath = new Path(); + this.subPaths.push( this.currentPath ); + this.currentPath.moveTo( x, y ); + + return this; + + }, + + lineTo: function ( x, y ) { + + this.currentPath.lineTo( x, y ); + + return this; + + }, + + quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) { + + this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); + + return this; + + }, + + bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { + + this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); + + return this; + + }, + + splineThru: function ( pts ) { + + this.currentPath.splineThru( pts ); + + return this; + + }, + + toShapes: function ( isCCW, noHoles ) { + + function toShapesNoHoles( inSubpaths ) { + + var shapes = []; + + for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) { + + var tmpPath = inSubpaths[ i ]; + + var tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + + shapes.push( tmpShape ); + + } + + return shapes; + + } + + function isPointInsidePolygon( inPt, inPolygon ) { + + var polyLen = inPolygon.length; + + // inPt on polygon contour => immediate success or + // toggling of inside/outside at every single! intersection point of an edge + // with the horizontal line through inPt, left of inPt + // not counting lowerY endpoints of edges and whole edges on that line + var inside = false; + for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { + + var edgeLowPt = inPolygon[ p ]; + var edgeHighPt = inPolygon[ q ]; + + var edgeDx = edgeHighPt.x - edgeLowPt.x; + var edgeDy = edgeHighPt.y - edgeLowPt.y; + + if ( Math.abs( edgeDy ) > Number.EPSILON ) { + + // not parallel + if ( edgeDy < 0 ) { + + edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; + edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; + + } + + if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) { continue; } + + if ( inPt.y === edgeLowPt.y ) { + + if ( inPt.x === edgeLowPt.x ) { return true; } // inPt is on contour ? + // continue; // no intersection or edgeLowPt => doesn't count !!! + + } else { + + var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); + if ( perpEdge === 0 ) { return true; } // inPt is on contour ? + if ( perpEdge < 0 ) { continue; } + inside = ! inside; // true intersection left of inPt + + } + + } else { + + // parallel or collinear + if ( inPt.y !== edgeLowPt.y ) { continue; } // parallel + // edge lies on the same horizontal line as inPt + if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || + ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) { return true; } // inPt: Point on contour ! + // continue; + + } + + } + + return inside; + + } + + var isClockWise = ShapeUtils.isClockWise; + + var subPaths = this.subPaths; + if ( subPaths.length === 0 ) { return []; } + + if ( noHoles === true ) { return toShapesNoHoles( subPaths ); } + + + var solid, tmpPath, tmpShape, shapes = []; + + if ( subPaths.length === 1 ) { + + tmpPath = subPaths[ 0 ]; + tmpShape = new Shape(); + tmpShape.curves = tmpPath.curves; + shapes.push( tmpShape ); + return shapes; + + } + + var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); + holesFirst = isCCW ? ! holesFirst : holesFirst; + + // console.log("Holes first", holesFirst); + + var betterShapeHoles = []; + var newShapes = []; + var newShapeHoles = []; + var mainIdx = 0; + var tmpPoints; + + newShapes[ mainIdx ] = undefined; + newShapeHoles[ mainIdx ] = []; + + for ( var i = 0, l = subPaths.length; i < l; i ++ ) { + + tmpPath = subPaths[ i ]; + tmpPoints = tmpPath.getPoints(); + solid = isClockWise( tmpPoints ); + solid = isCCW ? ! solid : solid; + + if ( solid ) { + + if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) { mainIdx ++; } + + newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; + newShapes[ mainIdx ].s.curves = tmpPath.curves; + + if ( holesFirst ) { mainIdx ++; } + newShapeHoles[ mainIdx ] = []; + + //console.log('cw', i); + + } else { + + newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); + + //console.log('ccw', i); + + } + + } + + // only Holes? -> probably all Shapes with wrong orientation + if ( ! newShapes[ 0 ] ) { return toShapesNoHoles( subPaths ); } + + + if ( newShapes.length > 1 ) { + + var ambiguous = false; + var toChange = []; + + for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { + + betterShapeHoles[ sIdx ] = []; + + } + + for ( var sIdx$1 = 0, sLen$1 = newShapes.length; sIdx$1 < sLen$1; sIdx$1 ++ ) { + + var sho = newShapeHoles[ sIdx$1 ]; + + for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) { + + var ho = sho[ hIdx ]; + var hole_unassigned = true; + + for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { + + if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { + + if ( sIdx$1 !== s2Idx ) { toChange.push( { froms: sIdx$1, tos: s2Idx, hole: hIdx } ); } + if ( hole_unassigned ) { + + hole_unassigned = false; + betterShapeHoles[ s2Idx ].push( ho ); + + } else { + + ambiguous = true; + + } + + } + + } + + if ( hole_unassigned ) { + + betterShapeHoles[ sIdx$1 ].push( ho ); + + } + + } + + } + // console.log("ambiguous: ", ambiguous); + + if ( toChange.length > 0 ) { + + // console.log("to change: ", toChange); + if ( ! ambiguous ) { newShapeHoles = betterShapeHoles; } + + } + + } + + var tmpHoles; + + for ( var i$1 = 0, il = newShapes.length; i$1 < il; i$1 ++ ) { + + tmpShape = newShapes[ i$1 ].s; + shapes.push( tmpShape ); + tmpHoles = newShapeHoles[ i$1 ]; + + for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) { + + tmpShape.holes.push( tmpHoles[ j ].h ); + + } + + } + + //console.log("shape", shapes); + + return shapes; + + } + + } ); + + function Font( data ) { + + this.type = 'Font'; + + this.data = data; + + } + + Object.assign( Font.prototype, { + + isFont: true, + + generateShapes: function ( text, size ) { + + if ( size === undefined ) { size = 100; } + + var shapes = []; + var paths = createPaths( text, size, this.data ); + + for ( var p = 0, pl = paths.length; p < pl; p ++ ) { + + Array.prototype.push.apply( shapes, paths[ p ].toShapes() ); + + } + + return shapes; + + } + + } ); + + function createPaths( text, size, data ) { + + var chars = Array.from ? Array.from( text ) : String( text ).split( '' ); // workaround for IE11, see #13988 + var scale = size / data.resolution; + var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale; + + var paths = []; + + var offsetX = 0, offsetY = 0; + + for ( var i = 0; i < chars.length; i ++ ) { + + var char = chars[ i ]; + + if ( char === '\n' ) { + + offsetX = 0; + offsetY -= line_height; + + } else { + + var ret = createPath( char, scale, offsetX, offsetY, data ); + offsetX += ret.offsetX; + paths.push( ret.path ); + + } + + } + + return paths; + + } + + function createPath( char, scale, offsetX, offsetY, data ) { + + var glyph = data.glyphs[ char ] || data.glyphs[ '?' ]; + + if ( ! glyph ) { + + console.error( 'THREE.Font: character "' + char + '" does not exists in font family ' + data.familyName + '.' ); + + return; + + } + + var path = new ShapePath(); + + var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2; + + if ( glyph.o ) { + + var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) ); + + for ( var i = 0, l = outline.length; i < l; ) { + + var action = outline[ i ++ ]; + + switch ( action ) { + + case 'm': // moveTo + + x = outline[ i ++ ] * scale + offsetX; + y = outline[ i ++ ] * scale + offsetY; + + path.moveTo( x, y ); + + break; + + case 'l': // lineTo + + x = outline[ i ++ ] * scale + offsetX; + y = outline[ i ++ ] * scale + offsetY; + + path.lineTo( x, y ); + + break; + + case 'q': // quadraticCurveTo + + cpx = outline[ i ++ ] * scale + offsetX; + cpy = outline[ i ++ ] * scale + offsetY; + cpx1 = outline[ i ++ ] * scale + offsetX; + cpy1 = outline[ i ++ ] * scale + offsetY; + + path.quadraticCurveTo( cpx1, cpy1, cpx, cpy ); + + break; + + case 'b': // bezierCurveTo + + cpx = outline[ i ++ ] * scale + offsetX; + cpy = outline[ i ++ ] * scale + offsetY; + cpx1 = outline[ i ++ ] * scale + offsetX; + cpy1 = outline[ i ++ ] * scale + offsetY; + cpx2 = outline[ i ++ ] * scale + offsetX; + cpy2 = outline[ i ++ ] * scale + offsetY; + + path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy ); + + break; + + } + + } + + } + + return { offsetX: glyph.ha * scale, path: path }; + + } + + function FontLoader( manager ) { + + Loader.call( this, manager ); + + } + + FontLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: FontLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var loader = new FileLoader( this.manager ); + loader.setPath( this.path ); + loader.setRequestHeader( this.requestHeader ); + loader.load( url, function ( text ) { + + var json; + + try { + + json = JSON.parse( text ); + + } catch ( e ) { + + console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ); + json = JSON.parse( text.substring( 65, text.length - 2 ) ); + + } + + var font = scope.parse( json ); + + if ( onLoad ) { onLoad( font ); } + + }, onProgress, onError ); + + }, + + parse: function ( json ) { + + return new Font( json ); + + } + + } ); + + var _context; + + var AudioContext = { + + getContext: function () { + + if ( _context === undefined ) { + + _context = new ( window.AudioContext || window.webkitAudioContext )(); + + } + + return _context; + + }, + + setContext: function ( value ) { + + _context = value; + + } + + }; + + function AudioLoader( manager ) { + + Loader.call( this, manager ); + + } + + AudioLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: AudioLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var loader = new FileLoader( scope.manager ); + loader.setResponseType( 'arraybuffer' ); + loader.setPath( scope.path ); + loader.setRequestHeader( scope.requestHeader ); + loader.load( url, function ( buffer ) { + + try { + + // Create a copy of the buffer. The `decodeAudioData` method + // detaches the buffer when complete, preventing reuse. + var bufferCopy = buffer.slice( 0 ); + + var context = AudioContext.getContext(); + context.decodeAudioData( bufferCopy, function ( audioBuffer ) { + + onLoad( audioBuffer ); + + } ); + + } catch ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + + } + + }, onProgress, onError ); + + } + + } ); + + function HemisphereLightProbe( skyColor, groundColor, intensity ) { + + LightProbe.call( this, undefined, intensity ); + + var color1 = new Color().set( skyColor ); + var color2 = new Color().set( groundColor ); + + var sky = new Vector3( color1.r, color1.g, color1.b ); + var ground = new Vector3( color2.r, color2.g, color2.b ); + + // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI ); + var c0 = Math.sqrt( Math.PI ); + var c1 = c0 * Math.sqrt( 0.75 ); + + this.sh.coefficients[ 0 ].copy( sky ).add( ground ).multiplyScalar( c0 ); + this.sh.coefficients[ 1 ].copy( sky ).sub( ground ).multiplyScalar( c1 ); + + } + + HemisphereLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), { + + constructor: HemisphereLightProbe, + + isHemisphereLightProbe: true, + + copy: function ( source ) { // modifying colors not currently supported + + LightProbe.prototype.copy.call( this, source ); + + return this; + + }, + + toJSON: function ( meta ) { + + var data = LightProbe.prototype.toJSON.call( this, meta ); + + // data.sh = this.sh.toArray(); // todo + + return data; + + } + + } ); + + function AmbientLightProbe( color, intensity ) { + + LightProbe.call( this, undefined, intensity ); + + var color1 = new Color().set( color ); + + // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI ); + this.sh.coefficients[ 0 ].set( color1.r, color1.g, color1.b ).multiplyScalar( 2 * Math.sqrt( Math.PI ) ); + + } + + AmbientLightProbe.prototype = Object.assign( Object.create( LightProbe.prototype ), { + + constructor: AmbientLightProbe, + + isAmbientLightProbe: true, + + copy: function ( source ) { // modifying color not currently supported + + LightProbe.prototype.copy.call( this, source ); + + return this; + + }, + + toJSON: function ( meta ) { + + var data = LightProbe.prototype.toJSON.call( this, meta ); + + // data.sh = this.sh.toArray(); // todo + + return data; + + } + + } ); + + var _eyeRight = new Matrix4(); + var _eyeLeft = new Matrix4(); + + function StereoCamera() { + + this.type = 'StereoCamera'; + + this.aspect = 1; + + this.eyeSep = 0.064; + + this.cameraL = new PerspectiveCamera(); + this.cameraL.layers.enable( 1 ); + this.cameraL.matrixAutoUpdate = false; + + this.cameraR = new PerspectiveCamera(); + this.cameraR.layers.enable( 2 ); + this.cameraR.matrixAutoUpdate = false; + + this._cache = { + focus: null, + fov: null, + aspect: null, + near: null, + far: null, + zoom: null, + eyeSep: null + }; + + } + + Object.assign( StereoCamera.prototype, { + + update: function ( camera ) { + + var cache = this._cache; + + var needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || + cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || + cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; + + if ( needsUpdate ) { + + cache.focus = camera.focus; + cache.fov = camera.fov; + cache.aspect = camera.aspect * this.aspect; + cache.near = camera.near; + cache.far = camera.far; + cache.zoom = camera.zoom; + cache.eyeSep = this.eyeSep; + + // Off-axis stereoscopic effect based on + // http://paulbourke.net/stereographics/stereorender/ + + var projectionMatrix = camera.projectionMatrix.clone(); + var eyeSepHalf = cache.eyeSep / 2; + var eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; + var ymax = ( cache.near * Math.tan( MathUtils.DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom; + var xmin, xmax; + + // translate xOffset + + _eyeLeft.elements[ 12 ] = - eyeSepHalf; + _eyeRight.elements[ 12 ] = eyeSepHalf; + + // for left eye + + xmin = - ymax * cache.aspect + eyeSepOnProjection; + xmax = ymax * cache.aspect + eyeSepOnProjection; + + projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); + projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); + + this.cameraL.projectionMatrix.copy( projectionMatrix ); + + // for right eye + + xmin = - ymax * cache.aspect - eyeSepOnProjection; + xmax = ymax * cache.aspect - eyeSepOnProjection; + + projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); + projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); + + this.cameraR.projectionMatrix.copy( projectionMatrix ); + + } + + this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft ); + this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight ); + + } + + } ); + + function Clock( autoStart ) { + + this.autoStart = ( autoStart !== undefined ) ? autoStart : true; + + this.startTime = 0; + this.oldTime = 0; + this.elapsedTime = 0; + + this.running = false; + + } + + Object.assign( Clock.prototype, { + + start: function () { + + this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732 + + this.oldTime = this.startTime; + this.elapsedTime = 0; + this.running = true; + + }, + + stop: function () { + + this.getElapsedTime(); + this.running = false; + this.autoStart = false; + + }, + + getElapsedTime: function () { + + this.getDelta(); + return this.elapsedTime; + + }, + + getDelta: function () { + + var diff = 0; + + if ( this.autoStart && ! this.running ) { + + this.start(); + return 0; + + } + + if ( this.running ) { + + var newTime = ( typeof performance === 'undefined' ? Date : performance ).now(); + + diff = ( newTime - this.oldTime ) / 1000; + this.oldTime = newTime; + + this.elapsedTime += diff; + + } + + return diff; + + } + + } ); + + var _position$2 = new Vector3(); + var _quaternion$3 = new Quaternion(); + var _scale$1 = new Vector3(); + var _orientation = new Vector3(); + + function AudioListener() { + + Object3D.call( this ); + + this.type = 'AudioListener'; + + this.context = AudioContext.getContext(); + + this.gain = this.context.createGain(); + this.gain.connect( this.context.destination ); + + this.filter = null; + + this.timeDelta = 0; + + // private + + this._clock = new Clock(); + + } + + AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: AudioListener, + + getInput: function () { + + return this.gain; + + }, + + removeFilter: function ( ) { + + if ( this.filter !== null ) { + + this.gain.disconnect( this.filter ); + this.filter.disconnect( this.context.destination ); + this.gain.connect( this.context.destination ); + this.filter = null; + + } + + return this; + + }, + + getFilter: function () { + + return this.filter; + + }, + + setFilter: function ( value ) { + + if ( this.filter !== null ) { + + this.gain.disconnect( this.filter ); + this.filter.disconnect( this.context.destination ); + + } else { + + this.gain.disconnect( this.context.destination ); + + } + + this.filter = value; + this.gain.connect( this.filter ); + this.filter.connect( this.context.destination ); + + return this; + + }, + + getMasterVolume: function () { + + return this.gain.gain.value; + + }, + + setMasterVolume: function ( value ) { + + this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); + + return this; + + }, + + updateMatrixWorld: function ( force ) { + + Object3D.prototype.updateMatrixWorld.call( this, force ); + + var listener = this.context.listener; + var up = this.up; + + this.timeDelta = this._clock.getDelta(); + + this.matrixWorld.decompose( _position$2, _quaternion$3, _scale$1 ); + + _orientation.set( 0, 0, - 1 ).applyQuaternion( _quaternion$3 ); + + if ( listener.positionX ) { + + // code path for Chrome (see #14393) + + var endTime = this.context.currentTime + this.timeDelta; + + listener.positionX.linearRampToValueAtTime( _position$2.x, endTime ); + listener.positionY.linearRampToValueAtTime( _position$2.y, endTime ); + listener.positionZ.linearRampToValueAtTime( _position$2.z, endTime ); + listener.forwardX.linearRampToValueAtTime( _orientation.x, endTime ); + listener.forwardY.linearRampToValueAtTime( _orientation.y, endTime ); + listener.forwardZ.linearRampToValueAtTime( _orientation.z, endTime ); + listener.upX.linearRampToValueAtTime( up.x, endTime ); + listener.upY.linearRampToValueAtTime( up.y, endTime ); + listener.upZ.linearRampToValueAtTime( up.z, endTime ); + + } else { + + listener.setPosition( _position$2.x, _position$2.y, _position$2.z ); + listener.setOrientation( _orientation.x, _orientation.y, _orientation.z, up.x, up.y, up.z ); + + } + + } + + } ); + + function Audio( listener ) { + + Object3D.call( this ); + + this.type = 'Audio'; + + this.listener = listener; + this.context = listener.context; + + this.gain = this.context.createGain(); + this.gain.connect( listener.getInput() ); + + this.autoplay = false; + + this.buffer = null; + this.detune = 0; + this.loop = false; + this.loopStart = 0; + this.loopEnd = 0; + this.offset = 0; + this.duration = undefined; + this.playbackRate = 1; + this.isPlaying = false; + this.hasPlaybackControl = true; + this.sourceType = 'empty'; + + this._startedAt = 0; + this._progress = 0; + + this.filters = []; + + } + + Audio.prototype = Object.assign( Object.create( Object3D.prototype ), { + + constructor: Audio, + + getOutput: function () { + + return this.gain; + + }, + + setNodeSource: function ( audioNode ) { + + this.hasPlaybackControl = false; + this.sourceType = 'audioNode'; + this.source = audioNode; + this.connect(); + + return this; + + }, + + setMediaElementSource: function ( mediaElement ) { + + this.hasPlaybackControl = false; + this.sourceType = 'mediaNode'; + this.source = this.context.createMediaElementSource( mediaElement ); + this.connect(); + + return this; + + }, + + setMediaStreamSource: function ( mediaStream ) { + + this.hasPlaybackControl = false; + this.sourceType = 'mediaStreamNode'; + this.source = this.context.createMediaStreamSource( mediaStream ); + this.connect(); + + return this; + + }, + + setBuffer: function ( audioBuffer ) { + + this.buffer = audioBuffer; + this.sourceType = 'buffer'; + + if ( this.autoplay ) { this.play(); } + + return this; + + }, + + play: function ( delay ) { + + if ( delay === undefined ) { delay = 0; } + + if ( this.isPlaying === true ) { + + console.warn( 'THREE.Audio: Audio is already playing.' ); + return; + + } + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this._startedAt = this.context.currentTime + delay; + + var source = this.context.createBufferSource(); + source.buffer = this.buffer; + source.loop = this.loop; + source.loopStart = this.loopStart; + source.loopEnd = this.loopEnd; + source.onended = this.onEnded.bind( this ); + source.start( this._startedAt, this._progress + this.offset, this.duration ); + + this.isPlaying = true; + + this.source = source; + + this.setDetune( this.detune ); + this.setPlaybackRate( this.playbackRate ); + + return this.connect(); + + }, + + pause: function () { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + if ( this.isPlaying === true ) { + + // update current progress + + this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate; + + if ( this.loop === true ) { + + // ensure _progress does not exceed duration with looped audios + + this._progress = this._progress % ( this.duration || this.buffer.duration ); + + } + + this.source.stop(); + this.source.onended = null; + + this.isPlaying = false; + + } + + return this; + + }, + + stop: function () { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this._progress = 0; + + this.source.stop(); + this.source.onended = null; + this.isPlaying = false; + + return this; + + }, + + connect: function () { + + if ( this.filters.length > 0 ) { + + this.source.connect( this.filters[ 0 ] ); + + for ( var i = 1, l = this.filters.length; i < l; i ++ ) { + + this.filters[ i - 1 ].connect( this.filters[ i ] ); + + } + + this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); + + } else { + + this.source.connect( this.getOutput() ); + + } + + return this; + + }, + + disconnect: function () { + + if ( this.filters.length > 0 ) { + + this.source.disconnect( this.filters[ 0 ] ); + + for ( var i = 1, l = this.filters.length; i < l; i ++ ) { + + this.filters[ i - 1 ].disconnect( this.filters[ i ] ); + + } + + this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); + + } else { + + this.source.disconnect( this.getOutput() ); + + } + + return this; + + }, + + getFilters: function () { + + return this.filters; + + }, + + setFilters: function ( value ) { + + if ( ! value ) { value = []; } + + if ( this.isPlaying === true ) { + + this.disconnect(); + this.filters = value; + this.connect(); + + } else { + + this.filters = value; + + } + + return this; + + }, + + setDetune: function ( value ) { + + this.detune = value; + + if ( this.source.detune === undefined ) { return; } // only set detune when available + + if ( this.isPlaying === true ) { + + this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 ); + + } + + return this; + + }, + + getDetune: function () { + + return this.detune; + + }, + + getFilter: function () { + + return this.getFilters()[ 0 ]; + + }, + + setFilter: function ( filter ) { + + return this.setFilters( filter ? [ filter ] : [] ); + + }, + + setPlaybackRate: function ( value ) { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this.playbackRate = value; + + if ( this.isPlaying === true ) { + + this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 ); + + } + + return this; + + }, + + getPlaybackRate: function () { + + return this.playbackRate; + + }, + + onEnded: function () { + + this.isPlaying = false; + + }, + + getLoop: function () { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return false; + + } + + return this.loop; + + }, + + setLoop: function ( value ) { + + if ( this.hasPlaybackControl === false ) { + + console.warn( 'THREE.Audio: this Audio has no playback control.' ); + return; + + } + + this.loop = value; + + if ( this.isPlaying === true ) { + + this.source.loop = this.loop; + + } + + return this; + + }, + + setLoopStart: function ( value ) { + + this.loopStart = value; + + return this; + + }, + + setLoopEnd: function ( value ) { + + this.loopEnd = value; + + return this; + + }, + + getVolume: function () { + + return this.gain.gain.value; + + }, + + setVolume: function ( value ) { + + this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); + + return this; + + } + + } ); + + var _position$3 = new Vector3(); + var _quaternion$4 = new Quaternion(); + var _scale$2 = new Vector3(); + var _orientation$1 = new Vector3(); + + function PositionalAudio( listener ) { + + Audio.call( this, listener ); + + this.panner = this.context.createPanner(); + this.panner.panningModel = 'HRTF'; + this.panner.connect( this.gain ); + + } + + PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), { + + constructor: PositionalAudio, + + getOutput: function () { + + return this.panner; + + }, + + getRefDistance: function () { + + return this.panner.refDistance; + + }, + + setRefDistance: function ( value ) { + + this.panner.refDistance = value; + + return this; + + }, + + getRolloffFactor: function () { + + return this.panner.rolloffFactor; + + }, + + setRolloffFactor: function ( value ) { + + this.panner.rolloffFactor = value; + + return this; + + }, + + getDistanceModel: function () { + + return this.panner.distanceModel; + + }, + + setDistanceModel: function ( value ) { + + this.panner.distanceModel = value; + + return this; + + }, + + getMaxDistance: function () { + + return this.panner.maxDistance; + + }, + + setMaxDistance: function ( value ) { + + this.panner.maxDistance = value; + + return this; + + }, + + setDirectionalCone: function ( coneInnerAngle, coneOuterAngle, coneOuterGain ) { + + this.panner.coneInnerAngle = coneInnerAngle; + this.panner.coneOuterAngle = coneOuterAngle; + this.panner.coneOuterGain = coneOuterGain; + + return this; + + }, + + updateMatrixWorld: function ( force ) { + + Object3D.prototype.updateMatrixWorld.call( this, force ); + + if ( this.hasPlaybackControl === true && this.isPlaying === false ) { return; } + + this.matrixWorld.decompose( _position$3, _quaternion$4, _scale$2 ); + + _orientation$1.set( 0, 0, 1 ).applyQuaternion( _quaternion$4 ); + + var panner = this.panner; + + if ( panner.positionX ) { + + // code path for Chrome and Firefox (see #14393) + + var endTime = this.context.currentTime + this.listener.timeDelta; + + panner.positionX.linearRampToValueAtTime( _position$3.x, endTime ); + panner.positionY.linearRampToValueAtTime( _position$3.y, endTime ); + panner.positionZ.linearRampToValueAtTime( _position$3.z, endTime ); + panner.orientationX.linearRampToValueAtTime( _orientation$1.x, endTime ); + panner.orientationY.linearRampToValueAtTime( _orientation$1.y, endTime ); + panner.orientationZ.linearRampToValueAtTime( _orientation$1.z, endTime ); + + } else { + + panner.setPosition( _position$3.x, _position$3.y, _position$3.z ); + panner.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z ); + + } + + } + + } ); + + function AudioAnalyser( audio, fftSize ) { + + this.analyser = audio.context.createAnalyser(); + this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048; + + this.data = new Uint8Array( this.analyser.frequencyBinCount ); + + audio.getOutput().connect( this.analyser ); + + } + + Object.assign( AudioAnalyser.prototype, { + + getFrequencyData: function () { + + this.analyser.getByteFrequencyData( this.data ); + + return this.data; + + }, + + getAverageFrequency: function () { + + var value = 0; + var data = this.getFrequencyData(); + + for ( var i = 0; i < data.length; i ++ ) { + + value += data[ i ]; + + } + + return value / data.length; + + } + + } ); + + function PropertyMixer( binding, typeName, valueSize ) { + + this.binding = binding; + this.valueSize = valueSize; + + var mixFunction, + mixFunctionAdditive, + setIdentity; + + // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] + // + // interpolators can use .buffer as their .result + // the data then goes to 'incoming' + // + // 'accu0' and 'accu1' are used frame-interleaved for + // the cumulative result and are compared to detect + // changes + // + // 'orig' stores the original state of the property + // + // 'add' is used for additive cumulative results + // + // 'work' is optional and is only present for quaternion types. It is used + // to store intermediate quaternion multiplication results + + switch ( typeName ) { + + case 'quaternion': + mixFunction = this._slerp; + mixFunctionAdditive = this._slerpAdditive; + setIdentity = this._setAdditiveIdentityQuaternion; + + this.buffer = new Float64Array( valueSize * 6 ); + this._workIndex = 5; + break; + + case 'string': + case 'bool': + mixFunction = this._select; + + // Use the regular mix function and for additive on these types, + // additive is not relevant for non-numeric types + mixFunctionAdditive = this._select; + + setIdentity = this._setAdditiveIdentityOther; + + this.buffer = new Array( valueSize * 5 ); + break; + + default: + mixFunction = this._lerp; + mixFunctionAdditive = this._lerpAdditive; + setIdentity = this._setAdditiveIdentityNumeric; + + this.buffer = new Float64Array( valueSize * 5 ); + + } + + this._mixBufferRegion = mixFunction; + this._mixBufferRegionAdditive = mixFunctionAdditive; + this._setIdentity = setIdentity; + this._origIndex = 3; + this._addIndex = 4; + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + this.useCount = 0; + this.referenceCount = 0; + + } + + Object.assign( PropertyMixer.prototype, { + + // accumulate data in the 'incoming' region into 'accu' + accumulate: function ( accuIndex, weight ) { + + // note: happily accumulating nothing when weight = 0, the caller knows + // the weight and shouldn't have made the call in the first place + + var buffer = this.buffer, + stride = this.valueSize, + offset = accuIndex * stride + stride; + + var currentWeight = this.cumulativeWeight; + + if ( currentWeight === 0 ) { + + // accuN := incoming * weight + + for ( var i = 0; i !== stride; ++ i ) { + + buffer[ offset + i ] = buffer[ i ]; + + } + + currentWeight = weight; + + } else { + + // accuN := accuN + incoming * weight + + currentWeight += weight; + var mix = weight / currentWeight; + this._mixBufferRegion( buffer, offset, 0, mix, stride ); + + } + + this.cumulativeWeight = currentWeight; + + }, + + // accumulate data in the 'incoming' region into 'add' + accumulateAdditive: function ( weight ) { + + var buffer = this.buffer, + stride = this.valueSize, + offset = stride * this._addIndex; + + if ( this.cumulativeWeightAdditive === 0 ) { + + // add = identity + + this._setIdentity(); + + } + + // add := add + incoming * weight + + this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride ); + this.cumulativeWeightAdditive += weight; + + }, + + // apply the state of 'accu' to the binding when accus differ + apply: function ( accuIndex ) { + + var stride = this.valueSize, + buffer = this.buffer, + offset = accuIndex * stride + stride, + + weight = this.cumulativeWeight, + weightAdditive = this.cumulativeWeightAdditive, + + binding = this.binding; + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + if ( weight < 1 ) { + + // accuN := accuN + original * ( 1 - cumulativeWeight ) + + var originalValueOffset = stride * this._origIndex; + + this._mixBufferRegion( + buffer, offset, originalValueOffset, 1 - weight, stride ); + + } + + if ( weightAdditive > 0 ) { + + // accuN := accuN + additive accuN + + this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride ); + + } + + for ( var i = stride, e = stride + stride; i !== e; ++ i ) { + + if ( buffer[ i ] !== buffer[ i + stride ] ) { + + // value has changed -> update scene graph + + binding.setValue( buffer, offset ); + break; + + } + + } + + }, + + // remember the state of the bound property and copy it to both accus + saveOriginalState: function () { + + var binding = this.binding; + + var buffer = this.buffer, + stride = this.valueSize, + + originalValueOffset = stride * this._origIndex; + + binding.getValue( buffer, originalValueOffset ); + + // accu[0..1] := orig -- initially detect changes against the original + for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) { + + buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; + + } + + // Add to identity for additive + this._setIdentity(); + + this.cumulativeWeight = 0; + this.cumulativeWeightAdditive = 0; + + }, + + // apply the state previously taken via 'saveOriginalState' to the binding + restoreOriginalState: function () { + + var originalValueOffset = this.valueSize * 3; + this.binding.setValue( this.buffer, originalValueOffset ); + + }, + + _setAdditiveIdentityNumeric: function () { + + var startIndex = this._addIndex * this.valueSize; + var endIndex = startIndex + this.valueSize; + + for ( var i = startIndex; i < endIndex; i ++ ) { + + this.buffer[ i ] = 0; + + } + + }, + + _setAdditiveIdentityQuaternion: function () { + + this._setAdditiveIdentityNumeric(); + this.buffer[ this._addIndex * 4 + 3 ] = 1; + + }, + + _setAdditiveIdentityOther: function () { + + var startIndex = this._origIndex * this.valueSize; + var targetIndex = this._addIndex * this.valueSize; + + for ( var i = 0; i < this.valueSize; i ++ ) { + + this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ]; + + } + + }, + + + // mix functions + + _select: function ( buffer, dstOffset, srcOffset, t, stride ) { + + if ( t >= 0.5 ) { + + for ( var i = 0; i !== stride; ++ i ) { + + buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; + + } + + } + + }, + + _slerp: function ( buffer, dstOffset, srcOffset, t ) { + + Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); + + }, + + _slerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) { + + var workOffset = this._workIndex * stride; + + // Store result in intermediate buffer offset + Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset ); + + // Slerp to the intermediate result + Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t ); + + }, + + _lerp: function ( buffer, dstOffset, srcOffset, t, stride ) { + + var s = 1 - t; + + for ( var i = 0; i !== stride; ++ i ) { + + var j = dstOffset + i; + + buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; + + } + + }, + + _lerpAdditive: function ( buffer, dstOffset, srcOffset, t, stride ) { + + for ( var i = 0; i !== stride; ++ i ) { + + var j = dstOffset + i; + + buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t; + + } + + } + + } ); + + // Characters [].:/ are reserved for track binding syntax. + var _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; + var _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); + + // Attempts to allow node names from any language. ES5's `\w` regexp matches + // only latin characters, and the unicode \p{L} is not yet supported. So + // instead, we exclude reserved characters and match everything else. + var _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; + var _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; + + // Parent directories, delimited by '/' or ':'. Currently unused, but must + // be matched to parse the rest of the track name. + var _directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); + + // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. + var _nodeRe = /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); + + // Object on target node, and accessor. May not contain reserved + // characters. Accessor may contain any character except closing bracket. + var _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); + + // Property and accessor. May not contain reserved characters. Accessor may + // contain any non-bracket characters. + var _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); + + var _trackRe = new RegExp( '' + + '^' + + _directoryRe + + _nodeRe + + _objectRe + + _propertyRe + + '$' + ); + + var _supportedObjectNames = [ 'material', 'materials', 'bones' ]; + + function Composite( targetGroup, path, optionalParsedPath ) { + + var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); + + this._targetGroup = targetGroup; + this._bindings = targetGroup.subscribe_( path, parsedPath ); + + } + + Object.assign( Composite.prototype, { + + getValue: function ( array, offset ) { + + this.bind(); // bind all binding + + var firstValidIndex = this._targetGroup.nCachedObjects_, + binding = this._bindings[ firstValidIndex ]; + + // and only call .getValue on the first + if ( binding !== undefined ) { binding.getValue( array, offset ); } + + }, + + setValue: function ( array, offset ) { + + var bindings = this._bindings; + + for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].setValue( array, offset ); + + } + + }, + + bind: function () { + + var bindings = this._bindings; + + for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].bind(); + + } + + }, + + unbind: function () { + + var bindings = this._bindings; + + for ( var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { + + bindings[ i ].unbind(); + + } + + } + + } ); + + + function PropertyBinding( rootNode, path, parsedPath ) { + + this.path = path; + this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); + + this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode; + + this.rootNode = rootNode; + + } + + Object.assign( PropertyBinding, { + + Composite: Composite, + + create: function ( root, path, parsedPath ) { + + if ( ! ( root && root.isAnimationObjectGroup ) ) { + + return new PropertyBinding( root, path, parsedPath ); + + } else { + + return new PropertyBinding.Composite( root, path, parsedPath ); + + } + + }, + + /** + * Replaces spaces with underscores and removes unsupported characters from + * node names, to ensure compatibility with parseTrackName(). + * + * @param {string} name Node name to be sanitized. + * @return {string} + */ + sanitizeNodeName: function ( name ) { + + return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); + + }, + + parseTrackName: function ( trackName ) { + + var matches = _trackRe.exec( trackName ); + + if ( ! matches ) { + + throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); + + } + + var results = { + // directoryName: matches[ 1 ], // (tschw) currently unused + nodeName: matches[ 2 ], + objectName: matches[ 3 ], + objectIndex: matches[ 4 ], + propertyName: matches[ 5 ], // required + propertyIndex: matches[ 6 ] + }; + + var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); + + if ( lastDot !== undefined && lastDot !== - 1 ) { + + var objectName = results.nodeName.substring( lastDot + 1 ); + + // Object names must be checked against an allowlist. Otherwise, there + // is no way to parse 'foo.bar.baz': 'baz' must be a property, but + // 'bar' could be the objectName, or part of a nodeName (which can + // include '.' characters). + if ( _supportedObjectNames.indexOf( objectName ) !== - 1 ) { + + results.nodeName = results.nodeName.substring( 0, lastDot ); + results.objectName = objectName; + + } + + } + + if ( results.propertyName === null || results.propertyName.length === 0 ) { + + throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); + + } + + return results; + + }, + + findNode: function ( root, nodeName ) { + + if ( ! nodeName || nodeName === "" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) { + + return root; + + } + + // search into skeleton bones. + if ( root.skeleton ) { + + var bone = root.skeleton.getBoneByName( nodeName ); + + if ( bone !== undefined ) { + + return bone; + + } + + } + + // search into node subtree. + if ( root.children ) { + + var searchNodeSubtree = function ( children ) { + + for ( var i = 0; i < children.length; i ++ ) { + + var childNode = children[ i ]; + + if ( childNode.name === nodeName || childNode.uuid === nodeName ) { + + return childNode; + + } + + var result = searchNodeSubtree( childNode.children ); + + if ( result ) { return result; } + + } + + return null; + + }; + + var subTreeNode = searchNodeSubtree( root.children ); + + if ( subTreeNode ) { + + return subTreeNode; + + } + + } + + return null; + + } + + } ); + + Object.assign( PropertyBinding.prototype, { // prototype, continued + + // these are used to "bind" a nonexistent property + _getValue_unavailable: function () {}, + _setValue_unavailable: function () {}, + + BindingType: { + Direct: 0, + EntireArray: 1, + ArrayElement: 2, + HasFromToArray: 3 + }, + + Versioning: { + None: 0, + NeedsUpdate: 1, + MatrixWorldNeedsUpdate: 2 + }, + + GetterByBindingType: [ + + function getValue_direct( buffer, offset ) { + + buffer[ offset ] = this.node[ this.propertyName ]; + + }, + + function getValue_array( buffer, offset ) { + + var source = this.resolvedProperty; + + for ( var i = 0, n = source.length; i !== n; ++ i ) { + + buffer[ offset ++ ] = source[ i ]; + + } + + }, + + function getValue_arrayElement( buffer, offset ) { + + buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; + + }, + + function getValue_toArray( buffer, offset ) { + + this.resolvedProperty.toArray( buffer, offset ); + + } + + ], + + SetterByBindingTypeAndVersioning: [ + + [ + // Direct + + function setValue_direct( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + + }, + + function setValue_direct_setNeedsUpdate( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + this.targetObject.needsUpdate = true; + + }, + + function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.targetObject[ this.propertyName ] = buffer[ offset ]; + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + ], [ + + // EntireArray + + function setValue_array( buffer, offset ) { + + var dest = this.resolvedProperty; + + for ( var i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + }, + + function setValue_array_setNeedsUpdate( buffer, offset ) { + + var dest = this.resolvedProperty; + + for ( var i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + this.targetObject.needsUpdate = true; + + }, + + function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { + + var dest = this.resolvedProperty; + + for ( var i = 0, n = dest.length; i !== n; ++ i ) { + + dest[ i ] = buffer[ offset ++ ]; + + } + + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + ], [ + + // ArrayElement + + function setValue_arrayElement( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + + }, + + function setValue_arrayElement_setNeedsUpdate( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + this.targetObject.needsUpdate = true; + + }, + + function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + ], [ + + // HasToFromArray + + function setValue_fromArray( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + + }, + + function setValue_fromArray_setNeedsUpdate( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + this.targetObject.needsUpdate = true; + + }, + + function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { + + this.resolvedProperty.fromArray( buffer, offset ); + this.targetObject.matrixWorldNeedsUpdate = true; + + } + + ] + + ], + + getValue: function getValue_unbound( targetArray, offset ) { + + this.bind(); + this.getValue( targetArray, offset ); + + // Note: This class uses a State pattern on a per-method basis: + // 'bind' sets 'this.getValue' / 'setValue' and shadows the + // prototype version of these methods with one that represents + // the bound state. When the property is not found, the methods + // become no-ops. + + }, + + setValue: function getValue_unbound( sourceArray, offset ) { + + this.bind(); + this.setValue( sourceArray, offset ); + + }, + + // create getter / setter pair for a property in the scene graph + bind: function () { + + var targetObject = this.node, + parsedPath = this.parsedPath, + + objectName = parsedPath.objectName, + propertyName = parsedPath.propertyName, + propertyIndex = parsedPath.propertyIndex; + + if ( ! targetObject ) { + + targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode; + + this.node = targetObject; + + } + + // set fail state so we can just 'return' on error + this.getValue = this._getValue_unavailable; + this.setValue = this._setValue_unavailable; + + // ensure there is a value node + if ( ! targetObject ) { + + console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' ); + return; + + } + + if ( objectName ) { + + var objectIndex = parsedPath.objectIndex; + + // special cases were we need to reach deeper into the hierarchy to get the face materials.... + switch ( objectName ) { + + case 'materials': + + if ( ! targetObject.material ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); + return; + + } + + if ( ! targetObject.material.materials ) { + + console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); + return; + + } + + targetObject = targetObject.material.materials; + + break; + + case 'bones': + + if ( ! targetObject.skeleton ) { + + console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); + return; + + } + + // potential future optimization: skip this if propertyIndex is already an integer + // and convert the integer string to a true integer. + + targetObject = targetObject.skeleton.bones; + + // support resolving morphTarget names into indices. + for ( var i = 0; i < targetObject.length; i ++ ) { + + if ( targetObject[ i ].name === objectIndex ) { + + objectIndex = i; + break; + + } + + } + + break; + + default: + + if ( targetObject[ objectName ] === undefined ) { + + console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); + return; + + } + + targetObject = targetObject[ objectName ]; + + } + + + if ( objectIndex !== undefined ) { + + if ( targetObject[ objectIndex ] === undefined ) { + + console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); + return; + + } + + targetObject = targetObject[ objectIndex ]; + + } + + } + + // resolve property + var nodeProperty = targetObject[ propertyName ]; + + if ( nodeProperty === undefined ) { + + var nodeName = parsedPath.nodeName; + + console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + + '.' + propertyName + ' but it wasn\'t found.', targetObject ); + return; + + } + + // determine versioning scheme + var versioning = this.Versioning.None; + + this.targetObject = targetObject; + + if ( targetObject.needsUpdate !== undefined ) { // material + + versioning = this.Versioning.NeedsUpdate; + + } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform + + versioning = this.Versioning.MatrixWorldNeedsUpdate; + + } + + // determine how the property gets bound + var bindingType = this.BindingType.Direct; + + if ( propertyIndex !== undefined ) { + + // access a sub element of the property array (only primitives are supported right now) + + if ( propertyName === "morphTargetInfluences" ) { + + // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. + + // support resolving morphTarget names into indices. + if ( ! targetObject.geometry ) { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); + return; + + } + + if ( targetObject.geometry.isBufferGeometry ) { + + if ( ! targetObject.geometry.morphAttributes ) { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); + return; + + } + + if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { + + propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; + + } + + + } else { + + console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this ); + return; + + } + + } + + bindingType = this.BindingType.ArrayElement; + + this.resolvedProperty = nodeProperty; + this.propertyIndex = propertyIndex; + + } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { + + // must use copy for Object3D.Euler/Quaternion + + bindingType = this.BindingType.HasFromToArray; + + this.resolvedProperty = nodeProperty; + + } else if ( Array.isArray( nodeProperty ) ) { + + bindingType = this.BindingType.EntireArray; + + this.resolvedProperty = nodeProperty; + + } else { + + this.propertyName = propertyName; + + } + + // select getter / setter + this.getValue = this.GetterByBindingType[ bindingType ]; + this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; + + }, + + unbind: function () { + + this.node = null; + + // back to the prototype version of getValue / setValue + // note: avoiding to mutate the shape of 'this' via 'delete' + this.getValue = this._getValue_unbound; + this.setValue = this._setValue_unbound; + + } + + } ); + + // DECLARE ALIAS AFTER assign prototype + Object.assign( PropertyBinding.prototype, { + + // initial state of these methods that calls 'bind' + _getValue_unbound: PropertyBinding.prototype.getValue, + _setValue_unbound: PropertyBinding.prototype.setValue, + + } ); + + /** + * + * A group of objects that receives a shared animation state. + * + * Usage: + * + * - Add objects you would otherwise pass as 'root' to the + * constructor or the .clipAction method of AnimationMixer. + * + * - Instead pass this object as 'root'. + * + * - You can also add and remove objects later when the mixer + * is running. + * + * Note: + * + * Objects of this class appear as one object to the mixer, + * so cache control of the individual objects must be done + * on the group. + * + * Limitation: + * + * - The animated properties must be compatible among the + * all objects in the group. + * + * - A single property can either be controlled through a + * target group or directly, but not both. + */ + + function AnimationObjectGroup() { + + this.uuid = MathUtils.generateUUID(); + + // cached objects followed by the active ones + this._objects = Array.prototype.slice.call( arguments ); + + this.nCachedObjects_ = 0; // threshold + // note: read by PropertyBinding.Composite + + var indices = {}; + this._indicesByUUID = indices; // for bookkeeping + + for ( var i = 0, n = arguments.length; i !== n; ++ i ) { + + indices[ arguments[ i ].uuid ] = i; + + } + + this._paths = []; // inside: string + this._parsedPaths = []; // inside: { we don't care, here } + this._bindings = []; // inside: Array< PropertyBinding > + this._bindingsIndicesByPath = {}; // inside: indices in these arrays + + var scope = this; + + this.stats = { + + objects: { + get total() { + + return scope._objects.length; + + }, + get inUse() { + + return this.total - scope.nCachedObjects_; + + } + }, + get bindingsPerObject() { + + return scope._bindings.length; + + } + + }; + + } + + Object.assign( AnimationObjectGroup.prototype, { + + isAnimationObjectGroup: true, + + add: function () { + + var objects = this._objects, + indicesByUUID = this._indicesByUUID, + paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + nBindings = bindings.length; + + var knownObject = undefined, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_; + + for ( var i = 0, n = arguments.length; i !== n; ++ i ) { + + var object = arguments[ i ], + uuid = object.uuid; + var index = indicesByUUID[ uuid ]; + + if ( index === undefined ) { + + // unknown object -> add it to the ACTIVE region + + index = nObjects ++; + indicesByUUID[ uuid ] = index; + objects.push( object ); + + // accounting is done, now do the same for all bindings + + for ( var j = 0, m = nBindings; j !== m; ++ j ) { + + bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); + + } + + } else if ( index < nCachedObjects ) { + + knownObject = objects[ index ]; + + // move existing object to the ACTIVE region + + var firstActiveIndex = -- nCachedObjects, + lastCachedObject = objects[ firstActiveIndex ]; + + indicesByUUID[ lastCachedObject.uuid ] = index; + objects[ index ] = lastCachedObject; + + indicesByUUID[ uuid ] = firstActiveIndex; + objects[ firstActiveIndex ] = object; + + // accounting is done, now do the same for all bindings + + for ( var j$1 = 0, m$1 = nBindings; j$1 !== m$1; ++ j$1 ) { + + var bindingsForPath = bindings[ j$1 ], + lastCached = bindingsForPath[ firstActiveIndex ]; + + var binding = bindingsForPath[ index ]; + + bindingsForPath[ index ] = lastCached; + + if ( binding === undefined ) { + + // since we do not bother to create new bindings + // for objects that are cached, the binding may + // or may not exist + + binding = new PropertyBinding( object, paths[ j$1 ], parsedPaths[ j$1 ] ); + + } + + bindingsForPath[ firstActiveIndex ] = binding; + + } + + } else if ( objects[ index ] !== knownObject ) { + + console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ); + + } // else the object is already where we want it to be + + } // for arguments + + this.nCachedObjects_ = nCachedObjects; + + }, + + remove: function () { + + var objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + + var nCachedObjects = this.nCachedObjects_; + + for ( var i = 0, n = arguments.length; i !== n; ++ i ) { + + var object = arguments[ i ], + uuid = object.uuid, + index = indicesByUUID[ uuid ]; + + if ( index !== undefined && index >= nCachedObjects ) { + + // move existing object into the CACHED region + + var lastCachedIndex = nCachedObjects ++, + firstActiveObject = objects[ lastCachedIndex ]; + + indicesByUUID[ firstActiveObject.uuid ] = index; + objects[ index ] = firstActiveObject; + + indicesByUUID[ uuid ] = lastCachedIndex; + objects[ lastCachedIndex ] = object; + + // accounting is done, now do the same for all bindings + + for ( var j = 0, m = nBindings; j !== m; ++ j ) { + + var bindingsForPath = bindings[ j ], + firstActive = bindingsForPath[ lastCachedIndex ], + binding = bindingsForPath[ index ]; + + bindingsForPath[ index ] = firstActive; + bindingsForPath[ lastCachedIndex ] = binding; + + } + + } + + } // for arguments + + this.nCachedObjects_ = nCachedObjects; + + }, + + // remove & forget + uncache: function () { + + var objects = this._objects, + indicesByUUID = this._indicesByUUID, + bindings = this._bindings, + nBindings = bindings.length; + + var nCachedObjects = this.nCachedObjects_, + nObjects = objects.length; + + for ( var i = 0, n = arguments.length; i !== n; ++ i ) { + + var object = arguments[ i ], + uuid = object.uuid, + index = indicesByUUID[ uuid ]; + + if ( index !== undefined ) { + + delete indicesByUUID[ uuid ]; + + if ( index < nCachedObjects ) { + + // object is cached, shrink the CACHED region + + var firstActiveIndex = -- nCachedObjects, + lastCachedObject = objects[ firstActiveIndex ], + lastIndex = -- nObjects, + lastObject = objects[ lastIndex ]; + + // last cached object takes this object's place + indicesByUUID[ lastCachedObject.uuid ] = index; + objects[ index ] = lastCachedObject; + + // last object goes to the activated slot and pop + indicesByUUID[ lastObject.uuid ] = firstActiveIndex; + objects[ firstActiveIndex ] = lastObject; + objects.pop(); + + // accounting is done, now do the same for all bindings + + for ( var j = 0, m = nBindings; j !== m; ++ j ) { + + var bindingsForPath = bindings[ j ], + lastCached = bindingsForPath[ firstActiveIndex ], + last = bindingsForPath[ lastIndex ]; + + bindingsForPath[ index ] = lastCached; + bindingsForPath[ firstActiveIndex ] = last; + bindingsForPath.pop(); + + } + + } else { + + // object is active, just swap with the last and pop + + var lastIndex$1 = -- nObjects, + lastObject$1 = objects[ lastIndex$1 ]; + + indicesByUUID[ lastObject$1.uuid ] = index; + objects[ index ] = lastObject$1; + objects.pop(); + + // accounting is done, now do the same for all bindings + + for ( var j$1 = 0, m$1 = nBindings; j$1 !== m$1; ++ j$1 ) { + + var bindingsForPath$1 = bindings[ j$1 ]; + + bindingsForPath$1[ index ] = bindingsForPath$1[ lastIndex$1 ]; + bindingsForPath$1.pop(); + + } + + } // cached or active + + } // if object is known + + } // for arguments + + this.nCachedObjects_ = nCachedObjects; + + }, + + // Internal interface used by befriended PropertyBinding.Composite: + + subscribe_: function ( path, parsedPath ) { + + // returns an array of bindings for the given path that is changed + // according to the contained objects in the group + + var indicesByPath = this._bindingsIndicesByPath, + index = indicesByPath[ path ], + bindings = this._bindings; + + if ( index !== undefined ) { return bindings[ index ]; } + + var paths = this._paths, + parsedPaths = this._parsedPaths, + objects = this._objects, + nObjects = objects.length, + nCachedObjects = this.nCachedObjects_, + bindingsForPath = new Array( nObjects ); + + index = bindings.length; + + indicesByPath[ path ] = index; + + paths.push( path ); + parsedPaths.push( parsedPath ); + bindings.push( bindingsForPath ); + + for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) { + + var object = objects[ i ]; + bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); + + } + + return bindingsForPath; + + }, + + unsubscribe_: function ( path ) { + + // tells the group to forget about a property path and no longer + // update the array previously obtained with 'subscribe_' + + var indicesByPath = this._bindingsIndicesByPath, + index = indicesByPath[ path ]; + + if ( index !== undefined ) { + + var paths = this._paths, + parsedPaths = this._parsedPaths, + bindings = this._bindings, + lastBindingsIndex = bindings.length - 1, + lastBindings = bindings[ lastBindingsIndex ], + lastBindingsPath = path[ lastBindingsIndex ]; + + indicesByPath[ lastBindingsPath ] = index; + + bindings[ index ] = lastBindings; + bindings.pop(); + + parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; + parsedPaths.pop(); + + paths[ index ] = paths[ lastBindingsIndex ]; + paths.pop(); + + } + + } + + } ); + + function AnimationAction( mixer, clip, localRoot, blendMode ) { + + this._mixer = mixer; + this._clip = clip; + this._localRoot = localRoot || null; + this.blendMode = blendMode || clip.blendMode; + + var tracks = clip.tracks, + nTracks = tracks.length, + interpolants = new Array( nTracks ); + + var interpolantSettings = { + endingStart: ZeroCurvatureEnding, + endingEnd: ZeroCurvatureEnding + }; + + for ( var i = 0; i !== nTracks; ++ i ) { + + var interpolant = tracks[ i ].createInterpolant( null ); + interpolants[ i ] = interpolant; + interpolant.settings = interpolantSettings; + + } + + this._interpolantSettings = interpolantSettings; + + this._interpolants = interpolants; // bound by the mixer + + // inside: PropertyMixer (managed by the mixer) + this._propertyBindings = new Array( nTracks ); + + this._cacheIndex = null; // for the memory manager + this._byClipCacheIndex = null; // for the memory manager + + this._timeScaleInterpolant = null; + this._weightInterpolant = null; + + this.loop = LoopRepeat; + this._loopCount = - 1; + + // global mixer time when the action is to be started + // it's set back to 'null' upon start of the action + this._startTime = null; + + // scaled local time of the action + // gets clamped or wrapped to 0..clip.duration according to loop + this.time = 0; + + this.timeScale = 1; + this._effectiveTimeScale = 1; + + this.weight = 1; + this._effectiveWeight = 1; + + this.repetitions = Infinity; // no. of repetitions when looping + + this.paused = false; // true -> zero effective time scale + this.enabled = true; // false -> zero effective weight + + this.clampWhenFinished = false;// keep feeding the last frame? + + this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate + this.zeroSlopeAtEnd = true;// clips for start, loop and end + + } + + Object.assign( AnimationAction.prototype, { + + // State & Scheduling + + play: function () { + + this._mixer._activateAction( this ); + + return this; + + }, + + stop: function () { + + this._mixer._deactivateAction( this ); + + return this.reset(); + + }, + + reset: function () { + + this.paused = false; + this.enabled = true; + + this.time = 0; // restart clip + this._loopCount = - 1;// forget previous loops + this._startTime = null;// forget scheduling + + return this.stopFading().stopWarping(); + + }, + + isRunning: function () { + + return this.enabled && ! this.paused && this.timeScale !== 0 && + this._startTime === null && this._mixer._isActiveAction( this ); + + }, + + // return true when play has been called + isScheduled: function () { + + return this._mixer._isActiveAction( this ); + + }, + + startAt: function ( time ) { + + this._startTime = time; + + return this; + + }, + + setLoop: function ( mode, repetitions ) { + + this.loop = mode; + this.repetitions = repetitions; + + return this; + + }, + + // Weight + + // set the weight stopping any scheduled fading + // although .enabled = false yields an effective weight of zero, this + // method does *not* change .enabled, because it would be confusing + setEffectiveWeight: function ( weight ) { + + this.weight = weight; + + // note: same logic as when updated at runtime + this._effectiveWeight = this.enabled ? weight : 0; + + return this.stopFading(); + + }, + + // return the weight considering fading and .enabled + getEffectiveWeight: function () { + + return this._effectiveWeight; + + }, + + fadeIn: function ( duration ) { + + return this._scheduleFading( duration, 0, 1 ); + + }, + + fadeOut: function ( duration ) { + + return this._scheduleFading( duration, 1, 0 ); + + }, + + crossFadeFrom: function ( fadeOutAction, duration, warp ) { + + fadeOutAction.fadeOut( duration ); + this.fadeIn( duration ); + + if ( warp ) { + + var fadeInDuration = this._clip.duration, + fadeOutDuration = fadeOutAction._clip.duration, + + startEndRatio = fadeOutDuration / fadeInDuration, + endStartRatio = fadeInDuration / fadeOutDuration; + + fadeOutAction.warp( 1.0, startEndRatio, duration ); + this.warp( endStartRatio, 1.0, duration ); + + } + + return this; + + }, + + crossFadeTo: function ( fadeInAction, duration, warp ) { + + return fadeInAction.crossFadeFrom( this, duration, warp ); + + }, + + stopFading: function () { + + var weightInterpolant = this._weightInterpolant; + + if ( weightInterpolant !== null ) { + + this._weightInterpolant = null; + this._mixer._takeBackControlInterpolant( weightInterpolant ); + + } + + return this; + + }, + + // Time Scale Control + + // set the time scale stopping any scheduled warping + // although .paused = true yields an effective time scale of zero, this + // method does *not* change .paused, because it would be confusing + setEffectiveTimeScale: function ( timeScale ) { + + this.timeScale = timeScale; + this._effectiveTimeScale = this.paused ? 0 : timeScale; + + return this.stopWarping(); + + }, + + // return the time scale considering warping and .paused + getEffectiveTimeScale: function () { + + return this._effectiveTimeScale; + + }, + + setDuration: function ( duration ) { + + this.timeScale = this._clip.duration / duration; + + return this.stopWarping(); + + }, + + syncWith: function ( action ) { + + this.time = action.time; + this.timeScale = action.timeScale; + + return this.stopWarping(); + + }, + + halt: function ( duration ) { + + return this.warp( this._effectiveTimeScale, 0, duration ); + + }, + + warp: function ( startTimeScale, endTimeScale, duration ) { + + var mixer = this._mixer, + now = mixer.time, + timeScale = this.timeScale; + + var interpolant = this._timeScaleInterpolant; + + if ( interpolant === null ) { + + interpolant = mixer._lendControlInterpolant(); + this._timeScaleInterpolant = interpolant; + + } + + var times = interpolant.parameterPositions, + values = interpolant.sampleValues; + + times[ 0 ] = now; + times[ 1 ] = now + duration; + + values[ 0 ] = startTimeScale / timeScale; + values[ 1 ] = endTimeScale / timeScale; + + return this; + + }, + + stopWarping: function () { + + var timeScaleInterpolant = this._timeScaleInterpolant; + + if ( timeScaleInterpolant !== null ) { + + this._timeScaleInterpolant = null; + this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); + + } + + return this; + + }, + + // Object Accessors + + getMixer: function () { + + return this._mixer; + + }, + + getClip: function () { + + return this._clip; + + }, + + getRoot: function () { + + return this._localRoot || this._mixer._root; + + }, + + // Interna + + _update: function ( time, deltaTime, timeDirection, accuIndex ) { + + // called by the mixer + + if ( ! this.enabled ) { + + // call ._updateWeight() to update ._effectiveWeight + + this._updateWeight( time ); + return; + + } + + var startTime = this._startTime; + + if ( startTime !== null ) { + + // check for scheduled start of action + + var timeRunning = ( time - startTime ) * timeDirection; + if ( timeRunning < 0 || timeDirection === 0 ) { + + return; // yet to come / don't decide when delta = 0 + + } + + // start + + this._startTime = null; // unschedule + deltaTime = timeDirection * timeRunning; + + } + + // apply time scale and advance time + + deltaTime *= this._updateTimeScale( time ); + var clipTime = this._updateTime( deltaTime ); + + // note: _updateTime may disable the action resulting in + // an effective weight of 0 + + var weight = this._updateWeight( time ); + + if ( weight > 0 ) { + + var interpolants = this._interpolants; + var propertyMixers = this._propertyBindings; + + switch ( this.blendMode ) { + + case AdditiveAnimationBlendMode: + + for ( var j = 0, m = interpolants.length; j !== m; ++ j ) { + + interpolants[ j ].evaluate( clipTime ); + propertyMixers[ j ].accumulateAdditive( weight ); + + } + + break; + + case NormalAnimationBlendMode: + default: + + for ( var j$1 = 0, m$1 = interpolants.length; j$1 !== m$1; ++ j$1 ) { + + interpolants[ j$1 ].evaluate( clipTime ); + propertyMixers[ j$1 ].accumulate( accuIndex, weight ); + + } + + } + + } + + }, + + _updateWeight: function ( time ) { + + var weight = 0; + + if ( this.enabled ) { + + weight = this.weight; + var interpolant = this._weightInterpolant; + + if ( interpolant !== null ) { + + var interpolantValue = interpolant.evaluate( time )[ 0 ]; + + weight *= interpolantValue; + + if ( time > interpolant.parameterPositions[ 1 ] ) { + + this.stopFading(); + + if ( interpolantValue === 0 ) { + + // faded out, disable + this.enabled = false; + + } + + } + + } + + } + + this._effectiveWeight = weight; + return weight; + + }, + + _updateTimeScale: function ( time ) { + + var timeScale = 0; + + if ( ! this.paused ) { + + timeScale = this.timeScale; + + var interpolant = this._timeScaleInterpolant; + + if ( interpolant !== null ) { + + var interpolantValue = interpolant.evaluate( time )[ 0 ]; + + timeScale *= interpolantValue; + + if ( time > interpolant.parameterPositions[ 1 ] ) { + + this.stopWarping(); + + if ( timeScale === 0 ) { + + // motion has halted, pause + this.paused = true; + + } else { + + // warp done - apply final time scale + this.timeScale = timeScale; + + } + + } + + } + + } + + this._effectiveTimeScale = timeScale; + return timeScale; + + }, + + _updateTime: function ( deltaTime ) { + + var duration = this._clip.duration; + var loop = this.loop; + + var time = this.time + deltaTime; + var loopCount = this._loopCount; + + var pingPong = ( loop === LoopPingPong ); + + if ( deltaTime === 0 ) { + + if ( loopCount === - 1 ) { return time; } + + return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time; + + } + + if ( loop === LoopOnce ) { + + if ( loopCount === - 1 ) { + + // just started + + this._loopCount = 0; + this._setEndings( true, true, false ); + + } + + handle_stop: { + + if ( time >= duration ) { + + time = duration; + + } else if ( time < 0 ) { + + time = 0; + + } else { + + this.time = time; + + break handle_stop; + + } + + if ( this.clampWhenFinished ) { this.paused = true; } + else { this.enabled = false; } + + this.time = time; + + this._mixer.dispatchEvent( { + type: 'finished', action: this, + direction: deltaTime < 0 ? - 1 : 1 + } ); + + } + + } else { // repetitive Repeat or PingPong + + if ( loopCount === - 1 ) { + + // just started + + if ( deltaTime >= 0 ) { + + loopCount = 0; + + this._setEndings( true, this.repetitions === 0, pingPong ); + + } else { + + // when looping in reverse direction, the initial + // transition through zero counts as a repetition, + // so leave loopCount at -1 + + this._setEndings( this.repetitions === 0, true, pingPong ); + + } + + } + + if ( time >= duration || time < 0 ) { + + // wrap around + + var loopDelta = Math.floor( time / duration ); // signed + time -= duration * loopDelta; + + loopCount += Math.abs( loopDelta ); + + var pending = this.repetitions - loopCount; + + if ( pending <= 0 ) { + + // have to stop (switch state, clamp time, fire event) + + if ( this.clampWhenFinished ) { this.paused = true; } + else { this.enabled = false; } + + time = deltaTime > 0 ? duration : 0; + + this.time = time; + + this._mixer.dispatchEvent( { + type: 'finished', action: this, + direction: deltaTime > 0 ? 1 : - 1 + } ); + + } else { + + // keep running + + if ( pending === 1 ) { + + // entering the last round + + var atStart = deltaTime < 0; + this._setEndings( atStart, ! atStart, pingPong ); + + } else { + + this._setEndings( false, false, pingPong ); + + } + + this._loopCount = loopCount; + + this.time = time; + + this._mixer.dispatchEvent( { + type: 'loop', action: this, loopDelta: loopDelta + } ); + + } + + } else { + + this.time = time; + + } + + if ( pingPong && ( loopCount & 1 ) === 1 ) { + + // invert time for the "pong round" + + return duration - time; + + } + + } + + return time; + + }, + + _setEndings: function ( atStart, atEnd, pingPong ) { + + var settings = this._interpolantSettings; + + if ( pingPong ) { + + settings.endingStart = ZeroSlopeEnding; + settings.endingEnd = ZeroSlopeEnding; + + } else { + + // assuming for LoopOnce atStart == atEnd == true + + if ( atStart ) { + + settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; + + } else { + + settings.endingStart = WrapAroundEnding; + + } + + if ( atEnd ) { + + settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; + + } else { + + settings.endingEnd = WrapAroundEnding; + + } + + } + + }, + + _scheduleFading: function ( duration, weightNow, weightThen ) { + + var mixer = this._mixer, now = mixer.time; + var interpolant = this._weightInterpolant; + + if ( interpolant === null ) { + + interpolant = mixer._lendControlInterpolant(); + this._weightInterpolant = interpolant; + + } + + var times = interpolant.parameterPositions, + values = interpolant.sampleValues; + + times[ 0 ] = now; + values[ 0 ] = weightNow; + times[ 1 ] = now + duration; + values[ 1 ] = weightThen; + + return this; + + } + + } ); + + function AnimationMixer( root ) { + + this._root = root; + this._initMemoryManager(); + this._accuIndex = 0; + + this.time = 0; + + this.timeScale = 1.0; + + } + + AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), { + + constructor: AnimationMixer, + + _bindAction: function ( action, prototypeAction ) { + + var root = action._localRoot || this._root, + tracks = action._clip.tracks, + nTracks = tracks.length, + bindings = action._propertyBindings, + interpolants = action._interpolants, + rootUuid = root.uuid, + bindingsByRoot = this._bindingsByRootAndName; + + var bindingsByName = bindingsByRoot[ rootUuid ]; + + if ( bindingsByName === undefined ) { + + bindingsByName = {}; + bindingsByRoot[ rootUuid ] = bindingsByName; + + } + + for ( var i = 0; i !== nTracks; ++ i ) { + + var track = tracks[ i ], + trackName = track.name; + + var binding = bindingsByName[ trackName ]; + + if ( binding !== undefined ) { + + bindings[ i ] = binding; + + } else { + + binding = bindings[ i ]; + + if ( binding !== undefined ) { + + // existing binding, make sure the cache knows + + if ( binding._cacheIndex === null ) { + + ++ binding.referenceCount; + this._addInactiveBinding( binding, rootUuid, trackName ); + + } + + continue; + + } + + var path = prototypeAction && prototypeAction. + _propertyBindings[ i ].binding.parsedPath; + + binding = new PropertyMixer( + PropertyBinding.create( root, trackName, path ), + track.ValueTypeName, track.getValueSize() ); + + ++ binding.referenceCount; + this._addInactiveBinding( binding, rootUuid, trackName ); + + bindings[ i ] = binding; + + } + + interpolants[ i ].resultBuffer = binding.buffer; + + } + + }, + + _activateAction: function ( action ) { + + if ( ! this._isActiveAction( action ) ) { + + if ( action._cacheIndex === null ) { + + // this action has been forgotten by the cache, but the user + // appears to be still using it -> rebind + + var rootUuid = ( action._localRoot || this._root ).uuid, + clipUuid = action._clip.uuid, + actionsForClip = this._actionsByClip[ clipUuid ]; + + this._bindAction( action, + actionsForClip && actionsForClip.knownActions[ 0 ] ); + + this._addInactiveAction( action, clipUuid, rootUuid ); + + } + + var bindings = action._propertyBindings; + + // increment reference counts / sort out state + for ( var i = 0, n = bindings.length; i !== n; ++ i ) { + + var binding = bindings[ i ]; + + if ( binding.useCount ++ === 0 ) { + + this._lendBinding( binding ); + binding.saveOriginalState(); + + } + + } + + this._lendAction( action ); + + } + + }, + + _deactivateAction: function ( action ) { + + if ( this._isActiveAction( action ) ) { + + var bindings = action._propertyBindings; + + // decrement reference counts / sort out state + for ( var i = 0, n = bindings.length; i !== n; ++ i ) { + + var binding = bindings[ i ]; + + if ( -- binding.useCount === 0 ) { + + binding.restoreOriginalState(); + this._takeBackBinding( binding ); + + } + + } + + this._takeBackAction( action ); + + } + + }, + + // Memory manager + + _initMemoryManager: function () { + + this._actions = []; // 'nActiveActions' followed by inactive ones + this._nActiveActions = 0; + + this._actionsByClip = {}; + // inside: + // { + // knownActions: Array< AnimationAction > - used as prototypes + // actionByRoot: AnimationAction - lookup + // } + + + this._bindings = []; // 'nActiveBindings' followed by inactive ones + this._nActiveBindings = 0; + + this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > + + + this._controlInterpolants = []; // same game as above + this._nActiveControlInterpolants = 0; + + var scope = this; + + this.stats = { + + actions: { + get total() { + + return scope._actions.length; + + }, + get inUse() { + + return scope._nActiveActions; + + } + }, + bindings: { + get total() { + + return scope._bindings.length; + + }, + get inUse() { + + return scope._nActiveBindings; + + } + }, + controlInterpolants: { + get total() { + + return scope._controlInterpolants.length; + + }, + get inUse() { + + return scope._nActiveControlInterpolants; + + } + } + + }; + + }, + + // Memory management for AnimationAction objects + + _isActiveAction: function ( action ) { + + var index = action._cacheIndex; + return index !== null && index < this._nActiveActions; + + }, + + _addInactiveAction: function ( action, clipUuid, rootUuid ) { + + var actions = this._actions, + actionsByClip = this._actionsByClip; + + var actionsForClip = actionsByClip[ clipUuid ]; + + if ( actionsForClip === undefined ) { + + actionsForClip = { + + knownActions: [ action ], + actionByRoot: {} + + }; + + action._byClipCacheIndex = 0; + + actionsByClip[ clipUuid ] = actionsForClip; + + } else { + + var knownActions = actionsForClip.knownActions; + + action._byClipCacheIndex = knownActions.length; + knownActions.push( action ); + + } + + action._cacheIndex = actions.length; + actions.push( action ); + + actionsForClip.actionByRoot[ rootUuid ] = action; + + }, + + _removeInactiveAction: function ( action ) { + + var actions = this._actions, + lastInactiveAction = actions[ actions.length - 1 ], + cacheIndex = action._cacheIndex; + + lastInactiveAction._cacheIndex = cacheIndex; + actions[ cacheIndex ] = lastInactiveAction; + actions.pop(); + + action._cacheIndex = null; + + + var clipUuid = action._clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[ clipUuid ], + knownActionsForClip = actionsForClip.knownActions, + + lastKnownAction = + knownActionsForClip[ knownActionsForClip.length - 1 ], + + byClipCacheIndex = action._byClipCacheIndex; + + lastKnownAction._byClipCacheIndex = byClipCacheIndex; + knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; + knownActionsForClip.pop(); + + action._byClipCacheIndex = null; + + + var actionByRoot = actionsForClip.actionByRoot, + rootUuid = ( action._localRoot || this._root ).uuid; + + delete actionByRoot[ rootUuid ]; + + if ( knownActionsForClip.length === 0 ) { + + delete actionsByClip[ clipUuid ]; + + } + + this._removeInactiveBindingsForAction( action ); + + }, + + _removeInactiveBindingsForAction: function ( action ) { + + var bindings = action._propertyBindings; + + for ( var i = 0, n = bindings.length; i !== n; ++ i ) { + + var binding = bindings[ i ]; + + if ( -- binding.referenceCount === 0 ) { + + this._removeInactiveBinding( binding ); + + } + + } + + }, + + _lendAction: function ( action ) { + + // [ active actions | inactive actions ] + // [ active actions >| inactive actions ] + // s a + // <-swap-> + // a s + + var actions = this._actions, + prevIndex = action._cacheIndex, + + lastActiveIndex = this._nActiveActions ++, + + firstInactiveAction = actions[ lastActiveIndex ]; + + action._cacheIndex = lastActiveIndex; + actions[ lastActiveIndex ] = action; + + firstInactiveAction._cacheIndex = prevIndex; + actions[ prevIndex ] = firstInactiveAction; + + }, + + _takeBackAction: function ( action ) { + + // [ active actions | inactive actions ] + // [ active actions |< inactive actions ] + // a s + // <-swap-> + // s a + + var actions = this._actions, + prevIndex = action._cacheIndex, + + firstInactiveIndex = -- this._nActiveActions, + + lastActiveAction = actions[ firstInactiveIndex ]; + + action._cacheIndex = firstInactiveIndex; + actions[ firstInactiveIndex ] = action; + + lastActiveAction._cacheIndex = prevIndex; + actions[ prevIndex ] = lastActiveAction; + + }, + + // Memory management for PropertyMixer objects + + _addInactiveBinding: function ( binding, rootUuid, trackName ) { + + var bindingsByRoot = this._bindingsByRootAndName, + bindings = this._bindings; + + var bindingByName = bindingsByRoot[ rootUuid ]; + + if ( bindingByName === undefined ) { + + bindingByName = {}; + bindingsByRoot[ rootUuid ] = bindingByName; + + } + + bindingByName[ trackName ] = binding; + + binding._cacheIndex = bindings.length; + bindings.push( binding ); + + }, + + _removeInactiveBinding: function ( binding ) { + + var bindings = this._bindings, + propBinding = binding.binding, + rootUuid = propBinding.rootNode.uuid, + trackName = propBinding.path, + bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[ rootUuid ], + + lastInactiveBinding = bindings[ bindings.length - 1 ], + cacheIndex = binding._cacheIndex; + + lastInactiveBinding._cacheIndex = cacheIndex; + bindings[ cacheIndex ] = lastInactiveBinding; + bindings.pop(); + + delete bindingByName[ trackName ]; + + if ( Object.keys( bindingByName ).length === 0 ) { + + delete bindingsByRoot[ rootUuid ]; + + } + + }, + + _lendBinding: function ( binding ) { + + var bindings = this._bindings, + prevIndex = binding._cacheIndex, + + lastActiveIndex = this._nActiveBindings ++, + + firstInactiveBinding = bindings[ lastActiveIndex ]; + + binding._cacheIndex = lastActiveIndex; + bindings[ lastActiveIndex ] = binding; + + firstInactiveBinding._cacheIndex = prevIndex; + bindings[ prevIndex ] = firstInactiveBinding; + + }, + + _takeBackBinding: function ( binding ) { + + var bindings = this._bindings, + prevIndex = binding._cacheIndex, + + firstInactiveIndex = -- this._nActiveBindings, + + lastActiveBinding = bindings[ firstInactiveIndex ]; + + binding._cacheIndex = firstInactiveIndex; + bindings[ firstInactiveIndex ] = binding; + + lastActiveBinding._cacheIndex = prevIndex; + bindings[ prevIndex ] = lastActiveBinding; + + }, + + + // Memory management of Interpolants for weight and time scale + + _lendControlInterpolant: function () { + + var interpolants = this._controlInterpolants, + lastActiveIndex = this._nActiveControlInterpolants ++; + + var interpolant = interpolants[ lastActiveIndex ]; + + if ( interpolant === undefined ) { + + interpolant = new LinearInterpolant( + new Float32Array( 2 ), new Float32Array( 2 ), + 1, this._controlInterpolantsResultBuffer ); + + interpolant.__cacheIndex = lastActiveIndex; + interpolants[ lastActiveIndex ] = interpolant; + + } + + return interpolant; + + }, + + _takeBackControlInterpolant: function ( interpolant ) { + + var interpolants = this._controlInterpolants, + prevIndex = interpolant.__cacheIndex, + + firstInactiveIndex = -- this._nActiveControlInterpolants, + + lastActiveInterpolant = interpolants[ firstInactiveIndex ]; + + interpolant.__cacheIndex = firstInactiveIndex; + interpolants[ firstInactiveIndex ] = interpolant; + + lastActiveInterpolant.__cacheIndex = prevIndex; + interpolants[ prevIndex ] = lastActiveInterpolant; + + }, + + _controlInterpolantsResultBuffer: new Float32Array( 1 ), + + // return an action for a clip optionally using a custom root target + // object (this method allocates a lot of dynamic memory in case a + // previously unknown clip/root combination is specified) + clipAction: function ( clip, optionalRoot, blendMode ) { + + var root = optionalRoot || this._root, + rootUuid = root.uuid; + + var clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip; + + var clipUuid = clipObject !== null ? clipObject.uuid : clip; + + var actionsForClip = this._actionsByClip[ clipUuid ], + prototypeAction = null; + + if ( blendMode === undefined ) { + + if ( clipObject !== null ) { + + blendMode = clipObject.blendMode; + + } else { + + blendMode = NormalAnimationBlendMode; + + } + + } + + if ( actionsForClip !== undefined ) { + + var existingAction = actionsForClip.actionByRoot[ rootUuid ]; + + if ( existingAction !== undefined && existingAction.blendMode === blendMode ) { + + return existingAction; + + } + + // we know the clip, so we don't have to parse all + // the bindings again but can just copy + prototypeAction = actionsForClip.knownActions[ 0 ]; + + // also, take the clip from the prototype action + if ( clipObject === null ) + { clipObject = prototypeAction._clip; } + + } + + // clip must be known when specified via string + if ( clipObject === null ) { return null; } + + // allocate all resources required to run it + var newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode ); + + this._bindAction( newAction, prototypeAction ); + + // and make the action known to the memory manager + this._addInactiveAction( newAction, clipUuid, rootUuid ); + + return newAction; + + }, + + // get an existing action + existingAction: function ( clip, optionalRoot ) { + + var root = optionalRoot || this._root, + rootUuid = root.uuid, + + clipObject = typeof clip === 'string' ? + AnimationClip.findByName( root, clip ) : clip, + + clipUuid = clipObject ? clipObject.uuid : clip, + + actionsForClip = this._actionsByClip[ clipUuid ]; + + if ( actionsForClip !== undefined ) { + + return actionsForClip.actionByRoot[ rootUuid ] || null; + + } + + return null; + + }, + + // deactivates all previously scheduled actions + stopAllAction: function () { + + var actions = this._actions, + nActions = this._nActiveActions; + + for ( var i = nActions - 1; i >= 0; -- i ) { + + actions[ i ].stop(); + + } + + return this; + + }, + + // advance the time and update apply the animation + update: function ( deltaTime ) { + + deltaTime *= this.timeScale; + + var actions = this._actions, + nActions = this._nActiveActions, + + time = this.time += deltaTime, + timeDirection = Math.sign( deltaTime ), + + accuIndex = this._accuIndex ^= 1; + + // run active actions + + for ( var i = 0; i !== nActions; ++ i ) { + + var action = actions[ i ]; + + action._update( time, deltaTime, timeDirection, accuIndex ); + + } + + // update scene graph + + var bindings = this._bindings, + nBindings = this._nActiveBindings; + + for ( var i$1 = 0; i$1 !== nBindings; ++ i$1 ) { + + bindings[ i$1 ].apply( accuIndex ); + + } + + return this; + + }, + + // Allows you to seek to a specific time in an animation. + setTime: function ( timeInSeconds ) { + + this.time = 0; // Zero out time attribute for AnimationMixer object; + for ( var i = 0; i < this._actions.length; i ++ ) { + + this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects. + + } + + return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object. + + }, + + // return this mixer's root target object + getRoot: function () { + + return this._root; + + }, + + // free all resources specific to a particular clip + uncacheClip: function ( clip ) { + + var actions = this._actions, + clipUuid = clip.uuid, + actionsByClip = this._actionsByClip, + actionsForClip = actionsByClip[ clipUuid ]; + + if ( actionsForClip !== undefined ) { + + // note: just calling _removeInactiveAction would mess up the + // iteration state and also require updating the state we can + // just throw away + + var actionsToRemove = actionsForClip.knownActions; + + for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) { + + var action = actionsToRemove[ i ]; + + this._deactivateAction( action ); + + var cacheIndex = action._cacheIndex, + lastInactiveAction = actions[ actions.length - 1 ]; + + action._cacheIndex = null; + action._byClipCacheIndex = null; + + lastInactiveAction._cacheIndex = cacheIndex; + actions[ cacheIndex ] = lastInactiveAction; + actions.pop(); + + this._removeInactiveBindingsForAction( action ); + + } + + delete actionsByClip[ clipUuid ]; + + } + + }, + + // free all resources specific to a particular root target object + uncacheRoot: function ( root ) { + + var rootUuid = root.uuid, + actionsByClip = this._actionsByClip; + + for ( var clipUuid in actionsByClip ) { + + var actionByRoot = actionsByClip[ clipUuid ].actionByRoot, + action = actionByRoot[ rootUuid ]; + + if ( action !== undefined ) { + + this._deactivateAction( action ); + this._removeInactiveAction( action ); + + } + + } + + var bindingsByRoot = this._bindingsByRootAndName, + bindingByName = bindingsByRoot[ rootUuid ]; + + if ( bindingByName !== undefined ) { + + for ( var trackName in bindingByName ) { + + var binding = bindingByName[ trackName ]; + binding.restoreOriginalState(); + this._removeInactiveBinding( binding ); + + } + + } + + }, + + // remove a targeted clip from the cache + uncacheAction: function ( clip, optionalRoot ) { + + var action = this.existingAction( clip, optionalRoot ); + + if ( action !== null ) { + + this._deactivateAction( action ); + this._removeInactiveAction( action ); + + } + + } + + } ); + + function Uniform( value ) { + + if ( typeof value === 'string' ) { + + console.warn( 'THREE.Uniform: Type parameter is no longer needed.' ); + value = arguments[ 1 ]; + + } + + this.value = value; + + } + + Uniform.prototype.clone = function () { + + return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() ); + + }; + + function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) { + + InterleavedBuffer.call( this, array, stride ); + + this.meshPerAttribute = meshPerAttribute || 1; + + } + + InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), { + + constructor: InstancedInterleavedBuffer, + + isInstancedInterleavedBuffer: true, + + copy: function ( source ) { + + InterleavedBuffer.prototype.copy.call( this, source ); + + this.meshPerAttribute = source.meshPerAttribute; + + return this; + + }, + + clone: function ( data ) { + + var ib = InterleavedBuffer.prototype.clone.call( this, data ); + + ib.meshPerAttribute = this.meshPerAttribute; + + return ib; + + }, + + toJSON: function ( data ) { + + var json = InterleavedBuffer.prototype.toJSON.call( this, data ); + + json.isInstancedInterleavedBuffer = true; + json.meshPerAttribute = this.meshPerAttribute; + + return json; + + } + + } ); + + function Raycaster( origin, direction, near, far ) { + + this.ray = new Ray( origin, direction ); + // direction is assumed to be normalized (for accurate distance calculations) + + this.near = near || 0; + this.far = far || Infinity; + this.camera = null; + this.layers = new Layers(); + + this.params = { + Mesh: {}, + Line: { threshold: 1 }, + LOD: {}, + Points: { threshold: 1 }, + Sprite: {} + }; + + Object.defineProperties( this.params, { + PointCloud: { + get: function () { + + console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' ); + return this.Points; + + } + } + } ); + + } + + function ascSort( a, b ) { + + return a.distance - b.distance; + + } + + function intersectObject( object, raycaster, intersects, recursive ) { + + if ( object.layers.test( raycaster.layers ) ) { + + object.raycast( raycaster, intersects ); + + } + + if ( recursive === true ) { + + var children = object.children; + + for ( var i = 0, l = children.length; i < l; i ++ ) { + + intersectObject( children[ i ], raycaster, intersects, true ); + + } + + } + + } + + Object.assign( Raycaster.prototype, { + + set: function ( origin, direction ) { + + // direction is assumed to be normalized (for accurate distance calculations) + + this.ray.set( origin, direction ); + + }, + + setFromCamera: function ( coords, camera ) { + + if ( ( camera && camera.isPerspectiveCamera ) ) { + + this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); + this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); + this.camera = camera; + + } else if ( ( camera && camera.isOrthographicCamera ) ) { + + this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera + this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld ); + this.camera = camera; + + } else { + + console.error( 'THREE.Raycaster: Unsupported camera type.' ); + + } + + }, + + intersectObject: function ( object, recursive, optionalTarget ) { + + var intersects = optionalTarget || []; + + intersectObject( object, this, intersects, recursive ); + + intersects.sort( ascSort ); + + return intersects; + + }, + + intersectObjects: function ( objects, recursive, optionalTarget ) { + + var intersects = optionalTarget || []; + + if ( Array.isArray( objects ) === false ) { + + console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' ); + return intersects; + + } + + for ( var i = 0, l = objects.length; i < l; i ++ ) { + + intersectObject( objects[ i ], this, intersects, recursive ); + + } + + intersects.sort( ascSort ); + + return intersects; + + } + + } ); + + /** + * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system + * + * The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up. + * The azimuthal angle (theta) is measured from the positive z-axis. + */ + + var Spherical = function Spherical( radius, phi, theta ) { + if ( radius === void 0 ) radius = 1; + if ( phi === void 0 ) phi = 0; + if ( theta === void 0 ) theta = 0; + + + this.radius = radius; + this.phi = phi; // polar angle + this.theta = theta; // azimuthal angle + + return this; + + }; + + Spherical.prototype.set = function set ( radius, phi, theta ) { + + this.radius = radius; + this.phi = phi; + this.theta = theta; + + return this; + + }; + + Spherical.prototype.clone = function clone () { + + return new this.constructor().copy( this ); + + }; + + Spherical.prototype.copy = function copy ( other ) { + + this.radius = other.radius; + this.phi = other.phi; + this.theta = other.theta; + + return this; + + }; + + // restrict phi to be betwee EPS and PI-EPS + Spherical.prototype.makeSafe = function makeSafe () { + + var EPS = 0.000001; + this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); + + return this; + + }; + + Spherical.prototype.setFromVector3 = function setFromVector3 ( v ) { + + return this.setFromCartesianCoords( v.x, v.y, v.z ); + + }; + + Spherical.prototype.setFromCartesianCoords = function setFromCartesianCoords ( x, y, z ) { + + this.radius = Math.sqrt( x * x + y * y + z * z ); + + if ( this.radius === 0 ) { + + this.theta = 0; + this.phi = 0; + + } else { + + this.theta = Math.atan2( x, z ); + this.phi = Math.acos( MathUtils.clamp( y / this.radius, - 1, 1 ) ); + + } + + return this; + + }; + + /** + * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system + */ + + function Cylindrical( radius, theta, y ) { + + this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane + this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis + this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane + + return this; + + } + + Object.assign( Cylindrical.prototype, { + + set: function ( radius, theta, y ) { + + this.radius = radius; + this.theta = theta; + this.y = y; + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( other ) { + + this.radius = other.radius; + this.theta = other.theta; + this.y = other.y; + + return this; + + }, + + setFromVector3: function ( v ) { + + return this.setFromCartesianCoords( v.x, v.y, v.z ); + + }, + + setFromCartesianCoords: function ( x, y, z ) { + + this.radius = Math.sqrt( x * x + z * z ); + this.theta = Math.atan2( x, z ); + this.y = y; + + return this; + + } + + } ); + + var _vector$7 = new Vector2(); + + function Box2( min, max ) { + + this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity ); + this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity ); + + } + + Object.assign( Box2.prototype, { + + set: function ( min, max ) { + + this.min.copy( min ); + this.max.copy( max ); + + return this; + + }, + + setFromPoints: function ( points ) { + + this.makeEmpty(); + + for ( var i = 0, il = points.length; i < il; i ++ ) { + + this.expandByPoint( points[ i ] ); + + } + + return this; + + }, + + setFromCenterAndSize: function ( center, size ) { + + var halfSize = _vector$7.copy( size ).multiplyScalar( 0.5 ); + this.min.copy( center ).sub( halfSize ); + this.max.copy( center ).add( halfSize ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( box ) { + + this.min.copy( box.min ); + this.max.copy( box.max ); + + return this; + + }, + + makeEmpty: function () { + + this.min.x = this.min.y = + Infinity; + this.max.x = this.max.y = - Infinity; + + return this; + + }, + + isEmpty: function () { + + // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes + + return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); + + }, + + getCenter: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Box2: .getCenter() target is now required' ); + target = new Vector2(); + + } + + return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); + + }, + + getSize: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Box2: .getSize() target is now required' ); + target = new Vector2(); + + } + + return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min ); + + }, + + expandByPoint: function ( point ) { + + this.min.min( point ); + this.max.max( point ); + + return this; + + }, + + expandByVector: function ( vector ) { + + this.min.sub( vector ); + this.max.add( vector ); + + return this; + + }, + + expandByScalar: function ( scalar ) { + + this.min.addScalar( - scalar ); + this.max.addScalar( scalar ); + + return this; + + }, + + containsPoint: function ( point ) { + + return point.x < this.min.x || point.x > this.max.x || + point.y < this.min.y || point.y > this.max.y ? false : true; + + }, + + containsBox: function ( box ) { + + return this.min.x <= box.min.x && box.max.x <= this.max.x && + this.min.y <= box.min.y && box.max.y <= this.max.y; + + }, + + getParameter: function ( point, target ) { + + // This can potentially have a divide by zero if the box + // has a size dimension of 0. + + if ( target === undefined ) { + + console.warn( 'THREE.Box2: .getParameter() target is now required' ); + target = new Vector2(); + + } + + return target.set( + ( point.x - this.min.x ) / ( this.max.x - this.min.x ), + ( point.y - this.min.y ) / ( this.max.y - this.min.y ) + ); + + }, + + intersectsBox: function ( box ) { + + // using 4 splitting planes to rule out intersections + + return box.max.x < this.min.x || box.min.x > this.max.x || + box.max.y < this.min.y || box.min.y > this.max.y ? false : true; + + }, + + clampPoint: function ( point, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Box2: .clampPoint() target is now required' ); + target = new Vector2(); + + } + + return target.copy( point ).clamp( this.min, this.max ); + + }, + + distanceToPoint: function ( point ) { + + var clampedPoint = _vector$7.copy( point ).clamp( this.min, this.max ); + return clampedPoint.sub( point ).length(); + + }, + + intersect: function ( box ) { + + this.min.max( box.min ); + this.max.min( box.max ); + + return this; + + }, + + union: function ( box ) { + + this.min.min( box.min ); + this.max.max( box.max ); + + return this; + + }, + + translate: function ( offset ) { + + this.min.add( offset ); + this.max.add( offset ); + + return this; + + }, + + equals: function ( box ) { + + return box.min.equals( this.min ) && box.max.equals( this.max ); + + } + + } ); + + var _startP = new Vector3(); + var _startEnd = new Vector3(); + + function Line3( start, end ) { + + this.start = ( start !== undefined ) ? start : new Vector3(); + this.end = ( end !== undefined ) ? end : new Vector3(); + + } + + Object.assign( Line3.prototype, { + + set: function ( start, end ) { + + this.start.copy( start ); + this.end.copy( end ); + + return this; + + }, + + clone: function () { + + return new this.constructor().copy( this ); + + }, + + copy: function ( line ) { + + this.start.copy( line.start ); + this.end.copy( line.end ); + + return this; + + }, + + getCenter: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Line3: .getCenter() target is now required' ); + target = new Vector3(); + + } + + return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); + + }, + + delta: function ( target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Line3: .delta() target is now required' ); + target = new Vector3(); + + } + + return target.subVectors( this.end, this.start ); + + }, + + distanceSq: function () { + + return this.start.distanceToSquared( this.end ); + + }, + + distance: function () { + + return this.start.distanceTo( this.end ); + + }, + + at: function ( t, target ) { + + if ( target === undefined ) { + + console.warn( 'THREE.Line3: .at() target is now required' ); + target = new Vector3(); + + } + + return this.delta( target ).multiplyScalar( t ).add( this.start ); + + }, + + closestPointToPointParameter: function ( point, clampToLine ) { + + _startP.subVectors( point, this.start ); + _startEnd.subVectors( this.end, this.start ); + + var startEnd2 = _startEnd.dot( _startEnd ); + var startEnd_startP = _startEnd.dot( _startP ); + + var t = startEnd_startP / startEnd2; + + if ( clampToLine ) { + + t = MathUtils.clamp( t, 0, 1 ); + + } + + return t; + + }, + + closestPointToPoint: function ( point, clampToLine, target ) { + + var t = this.closestPointToPointParameter( point, clampToLine ); + + if ( target === undefined ) { + + console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' ); + target = new Vector3(); + + } + + return this.delta( target ).multiplyScalar( t ).add( this.start ); + + }, + + applyMatrix4: function ( matrix ) { + + this.start.applyMatrix4( matrix ); + this.end.applyMatrix4( matrix ); + + return this; + + }, + + equals: function ( line ) { + + return line.start.equals( this.start ) && line.end.equals( this.end ); + + } + + } ); + + function ImmediateRenderObject( material ) { + + Object3D.call( this ); + + this.material = material; + this.render = function ( /* renderCallback */ ) {}; + + this.hasPositions = false; + this.hasNormals = false; + this.hasColors = false; + this.hasUvs = false; + + this.positionArray = null; + this.normalArray = null; + this.colorArray = null; + this.uvArray = null; + + this.count = 0; + + } + + ImmediateRenderObject.prototype = Object.create( Object3D.prototype ); + ImmediateRenderObject.prototype.constructor = ImmediateRenderObject; + + ImmediateRenderObject.prototype.isImmediateRenderObject = true; + + var _vector$8 = new Vector3(); + + function SpotLightHelper( light, color ) { + + Object3D.call( this ); + + this.light = light; + this.light.updateMatrixWorld(); + + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + + this.color = color; + + var geometry = new BufferGeometry(); + + var positions = [ + 0, 0, 0, 0, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, - 1, 0, 1, + 0, 0, 0, 0, 1, 1, + 0, 0, 0, 0, - 1, 1 + ]; + + for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) { + + var p1 = ( i / l ) * Math.PI * 2; + var p2 = ( j / l ) * Math.PI * 2; + + positions.push( + Math.cos( p1 ), Math.sin( p1 ), 1, + Math.cos( p2 ), Math.sin( p2 ), 1 + ); + + } + + geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); + + var material = new LineBasicMaterial( { fog: false, toneMapped: false } ); + + this.cone = new LineSegments( geometry, material ); + this.add( this.cone ); + + this.update(); + + } + + SpotLightHelper.prototype = Object.create( Object3D.prototype ); + SpotLightHelper.prototype.constructor = SpotLightHelper; + + SpotLightHelper.prototype.dispose = function () { + + this.cone.geometry.dispose(); + this.cone.material.dispose(); + + }; + + SpotLightHelper.prototype.update = function () { + + this.light.updateMatrixWorld(); + + var coneLength = this.light.distance ? this.light.distance : 1000; + var coneWidth = coneLength * Math.tan( this.light.angle ); + + this.cone.scale.set( coneWidth, coneWidth, coneLength ); + + _vector$8.setFromMatrixPosition( this.light.target.matrixWorld ); + + this.cone.lookAt( _vector$8 ); + + if ( this.color !== undefined ) { + + this.cone.material.color.set( this.color ); + + } else { + + this.cone.material.color.copy( this.light.color ); + + } + + }; + + var _vector$9 = new Vector3(); + var _boneMatrix = new Matrix4(); + var _matrixWorldInv = new Matrix4(); + + function getBoneList( object ) { + + var boneList = []; + + if ( object && object.isBone ) { + + boneList.push( object ); + + } + + for ( var i = 0; i < object.children.length; i ++ ) { + + boneList.push.apply( boneList, getBoneList( object.children[ i ] ) ); + + } + + return boneList; + + } + + function SkeletonHelper( object ) { + + var bones = getBoneList( object ); + + var geometry = new BufferGeometry(); + + var vertices = []; + var colors = []; + + var color1 = new Color( 0, 0, 1 ); + var color2 = new Color( 0, 1, 0 ); + + for ( var i = 0; i < bones.length; i ++ ) { + + var bone = bones[ i ]; + + if ( bone.parent && bone.parent.isBone ) { + + vertices.push( 0, 0, 0 ); + vertices.push( 0, 0, 0 ); + colors.push( color1.r, color1.g, color1.b ); + colors.push( color2.r, color2.g, color2.b ); + + } + + } + + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + var material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } ); + + LineSegments.call( this, geometry, material ); + + this.type = 'SkeletonHelper'; + + this.root = object; + this.bones = bones; + + this.matrix = object.matrixWorld; + this.matrixAutoUpdate = false; + + } + + SkeletonHelper.prototype = Object.create( LineSegments.prototype ); + SkeletonHelper.prototype.constructor = SkeletonHelper; + + SkeletonHelper.prototype.isSkeletonHelper = true; + + SkeletonHelper.prototype.updateMatrixWorld = function ( force ) { + + var bones = this.bones; + + var geometry = this.geometry; + var position = geometry.getAttribute( 'position' ); + + _matrixWorldInv.getInverse( this.root.matrixWorld ); + + for ( var i = 0, j = 0; i < bones.length; i ++ ) { + + var bone = bones[ i ]; + + if ( bone.parent && bone.parent.isBone ) { + + _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld ); + _vector$9.setFromMatrixPosition( _boneMatrix ); + position.setXYZ( j, _vector$9.x, _vector$9.y, _vector$9.z ); + + _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld ); + _vector$9.setFromMatrixPosition( _boneMatrix ); + position.setXYZ( j + 1, _vector$9.x, _vector$9.y, _vector$9.z ); + + j += 2; + + } + + } + + geometry.getAttribute( 'position' ).needsUpdate = true; + + Object3D.prototype.updateMatrixWorld.call( this, force ); + + }; + + function PointLightHelper( light, sphereSize, color ) { + + this.light = light; + this.light.updateMatrixWorld(); + + this.color = color; + + var geometry = new SphereBufferGeometry( sphereSize, 4, 2 ); + var material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); + + Mesh.call( this, geometry, material ); + + this.type = 'PointLightHelper'; + + this.matrix = this.light.matrixWorld; + this.matrixAutoUpdate = false; + + this.update(); + + + /* + const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 ); + const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); + + this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); + this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); + + const d = light.distance; + + if ( d === 0.0 ) { + + this.lightDistance.visible = false; + + } else { + + this.lightDistance.scale.set( d, d, d ); + + } + + this.add( this.lightDistance ); + */ + + } + + PointLightHelper.prototype = Object.create( Mesh.prototype ); + PointLightHelper.prototype.constructor = PointLightHelper; + + PointLightHelper.prototype.dispose = function () { + + this.geometry.dispose(); + this.material.dispose(); + + }; + + PointLightHelper.prototype.update = function () { + + if ( this.color !== undefined ) { + + this.material.color.set( this.color ); + + } else { + + this.material.color.copy( this.light.color ); + + } + + /* + const d = this.light.distance; + + if ( d === 0.0 ) { + + this.lightDistance.visible = false; + + } else { + + this.lightDistance.visible = true; + this.lightDistance.scale.set( d, d, d ); + + } + */ + + }; + + var _vector$a = new Vector3(); + var _color1 = new Color(); + var _color2 = new Color(); + + function HemisphereLightHelper( light, size, color ) { + + Object3D.call( this ); + + this.light = light; + this.light.updateMatrixWorld(); + + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + + this.color = color; + + var geometry = new OctahedronBufferGeometry( size ); + geometry.rotateY( Math.PI * 0.5 ); + + this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); + if ( this.color === undefined ) { this.material.vertexColors = true; } + + var position = geometry.getAttribute( 'position' ); + var colors = new Float32Array( position.count * 3 ); + + geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) ); + + this.add( new Mesh( geometry, this.material ) ); + + this.update(); + + } + + HemisphereLightHelper.prototype = Object.create( Object3D.prototype ); + HemisphereLightHelper.prototype.constructor = HemisphereLightHelper; + + HemisphereLightHelper.prototype.dispose = function () { + + this.children[ 0 ].geometry.dispose(); + this.children[ 0 ].material.dispose(); + + }; + + HemisphereLightHelper.prototype.update = function () { + + var mesh = this.children[ 0 ]; + + if ( this.color !== undefined ) { + + this.material.color.set( this.color ); + + } else { + + var colors = mesh.geometry.getAttribute( 'color' ); + + _color1.copy( this.light.color ); + _color2.copy( this.light.groundColor ); + + for ( var i = 0, l = colors.count; i < l; i ++ ) { + + var color = ( i < ( l / 2 ) ) ? _color1 : _color2; + + colors.setXYZ( i, color.r, color.g, color.b ); + + } + + colors.needsUpdate = true; + + } + + mesh.lookAt( _vector$a.setFromMatrixPosition( this.light.matrixWorld ).negate() ); + + }; + + function GridHelper( size, divisions, color1, color2 ) { + + size = size || 10; + divisions = divisions || 10; + color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); + color2 = new Color( color2 !== undefined ? color2 : 0x888888 ); + + var center = divisions / 2; + var step = size / divisions; + var halfSize = size / 2; + + var vertices = [], colors = []; + + for ( var i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) { + + vertices.push( - halfSize, 0, k, halfSize, 0, k ); + vertices.push( k, 0, - halfSize, k, 0, halfSize ); + + var color = i === center ? color1 : color2; + + color.toArray( colors, j ); j += 3; + color.toArray( colors, j ); j += 3; + color.toArray( colors, j ); j += 3; + color.toArray( colors, j ); j += 3; + + } + + var geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); + + LineSegments.call( this, geometry, material ); + + this.type = 'GridHelper'; + + } + + GridHelper.prototype = Object.create( LineSegments.prototype ); + GridHelper.prototype.constructor = GridHelper; + + function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) { + + radius = radius || 10; + radials = radials || 16; + circles = circles || 8; + divisions = divisions || 64; + color1 = new Color( color1 !== undefined ? color1 : 0x444444 ); + color2 = new Color( color2 !== undefined ? color2 : 0x888888 ); + + var vertices = []; + var colors = []; + + // create the radials + + for ( var i = 0; i <= radials; i ++ ) { + + var v = ( i / radials ) * ( Math.PI * 2 ); + + var x = Math.sin( v ) * radius; + var z = Math.cos( v ) * radius; + + vertices.push( 0, 0, 0 ); + vertices.push( x, 0, z ); + + var color = ( i & 1 ) ? color1 : color2; + + colors.push( color.r, color.g, color.b ); + colors.push( color.r, color.g, color.b ); + + } + + // create the circles + + for ( var i$1 = 0; i$1 <= circles; i$1 ++ ) { + + var color$1 = ( i$1 & 1 ) ? color1 : color2; + + var r = radius - ( radius / circles * i$1 ); + + for ( var j = 0; j < divisions; j ++ ) { + + // first vertex + + var v$1 = ( j / divisions ) * ( Math.PI * 2 ); + + var x$1 = Math.sin( v$1 ) * r; + var z$1 = Math.cos( v$1 ) * r; + + vertices.push( x$1, 0, z$1 ); + colors.push( color$1.r, color$1.g, color$1.b ); + + // second vertex + + v$1 = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 ); + + x$1 = Math.sin( v$1 ) * r; + z$1 = Math.cos( v$1 ) * r; + + vertices.push( x$1, 0, z$1 ); + colors.push( color$1.r, color$1.g, color$1.b ); + + } + + } + + var geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); + + LineSegments.call( this, geometry, material ); + + this.type = 'PolarGridHelper'; + + } + + PolarGridHelper.prototype = Object.create( LineSegments.prototype ); + PolarGridHelper.prototype.constructor = PolarGridHelper; + + var _v1$5 = new Vector3(); + var _v2$3 = new Vector3(); + var _v3$1 = new Vector3(); + + function DirectionalLightHelper( light, size, color ) { + + Object3D.call( this ); + + this.light = light; + this.light.updateMatrixWorld(); + + this.matrix = light.matrixWorld; + this.matrixAutoUpdate = false; + + this.color = color; + + if ( size === undefined ) { size = 1; } + + var geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( [ + - size, size, 0, + size, size, 0, + size, - size, 0, + - size, - size, 0, + - size, size, 0 + ], 3 ) ); + + var material = new LineBasicMaterial( { fog: false, toneMapped: false } ); + + this.lightPlane = new Line( geometry, material ); + this.add( this.lightPlane ); + + geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) ); + + this.targetLine = new Line( geometry, material ); + this.add( this.targetLine ); + + this.update(); + + } + + DirectionalLightHelper.prototype = Object.create( Object3D.prototype ); + DirectionalLightHelper.prototype.constructor = DirectionalLightHelper; + + DirectionalLightHelper.prototype.dispose = function () { + + this.lightPlane.geometry.dispose(); + this.lightPlane.material.dispose(); + this.targetLine.geometry.dispose(); + this.targetLine.material.dispose(); + + }; + + DirectionalLightHelper.prototype.update = function () { + + _v1$5.setFromMatrixPosition( this.light.matrixWorld ); + _v2$3.setFromMatrixPosition( this.light.target.matrixWorld ); + _v3$1.subVectors( _v2$3, _v1$5 ); + + this.lightPlane.lookAt( _v2$3 ); + + if ( this.color !== undefined ) { + + this.lightPlane.material.color.set( this.color ); + this.targetLine.material.color.set( this.color ); + + } else { + + this.lightPlane.material.color.copy( this.light.color ); + this.targetLine.material.color.copy( this.light.color ); + + } + + this.targetLine.lookAt( _v2$3 ); + this.targetLine.scale.z = _v3$1.length(); + + }; + + var _vector$b = new Vector3(); + var _camera = new Camera(); + + /** + * - shows frustum, line of sight and up of the camera + * - suitable for fast updates + * - based on frustum visualization in lightgl.js shadowmap example + * http://evanw.github.com/lightgl.js/tests/shadowmap.html + */ + + function CameraHelper( camera ) { + + var geometry = new BufferGeometry(); + var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } ); + + var vertices = []; + var colors = []; + + var pointMap = {}; + + // colors + + var colorFrustum = new Color( 0xffaa00 ); + var colorCone = new Color( 0xff0000 ); + var colorUp = new Color( 0x00aaff ); + var colorTarget = new Color( 0xffffff ); + var colorCross = new Color( 0x333333 ); + + // near + + addLine( 'n1', 'n2', colorFrustum ); + addLine( 'n2', 'n4', colorFrustum ); + addLine( 'n4', 'n3', colorFrustum ); + addLine( 'n3', 'n1', colorFrustum ); + + // far + + addLine( 'f1', 'f2', colorFrustum ); + addLine( 'f2', 'f4', colorFrustum ); + addLine( 'f4', 'f3', colorFrustum ); + addLine( 'f3', 'f1', colorFrustum ); + + // sides + + addLine( 'n1', 'f1', colorFrustum ); + addLine( 'n2', 'f2', colorFrustum ); + addLine( 'n3', 'f3', colorFrustum ); + addLine( 'n4', 'f4', colorFrustum ); + + // cone + + addLine( 'p', 'n1', colorCone ); + addLine( 'p', 'n2', colorCone ); + addLine( 'p', 'n3', colorCone ); + addLine( 'p', 'n4', colorCone ); + + // up + + addLine( 'u1', 'u2', colorUp ); + addLine( 'u2', 'u3', colorUp ); + addLine( 'u3', 'u1', colorUp ); + + // target + + addLine( 'c', 't', colorTarget ); + addLine( 'p', 'c', colorCross ); + + // cross + + addLine( 'cn1', 'cn2', colorCross ); + addLine( 'cn3', 'cn4', colorCross ); + + addLine( 'cf1', 'cf2', colorCross ); + addLine( 'cf3', 'cf4', colorCross ); + + function addLine( a, b, color ) { + + addPoint( a, color ); + addPoint( b, color ); + + } + + function addPoint( id, color ) { + + vertices.push( 0, 0, 0 ); + colors.push( color.r, color.g, color.b ); + + if ( pointMap[ id ] === undefined ) { + + pointMap[ id ] = []; + + } + + pointMap[ id ].push( ( vertices.length / 3 ) - 1 ); + + } + + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + LineSegments.call( this, geometry, material ); + + this.type = 'CameraHelper'; + + this.camera = camera; + if ( this.camera.updateProjectionMatrix ) { this.camera.updateProjectionMatrix(); } + + this.matrix = camera.matrixWorld; + this.matrixAutoUpdate = false; + + this.pointMap = pointMap; + + this.update(); + + } + + CameraHelper.prototype = Object.create( LineSegments.prototype ); + CameraHelper.prototype.constructor = CameraHelper; + + CameraHelper.prototype.update = function () { + + var geometry = this.geometry; + var pointMap = this.pointMap; + + var w = 1, h = 1; + + // we need just camera projection matrix inverse + // world matrix must be identity + + _camera.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse ); + + // center / target + + setPoint( 'c', pointMap, geometry, _camera, 0, 0, - 1 ); + setPoint( 't', pointMap, geometry, _camera, 0, 0, 1 ); + + // near + + setPoint( 'n1', pointMap, geometry, _camera, - w, - h, - 1 ); + setPoint( 'n2', pointMap, geometry, _camera, w, - h, - 1 ); + setPoint( 'n3', pointMap, geometry, _camera, - w, h, - 1 ); + setPoint( 'n4', pointMap, geometry, _camera, w, h, - 1 ); + + // far + + setPoint( 'f1', pointMap, geometry, _camera, - w, - h, 1 ); + setPoint( 'f2', pointMap, geometry, _camera, w, - h, 1 ); + setPoint( 'f3', pointMap, geometry, _camera, - w, h, 1 ); + setPoint( 'f4', pointMap, geometry, _camera, w, h, 1 ); + + // up + + setPoint( 'u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, - 1 ); + setPoint( 'u2', pointMap, geometry, _camera, - w * 0.7, h * 1.1, - 1 ); + setPoint( 'u3', pointMap, geometry, _camera, 0, h * 2, - 1 ); + + // cross + + setPoint( 'cf1', pointMap, geometry, _camera, - w, 0, 1 ); + setPoint( 'cf2', pointMap, geometry, _camera, w, 0, 1 ); + setPoint( 'cf3', pointMap, geometry, _camera, 0, - h, 1 ); + setPoint( 'cf4', pointMap, geometry, _camera, 0, h, 1 ); + + setPoint( 'cn1', pointMap, geometry, _camera, - w, 0, - 1 ); + setPoint( 'cn2', pointMap, geometry, _camera, w, 0, - 1 ); + setPoint( 'cn3', pointMap, geometry, _camera, 0, - h, - 1 ); + setPoint( 'cn4', pointMap, geometry, _camera, 0, h, - 1 ); + + geometry.getAttribute( 'position' ).needsUpdate = true; + + }; + + function setPoint( point, pointMap, geometry, camera, x, y, z ) { + + _vector$b.set( x, y, z ).unproject( camera ); + + var points = pointMap[ point ]; + + if ( points !== undefined ) { + + var position = geometry.getAttribute( 'position' ); + + for ( var i = 0, l = points.length; i < l; i ++ ) { + + position.setXYZ( points[ i ], _vector$b.x, _vector$b.y, _vector$b.z ); + + } + + } + + } + + var _box$3 = new Box3(); + + function BoxHelper( object, color ) { + + this.object = object; + + if ( color === undefined ) { color = 0xffff00; } + + var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); + var positions = new Float32Array( 8 * 3 ); + + var geometry = new BufferGeometry(); + geometry.setIndex( new BufferAttribute( indices, 1 ) ); + geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) ); + + LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + + this.type = 'BoxHelper'; + + this.matrixAutoUpdate = false; + + this.update(); + + } + + BoxHelper.prototype = Object.create( LineSegments.prototype ); + BoxHelper.prototype.constructor = BoxHelper; + + BoxHelper.prototype.update = function ( object ) { + + if ( object !== undefined ) { + + console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' ); + + } + + if ( this.object !== undefined ) { + + _box$3.setFromObject( this.object ); + + } + + if ( _box$3.isEmpty() ) { return; } + + var min = _box$3.min; + var max = _box$3.max; + + /* + 5____4 + 1/___0/| + | 6__|_7 + 2/___3/ + + 0: max.x, max.y, max.z + 1: min.x, max.y, max.z + 2: min.x, min.y, max.z + 3: max.x, min.y, max.z + 4: max.x, max.y, min.z + 5: min.x, max.y, min.z + 6: min.x, min.y, min.z + 7: max.x, min.y, min.z + */ + + var position = this.geometry.attributes.position; + var array = position.array; + + array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; + array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; + array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; + array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; + array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; + array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; + array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; + array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; + + position.needsUpdate = true; + + this.geometry.computeBoundingSphere(); + + + }; + + BoxHelper.prototype.setFromObject = function ( object ) { + + this.object = object; + this.update(); + + return this; + + }; + + BoxHelper.prototype.copy = function ( source ) { + + LineSegments.prototype.copy.call( this, source ); + + this.object = source.object; + + return this; + + }; + + function Box3Helper( box, color ) { + + this.type = 'Box3Helper'; + + this.box = box; + + if ( color === undefined ) { color = 0xffff00; } + + var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); + + var positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ]; + + var geometry = new BufferGeometry(); + + geometry.setIndex( new BufferAttribute( indices, 1 ) ); + + geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); + + LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + + this.type = 'Box3Helper'; + + this.geometry.computeBoundingSphere(); + + } + + Box3Helper.prototype = Object.create( LineSegments.prototype ); + Box3Helper.prototype.constructor = Box3Helper; + + Box3Helper.prototype.updateMatrixWorld = function ( force ) { + + var box = this.box; + + if ( box.isEmpty() ) { return; } + + box.getCenter( this.position ); + + box.getSize( this.scale ); + + this.scale.multiplyScalar( 0.5 ); + + Object3D.prototype.updateMatrixWorld.call( this, force ); + + }; + + function PlaneHelper( plane, size, hex ) { + + this.plane = plane; + + this.size = ( size === undefined ) ? 1 : size; + + var color = ( hex !== undefined ) ? hex : 0xffff00; + + var positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ]; + + var geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); + geometry.computeBoundingSphere(); + + Line.call( this, geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + + this.type = 'PlaneHelper'; + + // + + var positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ]; + + var geometry2 = new BufferGeometry(); + geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) ); + geometry2.computeBoundingSphere(); + + this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) ); + + } + + PlaneHelper.prototype = Object.create( Line.prototype ); + PlaneHelper.prototype.constructor = PlaneHelper; + + PlaneHelper.prototype.updateMatrixWorld = function ( force ) { + + var scale = - this.plane.constant; + + if ( Math.abs( scale ) < 1e-8 ) { scale = 1e-8; } // sign does not matter + + this.scale.set( 0.5 * this.size, 0.5 * this.size, scale ); + + this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here + + this.lookAt( this.plane.normal ); + + Object3D.prototype.updateMatrixWorld.call( this, force ); + + }; + + var _axis = new Vector3(); + var _lineGeometry, _coneGeometry; + + function ArrowHelper( dir, origin, length, color, headLength, headWidth ) { + + // dir is assumed to be normalized + + Object3D.call( this ); + + this.type = 'ArrowHelper'; + + if ( dir === undefined ) { dir = new Vector3( 0, 0, 1 ); } + if ( origin === undefined ) { origin = new Vector3( 0, 0, 0 ); } + if ( length === undefined ) { length = 1; } + if ( color === undefined ) { color = 0xffff00; } + if ( headLength === undefined ) { headLength = 0.2 * length; } + if ( headWidth === undefined ) { headWidth = 0.2 * headLength; } + + if ( _lineGeometry === undefined ) { + + _lineGeometry = new BufferGeometry(); + _lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) ); + + _coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 ); + _coneGeometry.translate( 0, - 0.5, 0 ); + + } + + this.position.copy( origin ); + + this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); + this.line.matrixAutoUpdate = false; + this.add( this.line ); + + this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) ); + this.cone.matrixAutoUpdate = false; + this.add( this.cone ); + + this.setDirection( dir ); + this.setLength( length, headLength, headWidth ); + + } + + ArrowHelper.prototype = Object.create( Object3D.prototype ); + ArrowHelper.prototype.constructor = ArrowHelper; + + ArrowHelper.prototype.setDirection = function ( dir ) { + + // dir is assumed to be normalized + + if ( dir.y > 0.99999 ) { + + this.quaternion.set( 0, 0, 0, 1 ); + + } else if ( dir.y < - 0.99999 ) { + + this.quaternion.set( 1, 0, 0, 0 ); + + } else { + + _axis.set( dir.z, 0, - dir.x ).normalize(); + + var radians = Math.acos( dir.y ); + + this.quaternion.setFromAxisAngle( _axis, radians ); + + } + + }; + + ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) { + + if ( headLength === undefined ) { headLength = 0.2 * length; } + if ( headWidth === undefined ) { headWidth = 0.2 * headLength; } + + this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458 + this.line.updateMatrix(); + + this.cone.scale.set( headWidth, headLength, headWidth ); + this.cone.position.y = length; + this.cone.updateMatrix(); + + }; + + ArrowHelper.prototype.setColor = function ( color ) { + + this.line.material.color.set( color ); + this.cone.material.color.set( color ); + + }; + + ArrowHelper.prototype.copy = function ( source ) { + + Object3D.prototype.copy.call( this, source, false ); + + this.line.copy( source.line ); + this.cone.copy( source.cone ); + + return this; + + }; + + function AxesHelper( size ) { + + size = size || 1; + + var vertices = [ + 0, 0, 0, size, 0, 0, + 0, 0, 0, 0, size, 0, + 0, 0, 0, 0, 0, size + ]; + + var colors = [ + 1, 0, 0, 1, 0.6, 0, + 0, 1, 0, 0.6, 1, 0, + 0, 0, 1, 0, 0.6, 1 + ]; + + var geometry = new BufferGeometry(); + geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); + geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); + + var material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); + + LineSegments.call( this, geometry, material ); + + this.type = 'AxesHelper'; + + } + + AxesHelper.prototype = Object.create( LineSegments.prototype ); + AxesHelper.prototype.constructor = AxesHelper; + + var LOD_MIN = 4; + var LOD_MAX = 8; + var SIZE_MAX = Math.pow( 2, LOD_MAX ); + + // The standard deviations (radians) associated with the extra mips. These are + // chosen to approximate a Trowbridge-Reitz distribution function times the + // geometric shadowing function. These sigma values squared must match the + // variance #defines in cube_uv_reflection_fragment.glsl.js. + var EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; + + var TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; + + // The maximum length of the blur for loop. Smaller sigmas will use fewer + // samples and exit early, but not recompile the shader. + var MAX_SAMPLES = 20; + + var ENCODINGS = {}; + ENCODINGS[ LinearEncoding ] = 0; + ENCODINGS[ sRGBEncoding ] = 1; + ENCODINGS[ RGBEEncoding ] = 2; + ENCODINGS[ RGBM7Encoding ] = 3; + ENCODINGS[ RGBM16Encoding ] = 4; + ENCODINGS[ RGBDEncoding ] = 5; + ENCODINGS[ GammaEncoding ] = 6; + + var _flatCamera = new OrthographicCamera(); + var ref = _createPlanes(); + var _lodPlanes = ref._lodPlanes; + var _sizeLods = ref._sizeLods; + var _sigmas = ref._sigmas; + var _oldTarget = null; + + // Golden Ratio + var PHI = ( 1 + Math.sqrt( 5 ) ) / 2; + var INV_PHI = 1 / PHI; + + // Vertices of a dodecahedron (except the opposites, which represent the + // same axis), used as axis directions evenly spread on a sphere. + var _axisDirections = [ + new Vector3( 1, 1, 1 ), + new Vector3( - 1, 1, 1 ), + new Vector3( 1, 1, - 1 ), + new Vector3( - 1, 1, - 1 ), + new Vector3( 0, PHI, INV_PHI ), + new Vector3( 0, PHI, - INV_PHI ), + new Vector3( INV_PHI, 0, PHI ), + new Vector3( - INV_PHI, 0, PHI ), + new Vector3( PHI, INV_PHI, 0 ), + new Vector3( - PHI, INV_PHI, 0 ) ]; + + /** + * This class generates a Prefiltered, Mipmapped Radiance Environment Map + * (PMREM) from a cubeMap environment texture. This allows different levels of + * blur to be quickly accessed based on material roughness. It is packed into a + * special CubeUV format that allows us to perform custom interpolation so that + * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap + * chain, it only goes down to the LOD_MIN level (above), and then creates extra + * even more filtered 'mips' at the same LOD_MIN resolution, associated with + * higher roughness levels. In this way we maintain resolution to smoothly + * interpolate diffuse lighting while limiting sampling computation. + */ + + function PMREMGenerator( renderer ) { + + this._renderer = renderer; + this._pingPongRenderTarget = null; + + this._blurMaterial = _getBlurShader( MAX_SAMPLES ); + this._equirectShader = null; + this._cubemapShader = null; + + this._compileMaterial( this._blurMaterial ); + + } + + PMREMGenerator.prototype = { + + constructor: PMREMGenerator, + + /** + * Generates a PMREM from a supplied Scene, which can be faster than using an + * image if networking bandwidth is low. Optional sigma specifies a blur radius + * in radians to be applied to the scene before PMREM generation. Optional near + * and far planes ensure the scene is rendered in its entirety (the cubeCamera + * is placed at the origin). + */ + fromScene: function ( scene, sigma, near, far ) { + if ( sigma === void 0 ) sigma = 0; + if ( near === void 0 ) near = 0.1; + if ( far === void 0 ) far = 100; + + + _oldTarget = this._renderer.getRenderTarget(); + var cubeUVRenderTarget = this._allocateTargets(); + + this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); + if ( sigma > 0 ) { + + this._blur( cubeUVRenderTarget, 0, 0, sigma ); + + } + + this._applyPMREM( cubeUVRenderTarget ); + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + }, + + /** + * Generates a PMREM from an equirectangular texture, which can be either LDR + * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), + * as this matches best with the 256 x 256 cubemap output. + */ + fromEquirectangular: function ( equirectangular ) { + + return this._fromTexture( equirectangular ); + + }, + + /** + * Generates a PMREM from an cubemap texture, which can be either LDR + * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, + * as this matches best with the 256 x 256 cubemap output. + */ + fromCubemap: function ( cubemap ) { + + return this._fromTexture( cubemap ); + + }, + + /** + * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + compileCubemapShader: function () { + + if ( this._cubemapShader === null ) { + + this._cubemapShader = _getCubemapShader(); + this._compileMaterial( this._cubemapShader ); + + } + + }, + + /** + * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during + * your texture's network fetch for increased concurrency. + */ + compileEquirectangularShader: function () { + + if ( this._equirectShader === null ) { + + this._equirectShader = _getEquirectShader(); + this._compileMaterial( this._equirectShader ); + + } + + }, + + /** + * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, + * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on + * one of them will cause any others to also become unusable. + */ + dispose: function () { + + this._blurMaterial.dispose(); + + if ( this._cubemapShader !== null ) { this._cubemapShader.dispose(); } + if ( this._equirectShader !== null ) { this._equirectShader.dispose(); } + + for ( var i = 0; i < _lodPlanes.length; i ++ ) { + + _lodPlanes[ i ].dispose(); + + } + + }, + + // private interface + + _cleanup: function ( outputTarget ) { + + this._pingPongRenderTarget.dispose(); + this._renderer.setRenderTarget( _oldTarget ); + outputTarget.scissorTest = false; + _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); + + }, + + _fromTexture: function ( texture ) { + + _oldTarget = this._renderer.getRenderTarget(); + var cubeUVRenderTarget = this._allocateTargets( texture ); + this._textureToCubeUV( texture, cubeUVRenderTarget ); + this._applyPMREM( cubeUVRenderTarget ); + this._cleanup( cubeUVRenderTarget ); + + return cubeUVRenderTarget; + + }, + + _allocateTargets: function ( texture ) { // warning: null texture is valid + + var params = { + magFilter: NearestFilter, + minFilter: NearestFilter, + generateMipmaps: false, + type: UnsignedByteType, + format: RGBEFormat, + encoding: _isLDR( texture ) ? texture.encoding : RGBEEncoding, + depthBuffer: false, + stencilBuffer: false + }; + + var cubeUVRenderTarget = _createRenderTarget( params ); + cubeUVRenderTarget.depthBuffer = texture ? false : true; + this._pingPongRenderTarget = _createRenderTarget( params ); + return cubeUVRenderTarget; + + }, + + _compileMaterial: function ( material ) { + + var tmpMesh = new Mesh( _lodPlanes[ 0 ], material ); + this._renderer.compile( tmpMesh, _flatCamera ); + + }, + + _sceneToCubeUV: function ( scene, near, far, cubeUVRenderTarget ) { + + var fov = 90; + var aspect = 1; + var cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); + var upSign = [ 1, - 1, 1, 1, 1, 1 ]; + var forwardSign = [ 1, 1, 1, - 1, - 1, - 1 ]; + var renderer = this._renderer; + + var outputEncoding = renderer.outputEncoding; + var toneMapping = renderer.toneMapping; + var clearColor = renderer.getClearColor(); + var clearAlpha = renderer.getClearAlpha(); + + renderer.toneMapping = NoToneMapping; + renderer.outputEncoding = LinearEncoding; + + var background = scene.background; + if ( background && background.isColor ) { + + background.convertSRGBToLinear(); + // Convert linear to RGBE + var maxComponent = Math.max( background.r, background.g, background.b ); + var fExp = Math.min( Math.max( Math.ceil( Math.log2( maxComponent ) ), - 128.0 ), 127.0 ); + background = background.multiplyScalar( Math.pow( 2.0, - fExp ) ); + var alpha = ( fExp + 128.0 ) / 255.0; + renderer.setClearColor( background, alpha ); + scene.background = null; + + } + + for ( var i = 0; i < 6; i ++ ) { + + var col = i % 3; + if ( col == 0 ) { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); + + } else if ( col == 1 ) { + + cubeCamera.up.set( 0, 0, upSign[ i ] ); + cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); + + } else { + + cubeCamera.up.set( 0, upSign[ i ], 0 ); + cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); + + } + + _setViewport( cubeUVRenderTarget, + col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX ); + renderer.setRenderTarget( cubeUVRenderTarget ); + renderer.render( scene, cubeCamera ); + + } + + renderer.toneMapping = toneMapping; + renderer.outputEncoding = outputEncoding; + renderer.setClearColor( clearColor, clearAlpha ); + + }, + + _textureToCubeUV: function ( texture, cubeUVRenderTarget ) { + + var renderer = this._renderer; + + if ( texture.isCubeTexture ) { + + if ( this._cubemapShader == null ) { + + this._cubemapShader = _getCubemapShader(); + + } + + } else { + + if ( this._equirectShader == null ) { + + this._equirectShader = _getEquirectShader(); + + } + + } + + var material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; + var mesh = new Mesh( _lodPlanes[ 0 ], material ); + + var uniforms = material.uniforms; + + uniforms[ 'envMap' ].value = texture; + + if ( ! texture.isCubeTexture ) { + + uniforms[ 'texelSize' ].value.set( 1.0 / texture.image.width, 1.0 / texture.image.height ); + + } + + uniforms[ 'inputEncoding' ].value = ENCODINGS[ texture.encoding ]; + uniforms[ 'outputEncoding' ].value = ENCODINGS[ cubeUVRenderTarget.texture.encoding ]; + + _setViewport( cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX ); + + renderer.setRenderTarget( cubeUVRenderTarget ); + renderer.render( mesh, _flatCamera ); + + }, + + _applyPMREM: function ( cubeUVRenderTarget ) { + + var renderer = this._renderer; + var autoClear = renderer.autoClear; + renderer.autoClear = false; + + for ( var i = 1; i < TOTAL_LODS; i ++ ) { + + var sigma = Math.sqrt( _sigmas[ i ] * _sigmas[ i ] - _sigmas[ i - 1 ] * _sigmas[ i - 1 ] ); + + var poleAxis = _axisDirections[ ( i - 1 ) % _axisDirections.length ]; + + this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); + + } + + renderer.autoClear = autoClear; + + }, + + /** + * This is a two-pass Gaussian blur for a cubemap. Normally this is done + * vertically and horizontally, but this breaks down on a cube. Here we apply + * the blur latitudinally (around the poles), and then longitudinally (towards + * the poles) to approximate the orthogonally-separable blur. It is least + * accurate at the poles, but still does a decent job. + */ + _blur: function ( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { + + var pingPongRenderTarget = this._pingPongRenderTarget; + + this._halfBlur( + cubeUVRenderTarget, + pingPongRenderTarget, + lodIn, + lodOut, + sigma, + 'latitudinal', + poleAxis ); + + this._halfBlur( + pingPongRenderTarget, + cubeUVRenderTarget, + lodOut, + lodOut, + sigma, + 'longitudinal', + poleAxis ); + + }, + + _halfBlur: function ( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { + + var renderer = this._renderer; + var blurMaterial = this._blurMaterial; + + if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { + + console.error( + 'blur direction must be either latitudinal or longitudinal!' ); + + } + + // Number of standard deviations at which to cut off the discrete approximation. + var STANDARD_DEVIATIONS = 3; + + var blurMesh = new Mesh( _lodPlanes[ lodOut ], blurMaterial ); + var blurUniforms = blurMaterial.uniforms; + + var pixels = _sizeLods[ lodIn ] - 1; + var radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); + var sigmaPixels = sigmaRadians / radiansPerPixel; + var samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; + + if ( samples > MAX_SAMPLES ) { + + console.warn( ("sigmaRadians, " + sigmaRadians + ", is too large and will clip, as it requested " + samples + " samples when the maximum is set to " + MAX_SAMPLES) ); + + } + + var weights = []; + var sum = 0; + + for ( var i = 0; i < MAX_SAMPLES; ++ i ) { + + var x$1 = i / sigmaPixels; + var weight = Math.exp( - x$1 * x$1 / 2 ); + weights.push( weight ); + + if ( i == 0 ) { + + sum += weight; + + } else if ( i < samples ) { + + sum += 2 * weight; + + } + + } + + for ( var i$1 = 0; i$1 < weights.length; i$1 ++ ) { + + weights[ i$1 ] = weights[ i$1 ] / sum; + + } + + blurUniforms[ 'envMap' ].value = targetIn.texture; + blurUniforms[ 'samples' ].value = samples; + blurUniforms[ 'weights' ].value = weights; + blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; + + if ( poleAxis ) { + + blurUniforms[ 'poleAxis' ].value = poleAxis; + + } + + blurUniforms[ 'dTheta' ].value = radiansPerPixel; + blurUniforms[ 'mipInt' ].value = LOD_MAX - lodIn; + blurUniforms[ 'inputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; + blurUniforms[ 'outputEncoding' ].value = ENCODINGS[ targetIn.texture.encoding ]; + + var outputSize = _sizeLods[ lodOut ]; + var x = 3 * Math.max( 0, SIZE_MAX - 2 * outputSize ); + var y = ( lodOut === 0 ? 0 : 2 * SIZE_MAX ) + 2 * outputSize * ( lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0 ); + + _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); + renderer.setRenderTarget( targetOut ); + renderer.render( blurMesh, _flatCamera ); + + } + + }; + + function _isLDR( texture ) { + + if ( texture === undefined || texture.type !== UnsignedByteType ) { return false; } + + return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; + + } + + function _createPlanes() { + + var _lodPlanes = []; + var _sizeLods = []; + var _sigmas = []; + + var lod = LOD_MAX; + + for ( var i = 0; i < TOTAL_LODS; i ++ ) { + + var sizeLod = Math.pow( 2, lod ); + _sizeLods.push( sizeLod ); + var sigma = 1.0 / sizeLod; + + if ( i > LOD_MAX - LOD_MIN ) { + + sigma = EXTRA_LOD_SIGMA[ i - LOD_MAX + LOD_MIN - 1 ]; + + } else if ( i == 0 ) { + + sigma = 0; + + } + + _sigmas.push( sigma ); + + var texelSize = 1.0 / ( sizeLod - 1 ); + var min = - texelSize / 2; + var max = 1 + texelSize / 2; + var uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; + + var cubeFaces = 6; + var vertices = 6; + var positionSize = 3; + var uvSize = 2; + var faceIndexSize = 1; + + var position = new Float32Array( positionSize * vertices * cubeFaces ); + var uv = new Float32Array( uvSize * vertices * cubeFaces ); + var faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); + + for ( var face = 0; face < cubeFaces; face ++ ) { + + var x = ( face % 3 ) * 2 / 3 - 1; + var y = face > 2 ? 0 : - 1; + var coordinates = [ + x, y, 0, + x + 2 / 3, y, 0, + x + 2 / 3, y + 1, 0, + x, y, 0, + x + 2 / 3, y + 1, 0, + x, y + 1, 0 + ]; + position.set( coordinates, positionSize * vertices * face ); + uv.set( uv1, uvSize * vertices * face ); + var fill = [ face, face, face, face, face, face ]; + faceIndex.set( fill, faceIndexSize * vertices * face ); + + } + + var planes = new BufferGeometry(); + planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); + planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); + planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); + _lodPlanes.push( planes ); + + if ( lod > LOD_MIN ) { + + lod --; + + } + + } + + return { _lodPlanes: _lodPlanes, _sizeLods: _sizeLods, _sigmas: _sigmas }; + + } + + function _createRenderTarget( params ) { + + var cubeUVRenderTarget = new WebGLRenderTarget( 3 * SIZE_MAX, 3 * SIZE_MAX, params ); + cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; + cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; + cubeUVRenderTarget.scissorTest = true; + return cubeUVRenderTarget; + + } + + function _setViewport( target, x, y, width, height ) { + + target.viewport.set( x, y, width, height ); + target.scissor.set( x, y, width, height ); + + } + + function _getBlurShader( maxSamples ) { + + var weights = new Float32Array( maxSamples ); + var poleAxis = new Vector3( 0, 1, 0 ); + var shaderMaterial = new RawShaderMaterial( { + + name: 'SphericalGaussianBlur', + + defines: { 'n': maxSamples }, + + uniforms: { + 'envMap': { value: null }, + 'samples': { value: 1 }, + 'weights': { value: weights }, + 'latitudinal': { value: false }, + 'dTheta': { value: 0 }, + 'mipInt': { value: 0 }, + 'poleAxis': { value: poleAxis }, + 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, + 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } + }, + + vertexShader: _getCommonVertexShader(), + + fragmentShader: /* glsl */("\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform int samples;\n\t\t\tuniform float weights[ n ];\n\t\t\tuniform bool latitudinal;\n\t\t\tuniform float dTheta;\n\t\t\tuniform float mipInt;\n\t\t\tuniform vec3 poleAxis;\n\n\t\t\t" + (_getEncodings()) + "\n\n\t\t\t#define ENVMAP_TYPE_CUBE_UV\n\t\t\t#include \n\n\t\t\tvec3 getSample( float theta, vec3 axis ) {\n\n\t\t\t\tfloat cosTheta = cos( theta );\n\t\t\t\t// Rodrigues' axis-angle rotation\n\t\t\t\tvec3 sampleDirection = vOutputDirection * cosTheta\n\t\t\t\t\t+ cross( axis, vOutputDirection ) * sin( theta )\n\t\t\t\t\t+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );\n\n\t\t\t\treturn bilinearCubeUV( envMap, sampleDirection, mipInt );\n\n\t\t\t}\n\n\t\t\tvoid main() {\n\n\t\t\t\tvec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );\n\n\t\t\t\tif ( all( equal( axis, vec3( 0.0 ) ) ) ) {\n\n\t\t\t\t\taxis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );\n\n\t\t\t\t}\n\n\t\t\t\taxis = normalize( axis );\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );\n\n\t\t\t\tfor ( int i = 1; i < n; i++ ) {\n\n\t\t\t\t\tif ( i >= samples ) {\n\n\t\t\t\t\t\tbreak;\n\n\t\t\t\t\t}\n\n\t\t\t\t\tfloat theta = dTheta * float( i );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );\n\t\t\t\t\tgl_FragColor.rgb += weights[ i ] * getSample( theta, axis );\n\n\t\t\t\t}\n\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t"), + + blending: NoBlending, + depthTest: false, + depthWrite: false + + } ); + + return shaderMaterial; + + } + + function _getEquirectShader() { + + var texelSize = new Vector2( 1, 1 ); + var shaderMaterial = new RawShaderMaterial( { + + name: 'EquirectangularToCubeUV', + + uniforms: { + 'envMap': { value: null }, + 'texelSize': { value: texelSize }, + 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, + 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } + }, + + vertexShader: _getCommonVertexShader(), + + fragmentShader: /* glsl */("\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform sampler2D envMap;\n\t\t\tuniform vec2 texelSize;\n\n\t\t\t" + (_getEncodings()) + "\n\n\t\t\t#include \n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\n\t\t\t\tvec3 outputDirection = normalize( vOutputDirection );\n\t\t\t\tvec2 uv = equirectUv( outputDirection );\n\n\t\t\t\tvec2 f = fract( uv / texelSize - 0.5 );\n\t\t\t\tuv -= f * texelSize;\n\t\t\t\tvec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x += texelSize.x;\n\t\t\t\tvec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.y += texelSize.y;\n\t\t\t\tvec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\t\t\t\tuv.x -= texelSize.x;\n\t\t\t\tvec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;\n\n\t\t\t\tvec3 tm = mix( tl, tr, f.x );\n\t\t\t\tvec3 bm = mix( bl, br, f.x );\n\t\t\t\tgl_FragColor.rgb = mix( tm, bm, f.y );\n\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t"), + + blending: NoBlending, + depthTest: false, + depthWrite: false + + } ); + + return shaderMaterial; + + } + + function _getCubemapShader() { + + var shaderMaterial = new RawShaderMaterial( { + + name: 'CubemapToCubeUV', + + uniforms: { + 'envMap': { value: null }, + 'inputEncoding': { value: ENCODINGS[ LinearEncoding ] }, + 'outputEncoding': { value: ENCODINGS[ LinearEncoding ] } + }, + + vertexShader: _getCommonVertexShader(), + + fragmentShader: /* glsl */("\n\n\t\t\tprecision mediump float;\n\t\t\tprecision mediump int;\n\n\t\t\tvarying vec3 vOutputDirection;\n\n\t\t\tuniform samplerCube envMap;\n\n\t\t\t" + (_getEncodings()) + "\n\n\t\t\tvoid main() {\n\n\t\t\t\tgl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t\t\t\tgl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;\n\t\t\t\tgl_FragColor = linearToOutputTexel( gl_FragColor );\n\n\t\t\t}\n\t\t"), + + blending: NoBlending, + depthTest: false, + depthWrite: false + + } ); + + return shaderMaterial; + + } + + function _getCommonVertexShader() { + + return /* glsl */"\n\n\t\tprecision mediump float;\n\t\tprecision mediump int;\n\n\t\tattribute vec3 position;\n\t\tattribute vec2 uv;\n\t\tattribute float faceIndex;\n\n\t\tvarying vec3 vOutputDirection;\n\n\t\t// RH coordinate system; PMREM face-indexing convention\n\t\tvec3 getDirection( vec2 uv, float face ) {\n\n\t\t\tuv = 2.0 * uv - 1.0;\n\n\t\t\tvec3 direction = vec3( uv, 1.0 );\n\n\t\t\tif ( face == 0.0 ) {\n\n\t\t\t\tdirection = direction.zyx; // ( 1, v, u ) pos x\n\n\t\t\t} else if ( face == 1.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xz *= -1.0; // ( -u, 1, -v ) pos y\n\n\t\t\t} else if ( face == 2.0 ) {\n\n\t\t\t\tdirection.x *= -1.0; // ( -u, v, 1 ) pos z\n\n\t\t\t} else if ( face == 3.0 ) {\n\n\t\t\t\tdirection = direction.zyx;\n\t\t\t\tdirection.xz *= -1.0; // ( -1, v, -u ) neg x\n\n\t\t\t} else if ( face == 4.0 ) {\n\n\t\t\t\tdirection = direction.xzy;\n\t\t\t\tdirection.xy *= -1.0; // ( -u, -1, v ) neg y\n\n\t\t\t} else if ( face == 5.0 ) {\n\n\t\t\t\tdirection.z *= -1.0; // ( u, v, -1 ) neg z\n\n\t\t\t}\n\n\t\t\treturn direction;\n\n\t\t}\n\n\t\tvoid main() {\n\n\t\t\tvOutputDirection = getDirection( uv, faceIndex );\n\t\t\tgl_Position = vec4( position, 1.0 );\n\n\t\t}\n\t"; + + } + + function _getEncodings() { + + return /* glsl */"\n\n\t\tuniform int inputEncoding;\n\t\tuniform int outputEncoding;\n\n\t\t#include \n\n\t\tvec4 inputTexelToLinear( vec4 value ) {\n\n\t\t\tif ( inputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else if ( inputEncoding == 1 ) {\n\n\t\t\t\treturn sRGBToLinear( value );\n\n\t\t\t} else if ( inputEncoding == 2 ) {\n\n\t\t\t\treturn RGBEToLinear( value );\n\n\t\t\t} else if ( inputEncoding == 3 ) {\n\n\t\t\t\treturn RGBMToLinear( value, 7.0 );\n\n\t\t\t} else if ( inputEncoding == 4 ) {\n\n\t\t\t\treturn RGBMToLinear( value, 16.0 );\n\n\t\t\t} else if ( inputEncoding == 5 ) {\n\n\t\t\t\treturn RGBDToLinear( value, 256.0 );\n\n\t\t\t} else {\n\n\t\t\t\treturn GammaToLinear( value, 2.2 );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 linearToOutputTexel( vec4 value ) {\n\n\t\t\tif ( outputEncoding == 0 ) {\n\n\t\t\t\treturn value;\n\n\t\t\t} else if ( outputEncoding == 1 ) {\n\n\t\t\t\treturn LinearTosRGB( value );\n\n\t\t\t} else if ( outputEncoding == 2 ) {\n\n\t\t\t\treturn LinearToRGBE( value );\n\n\t\t\t} else if ( outputEncoding == 3 ) {\n\n\t\t\t\treturn LinearToRGBM( value, 7.0 );\n\n\t\t\t} else if ( outputEncoding == 4 ) {\n\n\t\t\t\treturn LinearToRGBM( value, 16.0 );\n\n\t\t\t} else if ( outputEncoding == 5 ) {\n\n\t\t\t\treturn LinearToRGBD( value, 256.0 );\n\n\t\t\t} else {\n\n\t\t\t\treturn LinearToGamma( value, 2.2 );\n\n\t\t\t}\n\n\t\t}\n\n\t\tvec4 envMapTexelToLinear( vec4 color ) {\n\n\t\t\treturn inputTexelToLinear( color );\n\n\t\t}\n\t"; + + } + + function Face4( a, b, c, d, normal, color, materialIndex ) { + + console.warn( 'THREE.Face4 has been removed. A THREE.Face3 will be created instead.' ); + return new Face3( a, b, c, normal, color, materialIndex ); + + } + + var LineStrip = 0; + var LinePieces = 1; + var NoColors = 0; + var FaceColors = 1; + var VertexColors = 2; + + function MeshFaceMaterial( materials ) { + + console.warn( 'THREE.MeshFaceMaterial has been removed. Use an Array instead.' ); + return materials; + + } + + function MultiMaterial( materials ) { + + if ( materials === undefined ) { materials = []; } + + console.warn( 'THREE.MultiMaterial has been removed. Use an Array instead.' ); + materials.isMultiMaterial = true; + materials.materials = materials; + materials.clone = function () { + + return materials.slice(); + + }; + + return materials; + + } + + function PointCloud( geometry, material ) { + + console.warn( 'THREE.PointCloud has been renamed to THREE.Points.' ); + return new Points( geometry, material ); + + } + + function Particle( material ) { + + console.warn( 'THREE.Particle has been renamed to THREE.Sprite.' ); + return new Sprite( material ); + + } + + function ParticleSystem( geometry, material ) { + + console.warn( 'THREE.ParticleSystem has been renamed to THREE.Points.' ); + return new Points( geometry, material ); + + } + + function PointCloudMaterial( parameters ) { + + console.warn( 'THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.' ); + return new PointsMaterial( parameters ); + + } + + function ParticleBasicMaterial( parameters ) { + + console.warn( 'THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.' ); + return new PointsMaterial( parameters ); + + } + + function ParticleSystemMaterial( parameters ) { + + console.warn( 'THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.' ); + return new PointsMaterial( parameters ); + + } + + function Vertex( x, y, z ) { + + console.warn( 'THREE.Vertex has been removed. Use THREE.Vector3 instead.' ); + return new Vector3( x, y, z ); + + } + + // + + function DynamicBufferAttribute( array, itemSize ) { + + console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.' ); + return new BufferAttribute( array, itemSize ).setUsage( DynamicDrawUsage ); + + } + + function Int8Attribute( array, itemSize ) { + + console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' ); + return new Int8BufferAttribute( array, itemSize ); + + } + + function Uint8Attribute( array, itemSize ) { + + console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' ); + return new Uint8BufferAttribute( array, itemSize ); + + } + + function Uint8ClampedAttribute( array, itemSize ) { + + console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' ); + return new Uint8ClampedBufferAttribute( array, itemSize ); + + } + + function Int16Attribute( array, itemSize ) { + + console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' ); + return new Int16BufferAttribute( array, itemSize ); + + } + + function Uint16Attribute( array, itemSize ) { + + console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' ); + return new Uint16BufferAttribute( array, itemSize ); + + } + + function Int32Attribute( array, itemSize ) { + + console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' ); + return new Int32BufferAttribute( array, itemSize ); + + } + + function Uint32Attribute( array, itemSize ) { + + console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' ); + return new Uint32BufferAttribute( array, itemSize ); + + } + + function Float32Attribute( array, itemSize ) { + + console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' ); + return new Float32BufferAttribute( array, itemSize ); + + } + + function Float64Attribute( array, itemSize ) { + + console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' ); + return new Float64BufferAttribute( array, itemSize ); + + } + + // + + Curve.create = function ( construct, getPoint ) { + + console.log( 'THREE.Curve.create() has been deprecated' ); + + construct.prototype = Object.create( Curve.prototype ); + construct.prototype.constructor = construct; + construct.prototype.getPoint = getPoint; + + return construct; + + }; + + // + + Object.assign( CurvePath.prototype, { + + createPointsGeometry: function ( divisions ) { + + console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ); + + // generate geometry from path points (for Line or Points objects) + + var pts = this.getPoints( divisions ); + return this.createGeometry( pts ); + + }, + + createSpacedPointsGeometry: function ( divisions ) { + + console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ); + + // generate geometry from equidistant sampling along the path + + var pts = this.getSpacedPoints( divisions ); + return this.createGeometry( pts ); + + }, + + createGeometry: function ( points ) { + + console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ); + + var geometry = new Geometry(); + + for ( var i = 0, l = points.length; i < l; i ++ ) { + + var point = points[ i ]; + geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) ); + + } + + return geometry; + + } + + } ); + + // + + Object.assign( Path.prototype, { + + fromPoints: function ( points ) { + + console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' ); + return this.setFromPoints( points ); + + } + + } ); + + // + + function ClosedSplineCurve3( points ) { + + console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' ); + + CatmullRomCurve3.call( this, points ); + this.type = 'catmullrom'; + this.closed = true; + + } + + ClosedSplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype ); + + // + + function SplineCurve3( points ) { + + console.warn( 'THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' ); + + CatmullRomCurve3.call( this, points ); + this.type = 'catmullrom'; + + } + + SplineCurve3.prototype = Object.create( CatmullRomCurve3.prototype ); + + // + + function Spline( points ) { + + console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' ); + + CatmullRomCurve3.call( this, points ); + this.type = 'catmullrom'; + + } + + Spline.prototype = Object.create( CatmullRomCurve3.prototype ); + + Object.assign( Spline.prototype, { + + initFromArray: function ( /* a */ ) { + + console.error( 'THREE.Spline: .initFromArray() has been removed.' ); + + }, + getControlPointsArray: function ( /* optionalTarget */ ) { + + console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' ); + + }, + reparametrizeByArcLength: function ( /* samplingCoef */ ) { + + console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' ); + + } + + } ); + + // + + function AxisHelper( size ) { + + console.warn( 'THREE.AxisHelper has been renamed to THREE.AxesHelper.' ); + return new AxesHelper( size ); + + } + + function BoundingBoxHelper( object, color ) { + + console.warn( 'THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.' ); + return new BoxHelper( object, color ); + + } + + function EdgesHelper( object, hex ) { + + console.warn( 'THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.' ); + return new LineSegments( new EdgesGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); + + } + + GridHelper.prototype.setColors = function () { + + console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' ); + + }; + + SkeletonHelper.prototype.update = function () { + + console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' ); + + }; + + function WireframeHelper( object, hex ) { + + console.warn( 'THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.' ); + return new LineSegments( new WireframeGeometry( object.geometry ), new LineBasicMaterial( { color: hex !== undefined ? hex : 0xffffff } ) ); + + } + + // + + Object.assign( Loader.prototype, { + + extractUrlBase: function ( url ) { + + console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' ); + return LoaderUtils.extractUrlBase( url ); + + } + + } ); + + Loader.Handlers = { + + add: function ( /* regex, loader */ ) { + + console.error( 'THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.' ); + + }, + + get: function ( /* file */ ) { + + console.error( 'THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.' ); + + } + + }; + + function XHRLoader( manager ) { + + console.warn( 'THREE.XHRLoader has been renamed to THREE.FileLoader.' ); + return new FileLoader( manager ); + + } + + function BinaryTextureLoader( manager ) { + + console.warn( 'THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.' ); + return new DataTextureLoader( manager ); + + } + + Object.assign( ObjectLoader.prototype, { + + setTexturePath: function ( value ) { + + console.warn( 'THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().' ); + return this.setResourcePath( value ); + + } + + } ); + + // + + Object.assign( Box2.prototype, { + + center: function ( optionalTarget ) { + + console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' ); + return this.getCenter( optionalTarget ); + + }, + empty: function () { + + console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' ); + return this.isEmpty(); + + }, + isIntersectionBox: function ( box ) { + + console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' ); + return this.intersectsBox( box ); + + }, + size: function ( optionalTarget ) { + + console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' ); + return this.getSize( optionalTarget ); + + } + } ); + + Object.assign( Box3.prototype, { + + center: function ( optionalTarget ) { + + console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' ); + return this.getCenter( optionalTarget ); + + }, + empty: function () { + + console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' ); + return this.isEmpty(); + + }, + isIntersectionBox: function ( box ) { + + console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' ); + return this.intersectsBox( box ); + + }, + isIntersectionSphere: function ( sphere ) { + + console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); + return this.intersectsSphere( sphere ); + + }, + size: function ( optionalTarget ) { + + console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' ); + return this.getSize( optionalTarget ); + + } + } ); + + Object.assign( Sphere.prototype, { + + empty: function () { + + console.warn( 'THREE.Sphere: .empty() has been renamed to .isEmpty().' ); + return this.isEmpty(); + + }, + + } ); + + Frustum.prototype.setFromMatrix = function ( m ) { + + console.warn( 'THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().' ); + return this.setFromProjectionMatrix( m ); + + }; + + Line3.prototype.center = function ( optionalTarget ) { + + console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' ); + return this.getCenter( optionalTarget ); + + }; + + Object.assign( MathUtils, { + + random16: function () { + + console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' ); + return Math.random(); + + }, + + nearestPowerOfTwo: function ( value ) { + + console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' ); + return MathUtils.floorPowerOfTwo( value ); + + }, + + nextPowerOfTwo: function ( value ) { + + console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' ); + return MathUtils.ceilPowerOfTwo( value ); + + } + + } ); + + Object.assign( Matrix3.prototype, { + + flattenToArrayOffset: function ( array, offset ) { + + console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); + return this.toArray( array, offset ); + + }, + multiplyVector3: function ( vector ) { + + console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ); + return vector.applyMatrix3( this ); + + }, + multiplyVector3Array: function ( /* a */ ) { + + console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' ); + + }, + applyToBufferAttribute: function ( attribute ) { + + console.warn( 'THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.' ); + return attribute.applyMatrix3( this ); + + }, + applyToVector3Array: function ( /* array, offset, length */ ) { + + console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' ); + + } + + } ); + + Object.assign( Matrix4.prototype, { + + extractPosition: function ( m ) { + + console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' ); + return this.copyPosition( m ); + + }, + flattenToArrayOffset: function ( array, offset ) { + + console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." ); + return this.toArray( array, offset ); + + }, + getPosition: function () { + + console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); + return new Vector3().setFromMatrixColumn( this, 3 ); + + }, + setRotationFromQuaternion: function ( q ) { + + console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); + return this.makeRotationFromQuaternion( q ); + + }, + multiplyToArray: function () { + + console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' ); + + }, + multiplyVector3: function ( vector ) { + + console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); + return vector.applyMatrix4( this ); + + }, + multiplyVector4: function ( vector ) { + + console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); + return vector.applyMatrix4( this ); + + }, + multiplyVector3Array: function ( /* a */ ) { + + console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' ); + + }, + rotateAxis: function ( v ) { + + console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); + v.transformDirection( this ); + + }, + crossVector: function ( vector ) { + + console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ); + return vector.applyMatrix4( this ); + + }, + translate: function () { + + console.error( 'THREE.Matrix4: .translate() has been removed.' ); + + }, + rotateX: function () { + + console.error( 'THREE.Matrix4: .rotateX() has been removed.' ); + + }, + rotateY: function () { + + console.error( 'THREE.Matrix4: .rotateY() has been removed.' ); + + }, + rotateZ: function () { + + console.error( 'THREE.Matrix4: .rotateZ() has been removed.' ); + + }, + rotateByAxis: function () { + + console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); + + }, + applyToBufferAttribute: function ( attribute ) { + + console.warn( 'THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.' ); + return attribute.applyMatrix4( this ); + + }, + applyToVector3Array: function ( /* array, offset, length */ ) { + + console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' ); + + }, + makeFrustum: function ( left, right, bottom, top, near, far ) { + + console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' ); + return this.makePerspective( left, right, top, bottom, near, far ); + + } + + } ); + + Plane.prototype.isIntersectionLine = function ( line ) { + + console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' ); + return this.intersectsLine( line ); + + }; + + Quaternion.prototype.multiplyVector3 = function ( vector ) { + + console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ); + return vector.applyQuaternion( this ); + + }; + + Object.assign( Ray.prototype, { + + isIntersectionBox: function ( box ) { + + console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' ); + return this.intersectsBox( box ); + + }, + isIntersectionPlane: function ( plane ) { + + console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' ); + return this.intersectsPlane( plane ); + + }, + isIntersectionSphere: function ( sphere ) { + + console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' ); + return this.intersectsSphere( sphere ); + + } + + } ); + + Object.assign( Triangle.prototype, { + + area: function () { + + console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' ); + return this.getArea(); + + }, + barycoordFromPoint: function ( point, target ) { + + console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); + return this.getBarycoord( point, target ); + + }, + midpoint: function ( target ) { + + console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' ); + return this.getMidpoint( target ); + + }, + normal: function ( target ) { + + console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); + return this.getNormal( target ); + + }, + plane: function ( target ) { + + console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' ); + return this.getPlane( target ); + + } + + } ); + + Object.assign( Triangle, { + + barycoordFromPoint: function ( point, a, b, c, target ) { + + console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' ); + return Triangle.getBarycoord( point, a, b, c, target ); + + }, + normal: function ( a, b, c, target ) { + + console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' ); + return Triangle.getNormal( a, b, c, target ); + + } + + } ); + + Object.assign( Shape.prototype, { + + extractAllPoints: function ( divisions ) { + + console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' ); + return this.extractPoints( divisions ); + + }, + extrude: function ( options ) { + + console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' ); + return new ExtrudeGeometry( this, options ); + + }, + makeGeometry: function ( options ) { + + console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' ); + return new ShapeGeometry( this, options ); + + } + + } ); + + Object.assign( Vector2.prototype, { + + fromAttribute: function ( attribute, index, offset ) { + + console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' ); + return this.fromBufferAttribute( attribute, index, offset ); + + }, + distanceToManhattan: function ( v ) { + + console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); + return this.manhattanDistanceTo( v ); + + }, + lengthManhattan: function () { + + console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' ); + return this.manhattanLength(); + + } + + } ); + + Object.assign( Vector3.prototype, { + + setEulerFromRotationMatrix: function () { + + console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ); + + }, + setEulerFromQuaternion: function () { + + console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ); + + }, + getPositionFromMatrix: function ( m ) { + + console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ); + return this.setFromMatrixPosition( m ); + + }, + getScaleFromMatrix: function ( m ) { + + console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ); + return this.setFromMatrixScale( m ); + + }, + getColumnFromMatrix: function ( index, matrix ) { + + console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ); + return this.setFromMatrixColumn( matrix, index ); + + }, + applyProjection: function ( m ) { + + console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' ); + return this.applyMatrix4( m ); + + }, + fromAttribute: function ( attribute, index, offset ) { + + console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' ); + return this.fromBufferAttribute( attribute, index, offset ); + + }, + distanceToManhattan: function ( v ) { + + console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ); + return this.manhattanDistanceTo( v ); + + }, + lengthManhattan: function () { + + console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' ); + return this.manhattanLength(); + + } + + } ); + + Object.assign( Vector4.prototype, { + + fromAttribute: function ( attribute, index, offset ) { + + console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' ); + return this.fromBufferAttribute( attribute, index, offset ); + + }, + lengthManhattan: function () { + + console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' ); + return this.manhattanLength(); + + } + + } ); + + // + + Object.assign( Geometry.prototype, { + + computeTangents: function () { + + console.error( 'THREE.Geometry: .computeTangents() has been removed.' ); + + }, + computeLineDistances: function () { + + console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' ); + + }, + applyMatrix: function ( matrix ) { + + console.warn( 'THREE.Geometry: .applyMatrix() has been renamed to .applyMatrix4().' ); + return this.applyMatrix4( matrix ); + + } + + } ); + + Object.assign( Object3D.prototype, { + + getChildByName: function ( name ) { + + console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' ); + return this.getObjectByName( name ); + + }, + renderDepth: function () { + + console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' ); + + }, + translate: function ( distance, axis ) { + + console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ); + return this.translateOnAxis( axis, distance ); + + }, + getWorldRotation: function () { + + console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' ); + + }, + applyMatrix: function ( matrix ) { + + console.warn( 'THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().' ); + return this.applyMatrix4( matrix ); + + } + + } ); + + Object.defineProperties( Object3D.prototype, { + + eulerOrder: { + get: function () { + + console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); + return this.rotation.order; + + }, + set: function ( value ) { + + console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' ); + this.rotation.order = value; + + } + }, + useQuaternion: { + get: function () { + + console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); + + }, + set: function () { + + console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ); + + } + } + + } ); + + Object.assign( Mesh.prototype, { + + setDrawMode: function () { + + console.error( 'THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' ); + + }, + + } ); + + Object.defineProperties( Mesh.prototype, { + + drawMode: { + get: function () { + + console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.' ); + return TrianglesDrawMode; + + }, + set: function () { + + console.error( 'THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.' ); + + } + } + + } ); + + Object.defineProperties( LOD.prototype, { + + objects: { + get: function () { + + console.warn( 'THREE.LOD: .objects has been renamed to .levels.' ); + return this.levels; + + } + } + + } ); + + Object.defineProperty( Skeleton.prototype, 'useVertexTexture', { + + get: function () { + + console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' ); + + }, + set: function () { + + console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' ); + + } + + } ); + + SkinnedMesh.prototype.initBones = function () { + + console.error( 'THREE.SkinnedMesh: initBones() has been removed.' ); + + }; + + Object.defineProperty( Curve.prototype, '__arcLengthDivisions', { + + get: function () { + + console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); + return this.arcLengthDivisions; + + }, + set: function ( value ) { + + console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' ); + this.arcLengthDivisions = value; + + } + + } ); + + // + + PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) { + + console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " + + "Use .setFocalLength and .filmGauge for a photographic setup." ); + + if ( filmGauge !== undefined ) { this.filmGauge = filmGauge; } + this.setFocalLength( focalLength ); + + }; + + // + + Object.defineProperties( Light.prototype, { + onlyShadow: { + set: function () { + + console.warn( 'THREE.Light: .onlyShadow has been removed.' ); + + } + }, + shadowCameraFov: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' ); + this.shadow.camera.fov = value; + + } + }, + shadowCameraLeft: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' ); + this.shadow.camera.left = value; + + } + }, + shadowCameraRight: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' ); + this.shadow.camera.right = value; + + } + }, + shadowCameraTop: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' ); + this.shadow.camera.top = value; + + } + }, + shadowCameraBottom: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' ); + this.shadow.camera.bottom = value; + + } + }, + shadowCameraNear: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' ); + this.shadow.camera.near = value; + + } + }, + shadowCameraFar: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' ); + this.shadow.camera.far = value; + + } + }, + shadowCameraVisible: { + set: function () { + + console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ); + + } + }, + shadowBias: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' ); + this.shadow.bias = value; + + } + }, + shadowDarkness: { + set: function () { + + console.warn( 'THREE.Light: .shadowDarkness has been removed.' ); + + } + }, + shadowMapWidth: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' ); + this.shadow.mapSize.width = value; + + } + }, + shadowMapHeight: { + set: function ( value ) { + + console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' ); + this.shadow.mapSize.height = value; + + } + } + } ); + + // + + Object.defineProperties( BufferAttribute.prototype, { + + length: { + get: function () { + + console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' ); + return this.array.length; + + } + }, + dynamic: { + get: function () { + + console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' ); + return this.usage === DynamicDrawUsage; + + }, + set: function ( /* value */ ) { + + console.warn( 'THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.' ); + this.setUsage( DynamicDrawUsage ); + + } + } + + } ); + + Object.assign( BufferAttribute.prototype, { + setDynamic: function ( value ) { + + console.warn( 'THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.' ); + this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage ); + return this; + + }, + copyIndicesArray: function ( /* indices */ ) { + + console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' ); + + }, + setArray: function ( /* array */ ) { + + console.error( 'THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' ); + + } + } ); + + Object.assign( BufferGeometry.prototype, { + + addIndex: function ( index ) { + + console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' ); + this.setIndex( index ); + + }, + addAttribute: function ( name, attribute ) { + + console.warn( 'THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().' ); + + if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) { + + console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' ); + + return this.setAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) ); + + } + + if ( name === 'index' ) { + + console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' ); + this.setIndex( attribute ); + + return this; + + } + + return this.setAttribute( name, attribute ); + + }, + addDrawCall: function ( start, count, indexOffset ) { + + if ( indexOffset !== undefined ) { + + console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' ); + + } + + console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' ); + this.addGroup( start, count ); + + }, + clearDrawCalls: function () { + + console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' ); + this.clearGroups(); + + }, + computeTangents: function () { + + console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' ); + + }, + computeOffsets: function () { + + console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' ); + + }, + removeAttribute: function ( name ) { + + console.warn( 'THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().' ); + + return this.deleteAttribute( name ); + + }, + applyMatrix: function ( matrix ) { + + console.warn( 'THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().' ); + return this.applyMatrix4( matrix ); + + } + + } ); + + Object.defineProperties( BufferGeometry.prototype, { + + drawcalls: { + get: function () { + + console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' ); + return this.groups; + + } + }, + offsets: { + get: function () { + + console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' ); + return this.groups; + + } + } + + } ); + + Object.defineProperties( InstancedBufferGeometry.prototype, { + + maxInstancedCount: { + get: function () { + + console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' ); + return this.instanceCount; + + }, + set: function ( value ) { + + console.warn( 'THREE.InstancedBufferGeometry: .maxInstancedCount has been renamed to .instanceCount.' ); + this.instanceCount = value; + + } + } + + } ); + + Object.defineProperties( Raycaster.prototype, { + + linePrecision: { + get: function () { + + console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' ); + return this.params.Line.threshold; + + }, + set: function ( value ) { + + console.warn( 'THREE.Raycaster: .linePrecision has been deprecated. Use .params.Line.threshold instead.' ); + this.params.Line.threshold = value; + + } + } + + } ); + + Object.defineProperties( InterleavedBuffer.prototype, { + + dynamic: { + get: function () { + + console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' ); + return this.usage === DynamicDrawUsage; + + }, + set: function ( value ) { + + console.warn( 'THREE.InterleavedBuffer: .length has been deprecated. Use .usage instead.' ); + this.setUsage( value ); + + } + } + + } ); + + Object.assign( InterleavedBuffer.prototype, { + setDynamic: function ( value ) { + + console.warn( 'THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.' ); + this.setUsage( value === true ? DynamicDrawUsage : StaticDrawUsage ); + return this; + + }, + setArray: function ( /* array */ ) { + + console.error( 'THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers' ); + + } + } ); + + // + + Object.assign( ExtrudeBufferGeometry.prototype, { + + getArrays: function () { + + console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' ); + + }, + + addShapeList: function () { + + console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' ); + + }, + + addShape: function () { + + console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' ); + + } + + } ); + + // + + Object.defineProperties( Uniform.prototype, { + + dynamic: { + set: function () { + + console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' ); + + } + }, + onUpdate: { + value: function () { + + console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ); + return this; + + } + } + + } ); + + // + + Object.defineProperties( Material.prototype, { + + wrapAround: { + get: function () { + + console.warn( 'THREE.Material: .wrapAround has been removed.' ); + + }, + set: function () { + + console.warn( 'THREE.Material: .wrapAround has been removed.' ); + + } + }, + + overdraw: { + get: function () { + + console.warn( 'THREE.Material: .overdraw has been removed.' ); + + }, + set: function () { + + console.warn( 'THREE.Material: .overdraw has been removed.' ); + + } + }, + + wrapRGB: { + get: function () { + + console.warn( 'THREE.Material: .wrapRGB has been removed.' ); + return new Color(); + + } + }, + + shading: { + get: function () { + + console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); + + }, + set: function ( value ) { + + console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ); + this.flatShading = ( value === FlatShading ); + + } + }, + + stencilMask: { + get: function () { + + console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' ); + return this.stencilFuncMask; + + }, + set: function ( value ) { + + console.warn( 'THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.' ); + this.stencilFuncMask = value; + + } + } + + } ); + + Object.defineProperties( MeshPhongMaterial.prototype, { + + metal: { + get: function () { + + console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ); + return false; + + }, + set: function () { + + console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ); + + } + } + + } ); + + Object.defineProperties( MeshPhysicalMaterial.prototype, { + + transparency: { + get: function () { + + console.warn( 'THREE.MeshPhysicalMaterial: .transparency has been renamed to .transmission.' ); + return this.transmission; + + }, + set: function ( value ) { + + console.warn( 'THREE.MeshPhysicalMaterial: .transparency has been renamed to .transmission.' ); + this.transmission = value; + + } + } + + } ); + + Object.defineProperties( ShaderMaterial.prototype, { + + derivatives: { + get: function () { + + console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); + return this.extensions.derivatives; + + }, + set: function ( value ) { + + console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ); + this.extensions.derivatives = value; + + } + } + + } ); + + // + + Object.assign( WebGLRenderer.prototype, { + + clearTarget: function ( renderTarget, color, depth, stencil ) { + + console.warn( 'THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.' ); + this.setRenderTarget( renderTarget ); + this.clear( color, depth, stencil ); + + }, + animate: function ( callback ) { + + console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' ); + this.setAnimationLoop( callback ); + + }, + getCurrentRenderTarget: function () { + + console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' ); + return this.getRenderTarget(); + + }, + getMaxAnisotropy: function () { + + console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' ); + return this.capabilities.getMaxAnisotropy(); + + }, + getPrecision: function () { + + console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' ); + return this.capabilities.precision; + + }, + resetGLState: function () { + + console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' ); + return this.state.reset(); + + }, + supportsFloatTextures: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' ); + return this.extensions.get( 'OES_texture_float' ); + + }, + supportsHalfFloatTextures: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' ); + return this.extensions.get( 'OES_texture_half_float' ); + + }, + supportsStandardDerivatives: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' ); + return this.extensions.get( 'OES_standard_derivatives' ); + + }, + supportsCompressedTextureS3TC: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' ); + return this.extensions.get( 'WEBGL_compressed_texture_s3tc' ); + + }, + supportsCompressedTexturePVRTC: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' ); + return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' ); + + }, + supportsBlendMinMax: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' ); + return this.extensions.get( 'EXT_blend_minmax' ); + + }, + supportsVertexTextures: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' ); + return this.capabilities.vertexTextures; + + }, + supportsInstancedArrays: function () { + + console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' ); + return this.extensions.get( 'ANGLE_instanced_arrays' ); + + }, + enableScissorTest: function ( boolean ) { + + console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' ); + this.setScissorTest( boolean ); + + }, + initMaterial: function () { + + console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' ); + + }, + addPrePlugin: function () { + + console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' ); + + }, + addPostPlugin: function () { + + console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' ); + + }, + updateShadowMap: function () { + + console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' ); + + }, + setFaceCulling: function () { + + console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' ); + + }, + allocTextureUnit: function () { + + console.warn( 'THREE.WebGLRenderer: .allocTextureUnit() has been removed.' ); + + }, + setTexture: function () { + + console.warn( 'THREE.WebGLRenderer: .setTexture() has been removed.' ); + + }, + setTexture2D: function () { + + console.warn( 'THREE.WebGLRenderer: .setTexture2D() has been removed.' ); + + }, + setTextureCube: function () { + + console.warn( 'THREE.WebGLRenderer: .setTextureCube() has been removed.' ); + + }, + getActiveMipMapLevel: function () { + + console.warn( 'THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().' ); + return this.getActiveMipmapLevel(); + + } + + } ); + + Object.defineProperties( WebGLRenderer.prototype, { + + shadowMapEnabled: { + get: function () { + + return this.shadowMap.enabled; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' ); + this.shadowMap.enabled = value; + + } + }, + shadowMapType: { + get: function () { + + return this.shadowMap.type; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' ); + this.shadowMap.type = value; + + } + }, + shadowMapCullFace: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); + return undefined; + + }, + set: function ( /* value */ ) { + + console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ); + + } + }, + context: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.' ); + return this.getContext(); + + } + }, + vr: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .vr has been renamed to .xr' ); + return this.xr; + + } + }, + gammaInput: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' ); + return false; + + }, + set: function () { + + console.warn( 'THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.' ); + + } + }, + gammaOutput: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' ); + return false; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.' ); + this.outputEncoding = ( value === true ) ? sRGBEncoding : LinearEncoding; + + } + }, + toneMappingWhitePoint: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' ); + return 1.0; + + }, + set: function () { + + console.warn( 'THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.' ); + + } + }, + + } ); + + Object.defineProperties( WebGLShadowMap.prototype, { + + cullFace: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); + return undefined; + + }, + set: function ( /* cullFace */ ) { + + console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ); + + } + }, + renderReverseSided: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); + return undefined; + + }, + set: function () { + + console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ); + + } + }, + renderSingleSided: { + get: function () { + + console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); + return undefined; + + }, + set: function () { + + console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ); + + } + } + + } ); + + function WebGLRenderTargetCube( width, height, options ) { + + console.warn( 'THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).' ); + return new WebGLCubeRenderTarget( width, options ); + + } + + // + + Object.defineProperties( WebGLRenderTarget.prototype, { + + wrapS: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); + return this.texture.wrapS; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' ); + this.texture.wrapS = value; + + } + }, + wrapT: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); + return this.texture.wrapT; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' ); + this.texture.wrapT = value; + + } + }, + magFilter: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); + return this.texture.magFilter; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' ); + this.texture.magFilter = value; + + } + }, + minFilter: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); + return this.texture.minFilter; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' ); + this.texture.minFilter = value; + + } + }, + anisotropy: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); + return this.texture.anisotropy; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' ); + this.texture.anisotropy = value; + + } + }, + offset: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); + return this.texture.offset; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' ); + this.texture.offset = value; + + } + }, + repeat: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); + return this.texture.repeat; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' ); + this.texture.repeat = value; + + } + }, + format: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); + return this.texture.format; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' ); + this.texture.format = value; + + } + }, + type: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); + return this.texture.type; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' ); + this.texture.type = value; + + } + }, + generateMipmaps: { + get: function () { + + console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); + return this.texture.generateMipmaps; + + }, + set: function ( value ) { + + console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' ); + this.texture.generateMipmaps = value; + + } + } + + } ); + + // + + Object.defineProperties( Audio.prototype, { + + load: { + value: function ( file ) { + + console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' ); + var scope = this; + var audioLoader = new AudioLoader(); + audioLoader.load( file, function ( buffer ) { + + scope.setBuffer( buffer ); + + } ); + return this; + + } + }, + startTime: { + set: function () { + + console.warn( 'THREE.Audio: .startTime is now .play( delay ).' ); + + } + } + + } ); + + AudioAnalyser.prototype.getData = function () { + + console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' ); + return this.getFrequencyData(); + + }; + + // + + CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) { + + console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' ); + return this.update( renderer, scene ); + + }; + + // + + var GeometryUtils = { + + merge: function ( geometry1, geometry2, materialIndexOffset ) { + + console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ); + var matrix; + + if ( geometry2.isMesh ) { + + geometry2.matrixAutoUpdate && geometry2.updateMatrix(); + + matrix = geometry2.matrix; + geometry2 = geometry2.geometry; + + } + + geometry1.merge( geometry2, matrix, materialIndexOffset ); + + }, + + center: function ( geometry ) { + + console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ); + return geometry.center(); + + } + + }; + + ImageUtils.crossOrigin = undefined; + + ImageUtils.loadTexture = function ( url, mapping, onLoad, onError ) { + + console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ); + + var loader = new TextureLoader(); + loader.setCrossOrigin( this.crossOrigin ); + + var texture = loader.load( url, onLoad, undefined, onError ); + + if ( mapping ) { texture.mapping = mapping; } + + return texture; + + }; + + ImageUtils.loadTextureCube = function ( urls, mapping, onLoad, onError ) { + + console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ); + + var loader = new CubeTextureLoader(); + loader.setCrossOrigin( this.crossOrigin ); + + var texture = loader.load( urls, onLoad, undefined, onError ); + + if ( mapping ) { texture.mapping = mapping; } + + return texture; + + }; + + ImageUtils.loadCompressedTexture = function () { + + console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ); + + }; + + ImageUtils.loadCompressedTextureCube = function () { + + console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ); + + }; + + // + + function CanvasRenderer() { + + console.error( 'THREE.CanvasRenderer has been removed' ); + + } + + // + + function JSONLoader() { + + console.error( 'THREE.JSONLoader has been removed.' ); + + } + + // + + var SceneUtils = { + + createMultiMaterialObject: function ( /* geometry, materials */ ) { + + console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); + + }, + + detach: function ( /* child, parent, scene */ ) { + + console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); + + }, + + attach: function ( /* child, scene, parent */ ) { + + console.error( 'THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js' ); + + } + + }; + + + // GLTFLoader begin. + + /* +import { + AnimationClip, + Bone, + Box3, + BufferAttribute, + BufferGeometry, + CanvasTexture, + ClampToEdgeWrapping, + Color, + DirectionalLight, + DoubleSide, + FileLoader, + FrontSide, + Group, + ImageBitmapLoader, + InterleavedBuffer, + InterleavedBufferAttribute, + Interpolant, + InterpolateDiscrete, + InterpolateLinear, + Line, + LineBasicMaterial, + LineLoop, + LineSegments, + LinearFilter, + LinearMipmapLinearFilter, + LinearMipmapNearestFilter, + Loader, + LoaderUtils, + Material, + MathUtils, + Matrix4, + Mesh, + MeshBasicMaterial, + MeshPhysicalMaterial, + MeshStandardMaterial, + MirroredRepeatWrapping, + NearestFilter, + NearestMipmapLinearFilter, + NearestMipmapNearestFilter, + NumberKeyframeTrack, + Object3D, + OrthographicCamera, + PerspectiveCamera, + PointLight, + Points, + PointsMaterial, + PropertyBinding, + QuaternionKeyframeTrack, + RGBFormat, + RepeatWrapping, + Skeleton, + SkinnedMesh, + Sphere, + SpotLight, + TangentSpaceNormalMap, + TextureLoader, + TriangleFanDrawMode, + TriangleStripDrawMode, + Vector2, + Vector3, + VectorKeyframeTrack, + sRGBEncoding +} from "../../../build/three.module.js"; +*/ + +var GLTFLoader = ( function () { + + function GLTFLoader( manager ) { + + Loader.call( this, manager ); + + this.dracoLoader = null; + this.ddsLoader = null; + this.ktx2Loader = null; + + this.pluginCallbacks = []; + + this.register( function ( parser ) { + + return new GLTFMaterialsClearcoatExtension( parser ); + + } ); + this.register( function ( parser ) { + + return new GLTFTextureBasisUExtension( parser ); + + } ); + + this.register( function ( parser ) { + + return new GLTFMaterialsTransmissionExtension( parser ); + + } ); + + } + + GLTFLoader.prototype = Object.assign( Object.create( Loader.prototype ), { + + constructor: GLTFLoader, + + load: function ( url, onLoad, onProgress, onError ) { + + var scope = this; + + var resourcePath; + + if ( this.resourcePath !== '' ) { + + resourcePath = this.resourcePath; + + } else if ( this.path !== '' ) { + + resourcePath = this.path; + + } else { + + resourcePath = LoaderUtils.extractUrlBase( url ); + + } + + // Tells the LoadingManager to track an extra item, which resolves after + // the model is fully loaded. This means the count of items loaded will + // be incorrect, but ensures manager.onLoad() does not fire early. + scope.manager.itemStart( url ); + + var _onError = function ( e ) { + + if ( onError ) { + + onError( e ); + + } else { + + console.error( e ); + + } + + scope.manager.itemError( url ); + scope.manager.itemEnd( url ); + + }; + + var loader = new FileLoader( scope.manager ); + + loader.setPath( this.path ); + loader.setResponseType( 'arraybuffer' ); + loader.setRequestHeader( this.requestHeader ); + + if ( scope.crossOrigin === 'use-credentials' ) { + + loader.setWithCredentials( true ); + + } + + loader.load( url, function ( data ) { + + try { + + scope.parse( data, resourcePath, function ( gltf ) { + + onLoad( gltf ); + + scope.manager.itemEnd( url ); + + }, _onError ); + + } catch ( e ) { + + _onError( e ); + + } + + }, onProgress, _onError ); + + }, + + setDRACOLoader: function ( dracoLoader ) { + + this.dracoLoader = dracoLoader; + return this; + + }, + + setDDSLoader: function ( ddsLoader ) { + + this.ddsLoader = ddsLoader; + return this; + + }, + + setKTX2Loader: function ( ktx2Loader ) { + + this.ktx2Loader = ktx2Loader; + return this; + + }, + + register: function ( callback ) { + + if ( this.pluginCallbacks.indexOf( callback ) === - 1 ) { + + this.pluginCallbacks.push( callback ); + + } + + return this; + + }, + + unregister: function ( callback ) { + + if ( this.pluginCallbacks.indexOf( callback ) !== - 1 ) { + + this.pluginCallbacks.splice( this.pluginCallbacks.indexOf( callback ), 1 ); + + } + + return this; + + }, + + parse: function ( data, path, onLoad, onError ) { + + var content; + var extensions = {}; + var plugins = {}; + + if ( typeof data === 'string' ) { + + content = data; + + } else { + + var magic = LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) ); + + if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) { + + try { + + extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data ); + + } catch ( error ) { + + if ( onError ) onError( error ); + return; + + } + + content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content; + + } else { + + content = LoaderUtils.decodeText( new Uint8Array( data ) ); + + } + + } + + var json = JSON.parse( content ); + + if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) { + + if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) ); + return; + + } + + var parser = new GLTFParser( json, { + + path: path || this.resourcePath || '', + crossOrigin: this.crossOrigin, + manager: this.manager, + ktx2Loader: this.ktx2Loader + + } ); + + parser.fileLoader.setRequestHeader( this.requestHeader ); + + for ( var i = 0; i < this.pluginCallbacks.length; i ++ ) { + + var plugin = this.pluginCallbacks[ i ]( parser ); + plugins[ plugin.name ] = plugin; + + // Workaround to avoid determining as unknown extension + // in addUnknownExtensionsToUserData(). + // Remove this workaround if we move all the existing + // extension handlers to plugin system + extensions[ plugin.name ] = true; + + } + + if ( json.extensionsUsed ) { + + for ( var i = 0; i < json.extensionsUsed.length; ++ i ) { + + var extensionName = json.extensionsUsed[ i ]; + var extensionsRequired = json.extensionsRequired || []; + + switch ( extensionName ) { + + case EXTENSIONS.KHR_LIGHTS_PUNCTUAL: + extensions[ extensionName ] = new GLTFLightsExtension( json ); + break; + + case EXTENSIONS.KHR_MATERIALS_UNLIT: + extensions[ extensionName ] = new GLTFMaterialsUnlitExtension(); + break; + + case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: + extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension(); + break; + + case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: + extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader ); + break; + + case EXTENSIONS.MSFT_TEXTURE_DDS: + extensions[ extensionName ] = new GLTFTextureDDSExtension( this.ddsLoader ); + break; + + case EXTENSIONS.KHR_TEXTURE_TRANSFORM: + extensions[ extensionName ] = new GLTFTextureTransformExtension(); + break; + + case EXTENSIONS.KHR_MESH_QUANTIZATION: + extensions[ extensionName ] = new GLTFMeshQuantizationExtension(); + break; + + default: + + if ( extensionsRequired.indexOf( extensionName ) >= 0 && plugins[ extensionName ] === undefined ) { + + console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' ); + + } + + } + + } + + } + + parser.setExtensions( extensions ); + parser.setPlugins( plugins ); + parser.parse( onLoad, onError ); + + } + + } ); + + /* GLTFREGISTRY */ + + function GLTFRegistry() { + + var objects = {}; + + return { + + get: function ( key ) { + + return objects[ key ]; + + }, + + add: function ( key, object ) { + + objects[ key ] = object; + + }, + + remove: function ( key ) { + + delete objects[ key ]; + + }, + + removeAll: function () { + + objects = {}; + + } + + }; + + } + + /*********************************/ + /********** EXTENSIONS ***********/ + /*********************************/ + + var EXTENSIONS = { + KHR_BINARY_GLTF: 'KHR_binary_glTF', + KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', + KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual', + KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat', + KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', + KHR_MATERIALS_TRANSMISSION: 'KHR_materials_transmission', + KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', + KHR_TEXTURE_BASISU: 'KHR_texture_basisu', + KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform', + KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization', + MSFT_TEXTURE_DDS: 'MSFT_texture_dds' + }; + + /** + * DDS Texture Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds + * + */ + function GLTFTextureDDSExtension( ddsLoader ) { + + if ( ! ddsLoader ) { + + throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing DDSLoader' ); + + } + + this.name = EXTENSIONS.MSFT_TEXTURE_DDS; + this.ddsLoader = ddsLoader; + + } + + /** + * Punctual Lights Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual + */ + function GLTFLightsExtension( json ) { + + this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; + + var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] ) || {}; + this.lightDefs = extension.lights || []; + + } + + GLTFLightsExtension.prototype.loadLight = function ( lightIndex ) { + + var lightDef = this.lightDefs[ lightIndex ]; + var lightNode; + + var color = new Color( 0xffffff ); + if ( lightDef.color !== undefined ) color.fromArray( lightDef.color ); + + var range = lightDef.range !== undefined ? lightDef.range : 0; + + switch ( lightDef.type ) { + + case 'directional': + lightNode = new DirectionalLight( color ); + lightNode.target.position.set( 0, 0, - 1 ); + lightNode.add( lightNode.target ); + break; + + case 'point': + lightNode = new PointLight( color ); + lightNode.distance = range; + break; + + case 'spot': + lightNode = new SpotLight( color ); + lightNode.distance = range; + // Handle spotlight properties. + lightDef.spot = lightDef.spot || {}; + lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0; + lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0; + lightNode.angle = lightDef.spot.outerConeAngle; + lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; + lightNode.target.position.set( 0, 0, - 1 ); + lightNode.add( lightNode.target ); + break; + + default: + throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' ); + + } + + // Some lights (e.g. spot) default to a position other than the origin. Reset the position + // here, because node-level parsing will only override position if explicitly specified. + lightNode.position.set( 0, 0, 0 ); + + lightNode.decay = 2; + + if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity; + + lightNode.name = lightDef.name || ( 'light_' + lightIndex ); + + return Promise.resolve( lightNode ); + + }; + + /** + * Unlit Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit + */ + function GLTFMaterialsUnlitExtension() { + + this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; + + } + + GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () { + + return MeshBasicMaterial; + + }; + + GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) { + + var pending = []; + + materialParams.color = new Color( 1.0, 1.0, 1.0 ); + materialParams.opacity = 1.0; + + var metallicRoughness = materialDef.pbrMetallicRoughness; + + if ( metallicRoughness ) { + + if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { + + var array = metallicRoughness.baseColorFactor; + + materialParams.color.fromArray( array ); + materialParams.opacity = array[ 3 ]; + + } + + if ( metallicRoughness.baseColorTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) ); + + } + + } + + return Promise.all( pending ); + + }; + + /** + * Clearcoat Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat + */ + function GLTFMaterialsClearcoatExtension( parser ) { + + this.parser = parser; + this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT; + + } + + GLTFMaterialsClearcoatExtension.prototype.getMaterialType = function ( materialIndex ) { + + var parser = this.parser; + var materialDef = parser.json.materials[ materialIndex ]; + + if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; + + return MeshPhysicalMaterial; + + }; + + GLTFMaterialsClearcoatExtension.prototype.extendMaterialParams = function ( materialIndex, materialParams ) { + + var parser = this.parser; + var materialDef = parser.json.materials[ materialIndex ]; + + if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { + + return Promise.resolve(); + + } + + var pending = []; + + var extension = materialDef.extensions[ this.name ]; + + if ( extension.clearcoatFactor !== undefined ) { + + materialParams.clearcoat = extension.clearcoatFactor; + + } + + if ( extension.clearcoatTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) ); + + } + + if ( extension.clearcoatRoughnessFactor !== undefined ) { + + materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor; + + } + + if ( extension.clearcoatRoughnessTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) ); + + } + + if ( extension.clearcoatNormalTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) ); + + if ( extension.clearcoatNormalTexture.scale !== undefined ) { + + var scale = extension.clearcoatNormalTexture.scale; + + materialParams.clearcoatNormalScale = new Vector2( scale, scale ); + + } + + } + + return Promise.all( pending ); + + }; + + /** + * Transmission Materials Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_transmission + * Draft: https://github.com/KhronosGroup/glTF/pull/1698 + */ + function GLTFMaterialsTransmissionExtension( parser ) { + + this.parser = parser; + this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION; + + } + + GLTFMaterialsTransmissionExtension.prototype.getMaterialType = function ( materialIndex ) { + + var parser = this.parser; + var materialDef = parser.json.materials[ materialIndex ]; + + if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) return null; + + return MeshPhysicalMaterial; + + }; + + GLTFMaterialsTransmissionExtension.prototype.extendMaterialParams = function ( materialIndex, materialParams ) { + + var parser = this.parser; + var materialDef = parser.json.materials[ materialIndex ]; + + if ( ! materialDef.extensions || ! materialDef.extensions[ this.name ] ) { + + return Promise.resolve(); + + } + + var pending = []; + + var extension = materialDef.extensions[ this.name ]; + + if ( extension.transmissionFactor !== undefined ) { + + materialParams.transmission = extension.transmissionFactor; + + } + + if ( extension.transmissionTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'transmissionMap', extension.transmissionTexture ) ); + + } + + return Promise.all( pending ); + + }; + + /** + * BasisU Texture Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_basisu + * (draft PR https://github.com/KhronosGroup/glTF/pull/1751) + */ + function GLTFTextureBasisUExtension( parser ) { + + this.parser = parser; + this.name = EXTENSIONS.KHR_TEXTURE_BASISU; + + } + + GLTFTextureBasisUExtension.prototype.loadTexture = function ( textureIndex ) { + + var parser = this.parser; + var json = parser.json; + + var textureDef = json.textures[ textureIndex ]; + + if ( ! textureDef.extensions || ! textureDef.extensions[ this.name ] ) { + + return null; + + } + + var extension = textureDef.extensions[ this.name ]; + var source = json.images[ extension.source ]; + var loader = parser.options.ktx2Loader; + + if ( ! loader ) { + + throw new Error( 'THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures' ); + + } + + return parser.loadTextureImage( textureIndex, source, loader ); + + }; + + /* BINARY EXTENSION */ + var BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; + var BINARY_EXTENSION_HEADER_LENGTH = 12; + var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; + + function GLTFBinaryExtension( data ) { + + this.name = EXTENSIONS.KHR_BINARY_GLTF; + this.content = null; + this.body = null; + + var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH ); + + this.header = { + magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ), + version: headerView.getUint32( 4, true ), + length: headerView.getUint32( 8, true ) + }; + + if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) { + + throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' ); + + } else if ( this.header.version < 2.0 ) { + + throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' ); + + } + + var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH ); + var chunkIndex = 0; + + while ( chunkIndex < chunkView.byteLength ) { + + var chunkLength = chunkView.getUint32( chunkIndex, true ); + chunkIndex += 4; + + var chunkType = chunkView.getUint32( chunkIndex, true ); + chunkIndex += 4; + + if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) { + + var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength ); + this.content = LoaderUtils.decodeText( contentArray ); + + } else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) { + + var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; + this.body = data.slice( byteOffset, byteOffset + chunkLength ); + + } + + // Clients must ignore chunks with unknown types. + + chunkIndex += chunkLength; + + } + + if ( this.content === null ) { + + throw new Error( 'THREE.GLTFLoader: JSON content not found.' ); + + } + + } + + /** + * DRACO Mesh Compression Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression + */ + function GLTFDracoMeshCompressionExtension( json, dracoLoader ) { + + if ( ! dracoLoader ) { + + throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' ); + + } + + this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; + this.json = json; + this.dracoLoader = dracoLoader; + this.dracoLoader.preload(); + + } + + GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) { + + var json = this.json; + var dracoLoader = this.dracoLoader; + var bufferViewIndex = primitive.extensions[ this.name ].bufferView; + var gltfAttributeMap = primitive.extensions[ this.name ].attributes; + var threeAttributeMap = {}; + var attributeNormalizedMap = {}; + var attributeTypeMap = {}; + + for ( var attributeName in gltfAttributeMap ) { + + var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); + + threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ]; + + } + + for ( attributeName in primitive.attributes ) { + + var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase(); + + if ( gltfAttributeMap[ attributeName ] !== undefined ) { + + var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ]; + var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; + + attributeTypeMap[ threeAttributeName ] = componentType; + attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true; + + } + + } + + return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) { + + return new Promise( function ( resolve ) { + + dracoLoader.decodeDracoFile( bufferView, function ( geometry ) { + + for ( var attributeName in geometry.attributes ) { + + var attribute = geometry.attributes[ attributeName ]; + var normalized = attributeNormalizedMap[ attributeName ]; + + if ( normalized !== undefined ) attribute.normalized = normalized; + + } + + resolve( geometry ); + + }, threeAttributeMap, attributeTypeMap ); + + } ); + + } ); + + }; + + /** + * Texture Transform Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform + */ + function GLTFTextureTransformExtension() { + + this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; + + } + + GLTFTextureTransformExtension.prototype.extendTexture = function ( texture, transform ) { + + texture = texture.clone(); + + if ( transform.offset !== undefined ) { + + texture.offset.fromArray( transform.offset ); + + } + + if ( transform.rotation !== undefined ) { + + texture.rotation = transform.rotation; + + } + + if ( transform.scale !== undefined ) { + + texture.repeat.fromArray( transform.scale ); + + } + + if ( transform.texCoord !== undefined ) { + + console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' ); + + } + + texture.needsUpdate = true; + + return texture; + + }; + + /** + * Specular-Glossiness Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness + */ + + /** + * A sub class of StandardMaterial with some of the functionality + * changed via the `onBeforeCompile` callback + * @pailhead + */ + + function GLTFMeshStandardSGMaterial( params ) { + + MeshStandardMaterial.call( this ); + + this.isGLTFSpecularGlossinessMaterial = true; + + //various chunks that need replacing + var specularMapParsFragmentChunk = [ + '#ifdef USE_SPECULARMAP', + ' uniform sampler2D specularMap;', + '#endif' + ].join( '\n' ); + + var glossinessMapParsFragmentChunk = [ + '#ifdef USE_GLOSSINESSMAP', + ' uniform sampler2D glossinessMap;', + '#endif' + ].join( '\n' ); + + var specularMapFragmentChunk = [ + 'vec3 specularFactor = specular;', + '#ifdef USE_SPECULARMAP', + ' vec4 texelSpecular = texture2D( specularMap, vUv );', + ' texelSpecular = sRGBToLinear( texelSpecular );', + ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', + ' specularFactor *= texelSpecular.rgb;', + '#endif' + ].join( '\n' ); + + var glossinessMapFragmentChunk = [ + 'float glossinessFactor = glossiness;', + '#ifdef USE_GLOSSINESSMAP', + ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', + ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', + ' glossinessFactor *= texelGlossiness.a;', + '#endif' + ].join( '\n' ); + + var lightPhysicalFragmentChunk = [ + 'PhysicalMaterial material;', + 'material.diffuseColor = diffuseColor.rgb;', + 'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );', + 'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );', + 'material.specularRoughness = max( 1.0 - glossinessFactor, 0.0525 );// 0.0525 corresponds to the base mip of a 256 cubemap.', + 'material.specularRoughness += geometryRoughness;', + 'material.specularRoughness = min( material.specularRoughness, 1.0 );', + 'material.specularColor = specularFactor.rgb;', + ].join( '\n' ); + + var uniforms = { + specular: { value: new Color().setHex( 0xffffff ) }, + glossiness: { value: 1 }, + specularMap: { value: null }, + glossinessMap: { value: null } + }; + + this._extraUniforms = uniforms; + + // please see #14031 or #13198 for an alternate approach + this.onBeforeCompile = function ( shader ) { + + for ( var uniformName in uniforms ) { + + shader.uniforms[ uniformName ] = uniforms[ uniformName ]; + + } + + shader.fragmentShader = shader.fragmentShader.replace( 'uniform float roughness;', 'uniform vec3 specular;' ); + shader.fragmentShader = shader.fragmentShader.replace( 'uniform float metalness;', 'uniform float glossiness;' ); + shader.fragmentShader = shader.fragmentShader.replace( '#include ', specularMapParsFragmentChunk ); + shader.fragmentShader = shader.fragmentShader.replace( '#include ', glossinessMapParsFragmentChunk ); + shader.fragmentShader = shader.fragmentShader.replace( '#include ', specularMapFragmentChunk ); + shader.fragmentShader = shader.fragmentShader.replace( '#include ', glossinessMapFragmentChunk ); + shader.fragmentShader = shader.fragmentShader.replace( '#include ', lightPhysicalFragmentChunk ); + + }; + + /*eslint-disable*/ + Object.defineProperties( + this, + { + specular: { + get: function () { return uniforms.specular.value; }, + set: function ( v ) { uniforms.specular.value = v; } + }, + specularMap: { + get: function () { return uniforms.specularMap.value; }, + set: function ( v ) { uniforms.specularMap.value = v; } + }, + glossiness: { + get: function () { return uniforms.glossiness.value; }, + set: function ( v ) { uniforms.glossiness.value = v; } + }, + glossinessMap: { + get: function () { return uniforms.glossinessMap.value; }, + set: function ( v ) { + + uniforms.glossinessMap.value = v; + //how about something like this - @pailhead + if ( v ) { + + this.defines.USE_GLOSSINESSMAP = ''; + // set USE_ROUGHNESSMAP to enable vUv + this.defines.USE_ROUGHNESSMAP = ''; + + } else { + + delete this.defines.USE_ROUGHNESSMAP; + delete this.defines.USE_GLOSSINESSMAP; + + } + + } + } + } + ); + + /*eslint-enable*/ + delete this.metalness; + delete this.roughness; + delete this.metalnessMap; + delete this.roughnessMap; + + this.setValues( params ); + + } + + GLTFMeshStandardSGMaterial.prototype = Object.create( MeshStandardMaterial.prototype ); + GLTFMeshStandardSGMaterial.prototype.constructor = GLTFMeshStandardSGMaterial; + + GLTFMeshStandardSGMaterial.prototype.copy = function ( source ) { + + MeshStandardMaterial.prototype.copy.call( this, source ); + this.specularMap = source.specularMap; + this.specular.copy( source.specular ); + this.glossinessMap = source.glossinessMap; + this.glossiness = source.glossiness; + delete this.metalness; + delete this.roughness; + delete this.metalnessMap; + delete this.roughnessMap; + return this; + + }; + + function GLTFMaterialsPbrSpecularGlossinessExtension() { + + return { + + name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS, + + specularGlossinessParams: [ + 'color', + 'map', + 'lightMap', + 'lightMapIntensity', + 'aoMap', + 'aoMapIntensity', + 'emissive', + 'emissiveIntensity', + 'emissiveMap', + 'bumpMap', + 'bumpScale', + 'normalMap', + 'normalMapType', + 'displacementMap', + 'displacementScale', + 'displacementBias', + 'specularMap', + 'specular', + 'glossinessMap', + 'glossiness', + 'alphaMap', + 'envMap', + 'envMapIntensity', + 'refractionRatio', + ], + + getMaterialType: function () { + + return GLTFMeshStandardSGMaterial; + + }, + + extendParams: function ( materialParams, materialDef, parser ) { + + var pbrSpecularGlossiness = materialDef.extensions[ this.name ]; + + materialParams.color = new Color( 1.0, 1.0, 1.0 ); + materialParams.opacity = 1.0; + + var pending = []; + + if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) { + + var array = pbrSpecularGlossiness.diffuseFactor; + + materialParams.color.fromArray( array ); + materialParams.opacity = array[ 3 ]; + + } + + if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) ); + + } + + materialParams.emissive = new Color( 0.0, 0.0, 0.0 ); + materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; + materialParams.specular = new Color( 1.0, 1.0, 1.0 ); + + if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) { + + materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor ); + + } + + if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) { + + var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture; + pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) ); + pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) ); + + } + + return Promise.all( pending ); + + }, + + createMaterial: function ( materialParams ) { + + var material = new GLTFMeshStandardSGMaterial( materialParams ); + material.fog = true; + + material.color = materialParams.color; + + material.map = materialParams.map === undefined ? null : materialParams.map; + + material.lightMap = null; + material.lightMapIntensity = 1.0; + + material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap; + material.aoMapIntensity = 1.0; + + material.emissive = materialParams.emissive; + material.emissiveIntensity = 1.0; + material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap; + + material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap; + material.bumpScale = 1; + + material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap; + material.normalMapType = TangentSpaceNormalMap; + + if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale; + + material.displacementMap = null; + material.displacementScale = 1; + material.displacementBias = 0; + + material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap; + material.specular = materialParams.specular; + + material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap; + material.glossiness = materialParams.glossiness; + + material.alphaMap = null; + + material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap; + material.envMapIntensity = 1.0; + + material.refractionRatio = 0.98; + + return material; + + }, + + }; + + } + + /** + * Mesh Quantization Extension + * + * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization + */ + function GLTFMeshQuantizationExtension() { + + this.name = EXTENSIONS.KHR_MESH_QUANTIZATION; + + } + + /*********************************/ + /********** INTERPOLATION ********/ + /*********************************/ + + // Spline Interpolation + // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation + function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) { + + Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer ); + + } + + GLTFCubicSplineInterpolant.prototype = Object.create( Interpolant.prototype ); + GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant; + + GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function ( index ) { + + // Copies a sample value to the result buffer. See description of glTF + // CUBICSPLINE values layout in interpolate_() function below. + + var result = this.resultBuffer, + values = this.sampleValues, + valueSize = this.valueSize, + offset = index * valueSize * 3 + valueSize; + + for ( var i = 0; i !== valueSize; i ++ ) { + + result[ i ] = values[ offset + i ]; + + } + + return result; + + }; + + GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; + + GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; + + GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) { + + var result = this.resultBuffer; + var values = this.sampleValues; + var stride = this.valueSize; + + var stride2 = stride * 2; + var stride3 = stride * 3; + + var td = t1 - t0; + + var p = ( t - t0 ) / td; + var pp = p * p; + var ppp = pp * p; + + var offset1 = i1 * stride3; + var offset0 = offset1 - stride3; + + var s2 = - 2 * ppp + 3 * pp; + var s3 = ppp - pp; + var s0 = 1 - s2; + var s1 = s3 - pp + p; + + // Layout of keyframe output values for CUBICSPLINE animations: + // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] + for ( var i = 0; i !== stride; i ++ ) { + + var p0 = values[ offset0 + i + stride ]; // splineVertex_k + var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k) + var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1 + var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k) + + result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; + + } + + return result; + + }; + + /*********************************/ + /********** INTERNALS ************/ + /*********************************/ + + /* CONSTANTS */ + + var WEBGL_CONSTANTS = { + FLOAT: 5126, + //FLOAT_MAT2: 35674, + FLOAT_MAT3: 35675, + FLOAT_MAT4: 35676, + FLOAT_VEC2: 35664, + FLOAT_VEC3: 35665, + FLOAT_VEC4: 35666, + LINEAR: 9729, + REPEAT: 10497, + SAMPLER_2D: 35678, + POINTS: 0, + LINES: 1, + LINE_LOOP: 2, + LINE_STRIP: 3, + TRIANGLES: 4, + TRIANGLE_STRIP: 5, + TRIANGLE_FAN: 6, + UNSIGNED_BYTE: 5121, + UNSIGNED_SHORT: 5123 + }; + + var WEBGL_COMPONENT_TYPES = { + 5120: Int8Array, + 5121: Uint8Array, + 5122: Int16Array, + 5123: Uint16Array, + 5125: Uint32Array, + 5126: Float32Array + }; + + var WEBGL_FILTERS = { + 9728: NearestFilter, + 9729: LinearFilter, + 9984: NearestMipmapNearestFilter, + 9985: LinearMipmapNearestFilter, + 9986: NearestMipmapLinearFilter, + 9987: LinearMipmapLinearFilter + }; + + var WEBGL_WRAPPINGS = { + 33071: ClampToEdgeWrapping, + 33648: MirroredRepeatWrapping, + 10497: RepeatWrapping + }; + + var WEBGL_TYPE_SIZES = { + 'SCALAR': 1, + 'VEC2': 2, + 'VEC3': 3, + 'VEC4': 4, + 'MAT2': 4, + 'MAT3': 9, + 'MAT4': 16 + }; + + var ATTRIBUTES = { + POSITION: 'position', + NORMAL: 'normal', + TANGENT: 'tangent', + TEXCOORD_0: 'uv', + TEXCOORD_1: 'uv2', + COLOR_0: 'color', + WEIGHTS_0: 'skinWeight', + JOINTS_0: 'skinIndex', + }; + + var PATH_PROPERTIES = { + scale: 'scale', + translation: 'position', + rotation: 'quaternion', + weights: 'morphTargetInfluences' + }; + + var INTERPOLATION = { + CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each + // keyframe track will be initialized with a default interpolation type, then modified. + LINEAR: InterpolateLinear, + STEP: InterpolateDiscrete + }; + + var ALPHA_MODES = { + OPAQUE: 'OPAQUE', + MASK: 'MASK', + BLEND: 'BLEND' + }; + + /* UTILITY FUNCTIONS */ + + function resolveURL( url, path ) { + + // Invalid URL + if ( typeof url !== 'string' || url === '' ) return ''; + + // Host Relative URL + if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) { + + path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' ); + + } + + // Absolute URL http://,https://,// + if ( /^(https?:)?\/\//i.test( url ) ) return url; + + // Data URI + if ( /^data:.*,.*$/i.test( url ) ) return url; + + // Blob URL + if ( /^blob:.*$/i.test( url ) ) return url; + + // Relative URL + return path + url; + + } + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material + */ + function createDefaultMaterial( cache ) { + + if ( cache[ 'DefaultMaterial' ] === undefined ) { + + cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( { + color: 0xFFFFFF, + emissive: 0x000000, + metalness: 1, + roughness: 1, + transparent: false, + depthTest: true, + side: FrontSide + } ); + + } + + return cache[ 'DefaultMaterial' ]; + + } + + function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) { + + // Add unknown glTF extensions to an object's userData. + + for ( var name in objectDef.extensions ) { + + if ( knownExtensions[ name ] === undefined ) { + + object.userData.gltfExtensions = object.userData.gltfExtensions || {}; + object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ]; + + } + + } + + } + + /** + * @param {Object3D|Material|BufferGeometry} object + * @param {GLTF.definition} gltfDef + */ + function assignExtrasToUserData( object, gltfDef ) { + + if ( gltfDef.extras !== undefined ) { + + if ( typeof gltfDef.extras === 'object' ) { + + Object.assign( object.userData, gltfDef.extras ); + + } else { + + console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras ); + + } + + } + + } + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets + * + * @param {BufferGeometry} geometry + * @param {Array} targets + * @param {GLTFParser} parser + * @return {Promise} + */ + function addMorphTargets( geometry, targets, parser ) { + + var hasMorphPosition = false; + var hasMorphNormal = false; + + for ( var i = 0, il = targets.length; i < il; i ++ ) { + + var target = targets[ i ]; + + if ( target.POSITION !== undefined ) hasMorphPosition = true; + if ( target.NORMAL !== undefined ) hasMorphNormal = true; + + if ( hasMorphPosition && hasMorphNormal ) break; + + } + + if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry ); + + var pendingPositionAccessors = []; + var pendingNormalAccessors = []; + + for ( var i = 0, il = targets.length; i < il; i ++ ) { + + var target = targets[ i ]; + + if ( hasMorphPosition ) { + + var pendingAccessor = target.POSITION !== undefined + ? parser.getDependency( 'accessor', target.POSITION ) + : geometry.attributes.position; + + pendingPositionAccessors.push( pendingAccessor ); + + } + + if ( hasMorphNormal ) { + + var pendingAccessor = target.NORMAL !== undefined + ? parser.getDependency( 'accessor', target.NORMAL ) + : geometry.attributes.normal; + + pendingNormalAccessors.push( pendingAccessor ); + + } + + } + + return Promise.all( [ + Promise.all( pendingPositionAccessors ), + Promise.all( pendingNormalAccessors ) + ] ).then( function ( accessors ) { + + var morphPositions = accessors[ 0 ]; + var morphNormals = accessors[ 1 ]; + + if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions; + if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals; + geometry.morphTargetsRelative = true; + + return geometry; + + } ); + + } + + /** + * @param {Mesh} mesh + * @param {GLTF.Mesh} meshDef + */ + function updateMorphTargets( mesh, meshDef ) { + + mesh.updateMorphTargets(); + + if ( meshDef.weights !== undefined ) { + + for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) { + + mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ]; + + } + + } + + // .extras has user-defined data, so check that .extras.targetNames is an array. + if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) { + + var targetNames = meshDef.extras.targetNames; + + if ( mesh.morphTargetInfluences.length === targetNames.length ) { + + mesh.morphTargetDictionary = {}; + + for ( var i = 0, il = targetNames.length; i < il; i ++ ) { + + mesh.morphTargetDictionary[ targetNames[ i ] ] = i; + + } + + } else { + + console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' ); + + } + + } + + } + + function createPrimitiveKey( primitiveDef ) { + + var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]; + var geometryKey; + + if ( dracoExtension ) { + + geometryKey = 'draco:' + dracoExtension.bufferView + + ':' + dracoExtension.indices + + ':' + createAttributesKey( dracoExtension.attributes ); + + } else { + + geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode; + + } + + return geometryKey; + + } + + function createAttributesKey( attributes ) { + + var attributesKey = ''; + + var keys = Object.keys( attributes ).sort(); + + for ( var i = 0, il = keys.length; i < il; i ++ ) { + + attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';'; + + } + + return attributesKey; + + } + + /* GLTF PARSER */ + + function GLTFParser( json, options ) { + + this.json = json || {}; + this.extensions = {}; + this.plugins = {}; + this.options = options || {}; + + // loader object cache + this.cache = new GLTFRegistry(); + + // associations between Three.js objects and glTF elements + this.associations = new Map(); + + // BufferGeometry caching + this.primitiveCache = {}; + + // Object3D instance caches + this.meshCache = { refs: {}, uses: {} }; + this.cameraCache = { refs: {}, uses: {} }; + this.lightCache = { refs: {}, uses: {} }; + + // Use an ImageBitmapLoader if imageBitmaps are supported. Moves much of the + // expensive work of uploading a texture to the GPU off the main thread. + if ( typeof createImageBitmap !== 'undefined' && /Firefox/.test( navigator.userAgent ) === false ) { + + this.textureLoader = new ImageBitmapLoader( this.options.manager ); + + } else { + + this.textureLoader = new TextureLoader( this.options.manager ); + + } + + this.textureLoader.setCrossOrigin( this.options.crossOrigin ); + + this.fileLoader = new FileLoader( this.options.manager ); + this.fileLoader.setResponseType( 'arraybuffer' ); + + if ( this.options.crossOrigin === 'use-credentials' ) { + + this.fileLoader.setWithCredentials( true ); + + } + + } + + GLTFParser.prototype.setExtensions = function ( extensions ) { + + this.extensions = extensions; + + }; + + GLTFParser.prototype.setPlugins = function ( plugins ) { + + this.plugins = plugins; + + }; + + GLTFParser.prototype.parse = function ( onLoad, onError ) { + + var parser = this; + var json = this.json; + var extensions = this.extensions; + + // Clear the loader cache + this.cache.removeAll(); + + // Mark the special nodes/meshes in json for efficient parse + this._markDefs(); + + Promise.all( [ + + this.getDependencies( 'scene' ), + this.getDependencies( 'animation' ), + this.getDependencies( 'camera' ), + + ] ).then( function ( dependencies ) { + + var result = { + scene: dependencies[ 0 ][ json.scene || 0 ], + scenes: dependencies[ 0 ], + animations: dependencies[ 1 ], + cameras: dependencies[ 2 ], + asset: json.asset, + parser: parser, + userData: {} + }; + + addUnknownExtensionsToUserData( extensions, result, json ); + + assignExtrasToUserData( result, json ); + + onLoad( result ); + + } ).catch( onError ); + + }; + + /** + * Marks the special nodes/meshes in json for efficient parse. + */ + GLTFParser.prototype._markDefs = function () { + + var nodeDefs = this.json.nodes || []; + var skinDefs = this.json.skins || []; + var meshDefs = this.json.meshes || []; + + // Nothing in the node definition indicates whether it is a Bone or an + // Object3D. Use the skins' joint references to mark bones. + for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) { + + var joints = skinDefs[ skinIndex ].joints; + + for ( var i = 0, il = joints.length; i < il; i ++ ) { + + nodeDefs[ joints[ i ] ].isBone = true; + + } + + } + + // Iterate over all nodes, marking references to shared resources, + // as well as skeleton joints. + for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) { + + var nodeDef = nodeDefs[ nodeIndex ]; + + if ( nodeDef.mesh !== undefined ) { + + this._addNodeRef( this.meshCache, nodeDef.mesh ); + + // Nothing in the mesh definition indicates whether it is + // a SkinnedMesh or Mesh. Use the node's mesh reference + // to mark SkinnedMesh if node has skin. + if ( nodeDef.skin !== undefined ) { + + meshDefs[ nodeDef.mesh ].isSkinnedMesh = true; + + } + + } + + if ( nodeDef.camera !== undefined ) { + + this._addNodeRef( this.cameraCache, nodeDef.camera ); + + } + + if ( nodeDef.extensions + && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] + && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light !== undefined ) { + + this._addNodeRef( this.lightCache, nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light ); + + } + + } + + }; + + /** + * Counts references to shared node / Object3D resources. These resources + * can be reused, or "instantiated", at multiple nodes in the scene + * hierarchy. Mesh, Camera, and Light instances are instantiated and must + * be marked. Non-scenegraph resources (like Materials, Geometries, and + * Textures) can be reused directly and are not marked here. + * + * Example: CesiumMilkTruck sample model reuses "Wheel" meshes. + */ + GLTFParser.prototype._addNodeRef = function ( cache, index ) { + + if ( index === undefined ) return; + + if ( cache.refs[ index ] === undefined ) { + + cache.refs[ index ] = cache.uses[ index ] = 0; + + } + + cache.refs[ index ] ++; + + }; + + /** Returns a reference to a shared resource, cloning it if necessary. */ + GLTFParser.prototype._getNodeRef = function ( cache, index, object ) { + + if ( cache.refs[ index ] <= 1 ) return object; + + var ref = object.clone(); + + ref.name += '_instance_' + ( cache.uses[ index ] ++ ); + + return ref; + + }; + + GLTFParser.prototype._invokeOne = function ( func ) { + + var extensions = Object.values( this.plugins ); + extensions.push( this ); + + for ( var i = 0; i < extensions.length; i ++ ) { + + var result = func( extensions[ i ] ); + + if ( result ) return result; + + } + + }; + + GLTFParser.prototype._invokeAll = function ( func ) { + + var extensions = Object.values( this.plugins ); + extensions.unshift( this ); + + var pending = []; + + for ( var i = 0; i < extensions.length; i ++ ) { + + pending.push( func( extensions[ i ] ) ); + + } + + return Promise.all( pending ); + + }; + + /** + * Requests the specified dependency asynchronously, with caching. + * @param {string} type + * @param {number} index + * @return {Promise} + */ + GLTFParser.prototype.getDependency = function ( type, index ) { + + var cacheKey = type + ':' + index; + var dependency = this.cache.get( cacheKey ); + + if ( ! dependency ) { + + switch ( type ) { + + case 'scene': + dependency = this.loadScene( index ); + break; + + case 'node': + dependency = this.loadNode( index ); + break; + + case 'mesh': + dependency = this._invokeOne( function ( ext ) { + + return ext.loadMesh && ext.loadMesh( index ); + + } ); + break; + + case 'accessor': + dependency = this.loadAccessor( index ); + break; + + case 'bufferView': + dependency = this._invokeOne( function ( ext ) { + + return ext.loadBufferView && ext.loadBufferView( index ); + + } ); + break; + + case 'buffer': + dependency = this.loadBuffer( index ); + break; + + case 'material': + dependency = this._invokeOne( function ( ext ) { + + return ext.loadMaterial && ext.loadMaterial( index ); + + } ); + break; + + case 'texture': + dependency = this._invokeOne( function ( ext ) { + + return ext.loadTexture && ext.loadTexture( index ); + + } ); + break; + + case 'skin': + dependency = this.loadSkin( index ); + break; + + case 'animation': + dependency = this.loadAnimation( index ); + break; + + case 'camera': + dependency = this.loadCamera( index ); + break; + + case 'light': + dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight( index ); + break; + + default: + throw new Error( 'Unknown type: ' + type ); + + } + + this.cache.add( cacheKey, dependency ); + + } + + return dependency; + + }; + + /** + * Requests all dependencies of the specified type asynchronously, with caching. + * @param {string} type + * @return {Promise>} + */ + GLTFParser.prototype.getDependencies = function ( type ) { + + var dependencies = this.cache.get( type ); + + if ( ! dependencies ) { + + var parser = this; + var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || []; + + dependencies = Promise.all( defs.map( function ( def, index ) { + + return parser.getDependency( type, index ); + + } ) ); + + this.cache.add( type, dependencies ); + + } + + return dependencies; + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views + * @param {number} bufferIndex + * @return {Promise} + */ + GLTFParser.prototype.loadBuffer = function ( bufferIndex ) { + + var bufferDef = this.json.buffers[ bufferIndex ]; + var loader = this.fileLoader; + + if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) { + + throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' ); + + } + + // If present, GLB container is required to be the first buffer. + if ( bufferDef.uri === undefined && bufferIndex === 0 ) { + + return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body ); + + } + + var options = this.options; + + return new Promise( function ( resolve, reject ) { + + loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () { + + reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) ); + + } ); + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views + * @param {number} bufferViewIndex + * @return {Promise} + */ + GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) { + + var bufferViewDef = this.json.bufferViews[ bufferViewIndex ]; + + return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) { + + var byteLength = bufferViewDef.byteLength || 0; + var byteOffset = bufferViewDef.byteOffset || 0; + return buffer.slice( byteOffset, byteOffset + byteLength ); + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors + * @param {number} accessorIndex + * @return {Promise} + */ + GLTFParser.prototype.loadAccessor = function ( accessorIndex ) { + + var parser = this; + var json = this.json; + + var accessorDef = this.json.accessors[ accessorIndex ]; + + if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) { + + // Ignore empty accessors, which may be used to declare runtime + // information about attributes coming from another source (e.g. Draco + // compression extension). + return Promise.resolve( null ); + + } + + var pendingBufferViews = []; + + if ( accessorDef.bufferView !== undefined ) { + + pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) ); + + } else { + + pendingBufferViews.push( null ); + + } + + if ( accessorDef.sparse !== undefined ) { + + pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) ); + pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) ); + + } + + return Promise.all( pendingBufferViews ).then( function ( bufferViews ) { + + var bufferView = bufferViews[ 0 ]; + + var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ]; + var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ]; + + // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. + var elementBytes = TypedArray.BYTES_PER_ELEMENT; + var itemBytes = elementBytes * itemSize; + var byteOffset = accessorDef.byteOffset || 0; + var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined; + var normalized = accessorDef.normalized === true; + var array, bufferAttribute; + + // The buffer is not interleaved if the stride is the item size in bytes. + if ( byteStride && byteStride !== itemBytes ) { + + // Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer + // This makes sure that IBA.count reflects accessor.count properly + var ibSlice = Math.floor( byteOffset / byteStride ); + var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count; + var ib = parser.cache.get( ibCacheKey ); + + if ( ! ib ) { + + array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes ); + + // Integer parameters to IB/IBA are in array elements, not bytes. + ib = new InterleavedBuffer( array, byteStride / elementBytes ); + + parser.cache.add( ibCacheKey, ib ); + + } + + bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized ); + + } else { + + if ( bufferView === null ) { + + array = new TypedArray( accessorDef.count * itemSize ); + + } else { + + array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize ); + + } + + bufferAttribute = new BufferAttribute( array, itemSize, normalized ); + + } + + // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors + if ( accessorDef.sparse !== undefined ) { + + var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; + var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ]; + + var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; + var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; + + var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices ); + var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize ); + + if ( bufferView !== null ) { + + // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. + bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized ); + + } + + for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) { + + var index = sparseIndices[ i ]; + + bufferAttribute.setX( index, sparseValues[ i * itemSize ] ); + if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] ); + if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] ); + if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] ); + if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' ); + + } + + } + + return bufferAttribute; + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures + * @param {number} textureIndex + * @return {Promise} + */ + GLTFParser.prototype.loadTexture = function ( textureIndex ) { + + var parser = this; + var json = this.json; + var options = this.options; + + var textureDef = json.textures[ textureIndex ]; + + var textureExtensions = textureDef.extensions || {}; + + var source; + + if ( textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) { + + source = json.images[ textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].source ]; + + } else { + + source = json.images[ textureDef.source ]; + + } + + var loader; + + if ( source.uri ) { + + loader = options.manager.getHandler( source.uri ); + + } + + if ( ! loader ) { + + loader = textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] + ? parser.extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].ddsLoader + : this.textureLoader; + + } + + return this.loadTextureImage( textureIndex, source, loader ); + + }; + + GLTFParser.prototype.loadTextureImage = function ( textureIndex, source, loader ) { + + var parser = this; + var json = this.json; + var options = this.options; + + var textureDef = json.textures[ textureIndex ]; + + var URL = self.URL || self.webkitURL; + + var sourceURI = source.uri; + var isObjectURL = false; + var hasAlpha = true; + + if ( source.mimeType === 'image/jpeg' ) hasAlpha = false; + + if ( source.bufferView !== undefined ) { + + // Load binary image data from bufferView, if provided. + + sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) { + + if ( source.mimeType === 'image/png' ) { + + // https://en.wikipedia.org/wiki/Portable_Network_Graphics#File_header + hasAlpha = new DataView( bufferView, 25, 1 ).getUint8( 0, false ) === 6; + + } + + isObjectURL = true; + var blob = new Blob( [ bufferView ], { type: source.mimeType } ); + sourceURI = URL.createObjectURL( blob ); + return sourceURI; + + } ); + + } + + return Promise.resolve( sourceURI ).then( function ( sourceURI ) { + + return new Promise( function ( resolve, reject ) { + + var onLoad = resolve; + + if ( loader.isImageBitmapLoader === true ) { + + onLoad = function ( imageBitmap ) { + + resolve( new CanvasTexture( imageBitmap ) ); + + }; + + } + + loader.load( resolveURL( sourceURI, options.path ), onLoad, undefined, reject ); + + } ); + + } ).then( function ( texture ) { + + // Clean up resources and configure Texture. + + if ( isObjectURL === true ) { + + URL.revokeObjectURL( sourceURI ); + + } + + texture.flipY = false; + + if ( textureDef.name ) texture.name = textureDef.name; + + // When there is definitely no alpha channel in the texture, set RGBFormat to save space. + if ( ! hasAlpha ) texture.format = RGBFormat; + + var samplers = json.samplers || {}; + var sampler = samplers[ textureDef.sampler ] || {}; + + texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter; + texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter; + texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping; + texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping; + + parser.associations.set( texture, { + type: 'textures', + index: textureIndex + } ); + + return texture; + + } ); + + }; + + /** + * Asynchronously assigns a texture to the given material parameters. + * @param {Object} materialParams + * @param {string} mapName + * @param {Object} mapDef + * @return {Promise} + */ + GLTFParser.prototype.assignTexture = function ( materialParams, mapName, mapDef ) { + + var parser = this; + + return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) { + + // Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured + // However, we will copy UV set 0 to UV set 1 on demand for aoMap + if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) { + + console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' ); + + } + + if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) { + + var transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined; + + if ( transform ) { + + var gltfReference = parser.associations.get( texture ); + texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform ); + parser.associations.set( texture, gltfReference ); + + } + + } + + materialParams[ mapName ] = texture; + + } ); + + }; + + /** + * Assigns final material to a Mesh, Line, or Points instance. The instance + * already has a material (generated from the glTF material options alone) + * but reuse of the same glTF material may require multiple threejs materials + * to accomodate different primitive types, defines, etc. New materials will + * be created if necessary, and reused from a cache. + * @param {Object3D} mesh Mesh, Line, or Points instance. + */ + GLTFParser.prototype.assignFinalMaterial = function ( mesh ) { + + var geometry = mesh.geometry; + var material = mesh.material; + + var useVertexTangents = geometry.attributes.tangent !== undefined; + var useVertexColors = geometry.attributes.color !== undefined; + var useFlatShading = geometry.attributes.normal === undefined; + var useSkinning = mesh.isSkinnedMesh === true; + var useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0; + var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined; + + if ( mesh.isPoints ) { + + var cacheKey = 'PointsMaterial:' + material.uuid; + + var pointsMaterial = this.cache.get( cacheKey ); + + if ( ! pointsMaterial ) { + + pointsMaterial = new PointsMaterial(); + Material.prototype.copy.call( pointsMaterial, material ); + pointsMaterial.color.copy( material.color ); + pointsMaterial.map = material.map; + pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px + + this.cache.add( cacheKey, pointsMaterial ); + + } + + material = pointsMaterial; + + } else if ( mesh.isLine ) { + + var cacheKey = 'LineBasicMaterial:' + material.uuid; + + var lineMaterial = this.cache.get( cacheKey ); + + if ( ! lineMaterial ) { + + lineMaterial = new LineBasicMaterial(); + Material.prototype.copy.call( lineMaterial, material ); + lineMaterial.color.copy( material.color ); + + this.cache.add( cacheKey, lineMaterial ); + + } + + material = lineMaterial; + + } + + // Clone the material if it will be modified + if ( useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets ) { + + var cacheKey = 'ClonedMaterial:' + material.uuid + ':'; + + if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:'; + if ( useSkinning ) cacheKey += 'skinning:'; + if ( useVertexTangents ) cacheKey += 'vertex-tangents:'; + if ( useVertexColors ) cacheKey += 'vertex-colors:'; + if ( useFlatShading ) cacheKey += 'flat-shading:'; + if ( useMorphTargets ) cacheKey += 'morph-targets:'; + if ( useMorphNormals ) cacheKey += 'morph-normals:'; + + var cachedMaterial = this.cache.get( cacheKey ); + + if ( ! cachedMaterial ) { + + cachedMaterial = material.clone(); + + if ( useSkinning ) cachedMaterial.skinning = true; + if ( useVertexTangents ) cachedMaterial.vertexTangents = true; + if ( useVertexColors ) cachedMaterial.vertexColors = true; + if ( useFlatShading ) cachedMaterial.flatShading = true; + if ( useMorphTargets ) cachedMaterial.morphTargets = true; + if ( useMorphNormals ) cachedMaterial.morphNormals = true; + + this.cache.add( cacheKey, cachedMaterial ); + + this.associations.set( cachedMaterial, this.associations.get( material ) ); + + } + + material = cachedMaterial; + + } + + // workarounds for mesh and geometry + + if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) { + + geometry.setAttribute( 'uv2', geometry.attributes.uv ); + + } + + // https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995 + if ( material.normalScale && ! useVertexTangents ) { + + material.normalScale.y = - material.normalScale.y; + + } + + if ( material.clearcoatNormalScale && ! useVertexTangents ) { + + material.clearcoatNormalScale.y = - material.clearcoatNormalScale.y; + + } + + mesh.material = material; + + }; + + GLTFParser.prototype.getMaterialType = function ( /* materialIndex */ ) { + + return MeshStandardMaterial; + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials + * @param {number} materialIndex + * @return {Promise} + */ + GLTFParser.prototype.loadMaterial = function ( materialIndex ) { + + var parser = this; + var json = this.json; + var extensions = this.extensions; + var materialDef = json.materials[ materialIndex ]; + + var materialType; + var materialParams = {}; + var materialExtensions = materialDef.extensions || {}; + + var pending = []; + + if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) { + + var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ]; + materialType = sgExtension.getMaterialType(); + pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) ); + + } else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) { + + var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ]; + materialType = kmuExtension.getMaterialType(); + pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) ); + + } else { + + // Specification: + // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material + + var metallicRoughness = materialDef.pbrMetallicRoughness || {}; + + materialParams.color = new Color( 1.0, 1.0, 1.0 ); + materialParams.opacity = 1.0; + + if ( Array.isArray( metallicRoughness.baseColorFactor ) ) { + + var array = metallicRoughness.baseColorFactor; + + materialParams.color.fromArray( array ); + materialParams.opacity = array[ 3 ]; + + } + + if ( metallicRoughness.baseColorTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) ); + + } + + materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; + materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0; + + if ( metallicRoughness.metallicRoughnessTexture !== undefined ) { + + pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) ); + pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) ); + + } + + materialType = this._invokeOne( function ( ext ) { + + return ext.getMaterialType && ext.getMaterialType( materialIndex ); + + } ); + + pending.push( this._invokeAll( function ( ext ) { + + return ext.extendMaterialParams && ext.extendMaterialParams( materialIndex, materialParams ); + + } ) ); + + } + + if ( materialDef.doubleSided === true ) { + + materialParams.side = DoubleSide; + + } + + var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; + + if ( alphaMode === ALPHA_MODES.BLEND ) { + + materialParams.transparent = true; + + // See: https://github.com/mrdoob/three.js/issues/17706 + materialParams.depthWrite = false; + + } else { + + materialParams.transparent = false; + + if ( alphaMode === ALPHA_MODES.MASK ) { + + materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5; + + } + + } + + if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) { + + pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) ); + + materialParams.normalScale = new Vector2( 1, 1 ); + + if ( materialDef.normalTexture.scale !== undefined ) { + + materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale ); + + } + + } + + if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) { + + pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) ); + + if ( materialDef.occlusionTexture.strength !== undefined ) { + + materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; + + } + + } + + if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) { + + materialParams.emissive = new Color().fromArray( materialDef.emissiveFactor ); + + } + + if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) { + + pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture ) ); + + } + + return Promise.all( pending ).then( function () { + + var material; + + if ( materialType === GLTFMeshStandardSGMaterial ) { + + material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams ); + + } else { + + material = new materialType( materialParams ); + + } + + if ( materialDef.name ) material.name = materialDef.name; + + // baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding. + if ( material.map ) material.map.encoding = sRGBEncoding; + if ( material.emissiveMap ) material.emissiveMap.encoding = sRGBEncoding; + + assignExtrasToUserData( material, materialDef ); + + parser.associations.set( material, { type: 'materials', index: materialIndex } ); + + if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef ); + + return material; + + } ); + + }; + + /** + * @param {BufferGeometry} geometry + * @param {GLTF.Primitive} primitiveDef + * @param {GLTFParser} parser + */ + function computeBounds( geometry, primitiveDef, parser ) { + + var attributes = primitiveDef.attributes; + + var box = new Box3(); + + if ( attributes.POSITION !== undefined ) { + + var accessor = parser.json.accessors[ attributes.POSITION ]; + + var min = accessor.min; + var max = accessor.max; + + // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. + + if ( min !== undefined && max !== undefined ) { + + box.set( + new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ), + new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) ); + + } else { + + console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' ); + + return; + + } + + } else { + + return; + + } + + var targets = primitiveDef.targets; + + if ( targets !== undefined ) { + + var maxDisplacement = new Vector3(); + var vector = new Vector3(); + + for ( var i = 0, il = targets.length; i < il; i ++ ) { + + var target = targets[ i ]; + + if ( target.POSITION !== undefined ) { + + var accessor = parser.json.accessors[ target.POSITION ]; + var min = accessor.min; + var max = accessor.max; + + // glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement. + + if ( min !== undefined && max !== undefined ) { + + // we need to get max of absolute components because target weight is [-1,1] + vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) ); + vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) ); + vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) ); + + // Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative + // to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets + // are used to implement key-frame animations and as such only two are active at a time - this results in very large + // boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size. + maxDisplacement.max( vector ); + + } else { + + console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' ); + + } + + } + + } + + // As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets. + box.expandByVector( maxDisplacement ); + + } + + geometry.boundingBox = box; + + var sphere = new Sphere(); + + box.getCenter( sphere.center ); + sphere.radius = box.min.distanceTo( box.max ) / 2; + + geometry.boundingSphere = sphere; + + } + + /** + * @param {BufferGeometry} geometry + * @param {GLTF.Primitive} primitiveDef + * @param {GLTFParser} parser + * @return {Promise} + */ + function addPrimitiveAttributes( geometry, primitiveDef, parser ) { + + var attributes = primitiveDef.attributes; + + var pending = []; + + function assignAttributeAccessor( accessorIndex, attributeName ) { + + return parser.getDependency( 'accessor', accessorIndex ) + .then( function ( accessor ) { + + geometry.setAttribute( attributeName, accessor ); + + } ); + + } + + for ( var gltfAttributeName in attributes ) { + + var threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase(); + + // Skip attributes already provided by e.g. Draco extension. + if ( threeAttributeName in geometry.attributes ) continue; + + pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) ); + + } + + if ( primitiveDef.indices !== undefined && ! geometry.index ) { + + var accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) { + + geometry.setIndex( accessor ); + + } ); + + pending.push( accessor ); + + } + + assignExtrasToUserData( geometry, primitiveDef ); + + computeBounds( geometry, primitiveDef, parser ); + + return Promise.all( pending ).then( function () { + + return primitiveDef.targets !== undefined + ? addMorphTargets( geometry, primitiveDef.targets, parser ) + : geometry; + + } ); + + } + + /** + * @param {BufferGeometry} geometry + * @param {Number} drawMode + * @return {BufferGeometry} + */ + function toTrianglesDrawMode( geometry, drawMode ) { + + var index = geometry.getIndex(); + + // generate index if not present + + if ( index === null ) { + + var indices = []; + + var position = geometry.getAttribute( 'position' ); + + if ( position !== undefined ) { + + for ( var i = 0; i < position.count; i ++ ) { + + indices.push( i ); + + } + + geometry.setIndex( indices ); + index = geometry.getIndex(); + + } else { + + console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' ); + return geometry; + + } + + } + + // + + var numberOfTriangles = index.count - 2; + var newIndices = []; + + if ( drawMode === TriangleFanDrawMode ) { + + // gl.TRIANGLE_FAN + + for ( var i = 1; i <= numberOfTriangles; i ++ ) { + + newIndices.push( index.getX( 0 ) ); + newIndices.push( index.getX( i ) ); + newIndices.push( index.getX( i + 1 ) ); + + } + + } else { + + // gl.TRIANGLE_STRIP + + for ( var i = 0; i < numberOfTriangles; i ++ ) { + + if ( i % 2 === 0 ) { + + newIndices.push( index.getX( i ) ); + newIndices.push( index.getX( i + 1 ) ); + newIndices.push( index.getX( i + 2 ) ); + + + } else { + + newIndices.push( index.getX( i + 2 ) ); + newIndices.push( index.getX( i + 1 ) ); + newIndices.push( index.getX( i ) ); + + } + + } + + } + + if ( ( newIndices.length / 3 ) !== numberOfTriangles ) { + + console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' ); + + } + + // build final geometry + + var newGeometry = geometry.clone(); + newGeometry.setIndex( newIndices ); + + return newGeometry; + + } + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry + * + * Creates BufferGeometries from primitives. + * + * @param {Array} primitives + * @return {Promise>} + */ + GLTFParser.prototype.loadGeometries = function ( primitives ) { + + var parser = this; + var extensions = this.extensions; + var cache = this.primitiveCache; + + function createDracoPrimitive( primitive ) { + + return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] + .decodePrimitive( primitive, parser ) + .then( function ( geometry ) { + + return addPrimitiveAttributes( geometry, primitive, parser ); + + } ); + + } + + var pending = []; + + for ( var i = 0, il = primitives.length; i < il; i ++ ) { + + var primitive = primitives[ i ]; + var cacheKey = createPrimitiveKey( primitive ); + + // See if we've already created this geometry + var cached = cache[ cacheKey ]; + + if ( cached ) { + + // Use the cached geometry if it exists + pending.push( cached.promise ); + + } else { + + var geometryPromise; + + if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) { + + // Use DRACO geometry if available + geometryPromise = createDracoPrimitive( primitive ); + + } else { + + // Otherwise create a new geometry + geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser ); + + } + + // Cache this geometry + cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise }; + + pending.push( geometryPromise ); + + } + + } + + return Promise.all( pending ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes + * @param {number} meshIndex + * @return {Promise} + */ + GLTFParser.prototype.loadMesh = function ( meshIndex ) { + + var parser = this; + var json = this.json; + + var meshDef = json.meshes[ meshIndex ]; + var primitives = meshDef.primitives; + + var pending = []; + + for ( var i = 0, il = primitives.length; i < il; i ++ ) { + + var material = primitives[ i ].material === undefined + ? createDefaultMaterial( this.cache ) + : this.getDependency( 'material', primitives[ i ].material ); + + pending.push( material ); + + } + + pending.push( parser.loadGeometries( primitives ) ); + + return Promise.all( pending ).then( function ( results ) { + + var materials = results.slice( 0, results.length - 1 ); + var geometries = results[ results.length - 1 ]; + + var meshes = []; + + for ( var i = 0, il = geometries.length; i < il; i ++ ) { + + var geometry = geometries[ i ]; + var primitive = primitives[ i ]; + + // 1. create Mesh + + var mesh; + + var material = materials[ i ]; + + if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES || + primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || + primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || + primitive.mode === undefined ) { + + // .isSkinnedMesh isn't in glTF spec. See ._markDefs() + mesh = meshDef.isSkinnedMesh === true + ? new SkinnedMesh( geometry, material ) + : new Mesh( geometry, material ); + + if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) { + + // we normalize floating point skin weight array to fix malformed assets (see #15319) + // it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs + mesh.normalizeSkinWeights(); + + } + + if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) { + + mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode ); + + } else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) { + + mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode ); + + } + + } else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) { + + mesh = new LineSegments( geometry, material ); + + } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) { + + mesh = new Line( geometry, material ); + + } else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) { + + mesh = new LineLoop( geometry, material ); + + } else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) { + + mesh = new Points( geometry, material ); + + } else { + + throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode ); + + } + + if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) { + + updateMorphTargets( mesh, meshDef ); + + } + + mesh.name = meshDef.name || ( 'mesh_' + meshIndex ); + + if ( geometries.length > 1 ) mesh.name += '_' + i; + + assignExtrasToUserData( mesh, meshDef ); + + parser.assignFinalMaterial( mesh ); + + meshes.push( mesh ); + + } + + if ( meshes.length === 1 ) { + + return meshes[ 0 ]; + + } + + var group = new Group(); + + for ( var i = 0, il = meshes.length; i < il; i ++ ) { + + group.add( meshes[ i ] ); + + } + + return group; + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras + * @param {number} cameraIndex + * @return {Promise} + */ + GLTFParser.prototype.loadCamera = function ( cameraIndex ) { + + var camera; + var cameraDef = this.json.cameras[ cameraIndex ]; + var params = cameraDef[ cameraDef.type ]; + + if ( ! params ) { + + console.warn( 'THREE.GLTFLoader: Missing camera parameters.' ); + return; + + } + + if ( cameraDef.type === 'perspective' ) { + + camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 ); + + } else if ( cameraDef.type === 'orthographic' ) { + + camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar ); + + } + + if ( cameraDef.name ) camera.name = cameraDef.name; + + assignExtrasToUserData( camera, cameraDef ); + + return Promise.resolve( camera ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins + * @param {number} skinIndex + * @return {Promise} + */ + GLTFParser.prototype.loadSkin = function ( skinIndex ) { + + var skinDef = this.json.skins[ skinIndex ]; + + var skinEntry = { joints: skinDef.joints }; + + if ( skinDef.inverseBindMatrices === undefined ) { + + return Promise.resolve( skinEntry ); + + } + + return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) { + + skinEntry.inverseBindMatrices = accessor; + + return skinEntry; + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations + * @param {number} animationIndex + * @return {Promise} + */ + GLTFParser.prototype.loadAnimation = function ( animationIndex ) { + + var json = this.json; + + var animationDef = json.animations[ animationIndex ]; + + var pendingNodes = []; + var pendingInputAccessors = []; + var pendingOutputAccessors = []; + var pendingSamplers = []; + var pendingTargets = []; + + for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) { + + var channel = animationDef.channels[ i ]; + var sampler = animationDef.samplers[ channel.sampler ]; + var target = channel.target; + var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated. + var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input; + var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output; + + pendingNodes.push( this.getDependency( 'node', name ) ); + pendingInputAccessors.push( this.getDependency( 'accessor', input ) ); + pendingOutputAccessors.push( this.getDependency( 'accessor', output ) ); + pendingSamplers.push( sampler ); + pendingTargets.push( target ); + + } + + return Promise.all( [ + + Promise.all( pendingNodes ), + Promise.all( pendingInputAccessors ), + Promise.all( pendingOutputAccessors ), + Promise.all( pendingSamplers ), + Promise.all( pendingTargets ) + + ] ).then( function ( dependencies ) { + + var nodes = dependencies[ 0 ]; + var inputAccessors = dependencies[ 1 ]; + var outputAccessors = dependencies[ 2 ]; + var samplers = dependencies[ 3 ]; + var targets = dependencies[ 4 ]; + + var tracks = []; + + for ( var i = 0, il = nodes.length; i < il; i ++ ) { + + var node = nodes[ i ]; + var inputAccessor = inputAccessors[ i ]; + var outputAccessor = outputAccessors[ i ]; + var sampler = samplers[ i ]; + var target = targets[ i ]; + + if ( node === undefined ) continue; + + node.updateMatrix(); + node.matrixAutoUpdate = true; + + var TypedKeyframeTrack; + + switch ( PATH_PROPERTIES[ target.path ] ) { + + case PATH_PROPERTIES.weights: + + TypedKeyframeTrack = NumberKeyframeTrack; + break; + + case PATH_PROPERTIES.rotation: + + TypedKeyframeTrack = QuaternionKeyframeTrack; + break; + + case PATH_PROPERTIES.position: + case PATH_PROPERTIES.scale: + default: + + TypedKeyframeTrack = VectorKeyframeTrack; + break; + + } + + var targetName = node.name ? node.name : node.uuid; + + var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear; + + var targetNames = []; + + if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) { + + // Node may be a Group (glTF mesh with several primitives) or a Mesh. + node.traverse( function ( object ) { + + if ( object.isMesh === true && object.morphTargetInfluences ) { + + targetNames.push( object.name ? object.name : object.uuid ); + + } + + } ); + + } else { + + targetNames.push( targetName ); + + } + + var outputArray = outputAccessor.array; + + if ( outputAccessor.normalized ) { + + var scale; + + if ( outputArray.constructor === Int8Array ) { + + scale = 1 / 127; + + } else if ( outputArray.constructor === Uint8Array ) { + + scale = 1 / 255; + + } else if ( outputArray.constructor == Int16Array ) { + + scale = 1 / 32767; + + } else if ( outputArray.constructor === Uint16Array ) { + + scale = 1 / 65535; + + } else { + + throw new Error( 'THREE.GLTFLoader: Unsupported output accessor component type.' ); + + } + + var scaled = new Float32Array( outputArray.length ); + + for ( var j = 0, jl = outputArray.length; j < jl; j ++ ) { + + scaled[ j ] = outputArray[ j ] * scale; + + } + + outputArray = scaled; + + } + + for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) { + + var track = new TypedKeyframeTrack( + targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ], + inputAccessor.array, + outputArray, + interpolation + ); + + // Override interpolation with custom factory method. + if ( sampler.interpolation === 'CUBICSPLINE' ) { + + track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) { + + // A CUBICSPLINE keyframe in glTF has three output values for each input value, + // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() + // must be divided by three to get the interpolant's sampleSize argument. + + return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result ); + + }; + + // Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants. + track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; + + } + + tracks.push( track ); + + } + + } + + var name = animationDef.name ? animationDef.name : 'animation_' + animationIndex; + + return new AnimationClip( name, undefined, tracks ); + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy + * @param {number} nodeIndex + * @return {Promise} + */ + GLTFParser.prototype.loadNode = function ( nodeIndex ) { + + var json = this.json; + var extensions = this.extensions; + var parser = this; + + var nodeDef = json.nodes[ nodeIndex ]; + + return ( function () { + + var pending = []; + + if ( nodeDef.mesh !== undefined ) { + + pending.push( parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) { + + var node = parser._getNodeRef( parser.meshCache, nodeDef.mesh, mesh ); + + // if weights are provided on the node, override weights on the mesh. + if ( nodeDef.weights !== undefined ) { + + node.traverse( function ( o ) { + + if ( ! o.isMesh ) return; + + for ( var i = 0, il = nodeDef.weights.length; i < il; i ++ ) { + + o.morphTargetInfluences[ i ] = nodeDef.weights[ i ]; + + } + + } ); + + } + + return node; + + } ) ); + + } + + if ( nodeDef.camera !== undefined ) { + + pending.push( parser.getDependency( 'camera', nodeDef.camera ).then( function ( camera ) { + + return parser._getNodeRef( parser.cameraCache, nodeDef.camera, camera ); + + } ) ); + + } + + if ( nodeDef.extensions + && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] + && nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light !== undefined ) { + + var lightIndex = nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light; + + pending.push( parser.getDependency( 'light', lightIndex ).then( function ( light ) { + + return parser._getNodeRef( parser.lightCache, lightIndex, light ); + + } ) ); + + } + + return Promise.all( pending ); + + }() ).then( function ( objects ) { + + var node; + + // .isBone isn't in glTF spec. See ._markDefs + if ( nodeDef.isBone === true ) { + + node = new Bone(); + + } else if ( objects.length > 1 ) { + + node = new Group(); + + } else if ( objects.length === 1 ) { + + node = objects[ 0 ]; + + } else { + + node = new Object3D(); + + } + + if ( node !== objects[ 0 ] ) { + + for ( var i = 0, il = objects.length; i < il; i ++ ) { + + node.add( objects[ i ] ); + + } + + } + + if ( nodeDef.name ) { + + node.userData.name = nodeDef.name; + node.name = PropertyBinding.sanitizeNodeName( nodeDef.name ); + + } + + assignExtrasToUserData( node, nodeDef ); + + if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef ); + + if ( nodeDef.matrix !== undefined ) { + + var matrix = new Matrix4(); + matrix.fromArray( nodeDef.matrix ); + node.applyMatrix4( matrix ); + + } else { + + if ( nodeDef.translation !== undefined ) { + + node.position.fromArray( nodeDef.translation ); + + } + + if ( nodeDef.rotation !== undefined ) { + + node.quaternion.fromArray( nodeDef.rotation ); + + } + + if ( nodeDef.scale !== undefined ) { + + node.scale.fromArray( nodeDef.scale ); + + } + + } + + parser.associations.set( node, { type: 'nodes', index: nodeIndex } ); + + return node; + + } ); + + }; + + /** + * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes + * @param {number} sceneIndex + * @return {Promise} + */ + GLTFParser.prototype.loadScene = function () { + + // scene node hierachy builder + + function buildNodeHierachy( nodeId, parentObject, json, parser ) { + + var nodeDef = json.nodes[ nodeId ]; + + return parser.getDependency( 'node', nodeId ).then( function ( node ) { + + if ( nodeDef.skin === undefined ) return node; + + // build skeleton here as well + + var skinEntry; + + return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) { + + skinEntry = skin; + + var pendingJoints = []; + + for ( var i = 0, il = skinEntry.joints.length; i < il; i ++ ) { + + pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) ); + + } + + return Promise.all( pendingJoints ); + + } ).then( function ( jointNodes ) { + + node.traverse( function ( mesh ) { + + if ( ! mesh.isMesh ) return; + + var bones = []; + var boneInverses = []; + + for ( var j = 0, jl = jointNodes.length; j < jl; j ++ ) { + + var jointNode = jointNodes[ j ]; + + if ( jointNode ) { + + bones.push( jointNode ); + + var mat = new Matrix4(); + + if ( skinEntry.inverseBindMatrices !== undefined ) { + + mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 ); + + } + + boneInverses.push( mat ); + + } else { + + console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] ); + + } + + } + + mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld ); + + } ); + + return node; + + } ); + + } ).then( function ( node ) { + + // build node hierachy + + parentObject.add( node ); + + var pending = []; + + if ( nodeDef.children ) { + + var children = nodeDef.children; + + for ( var i = 0, il = children.length; i < il; i ++ ) { + + var child = children[ i ]; + pending.push( buildNodeHierachy( child, node, json, parser ) ); + + } + + } + + return Promise.all( pending ); + + } ); + + } + + return function loadScene( sceneIndex ) { + + var json = this.json; + var extensions = this.extensions; + var sceneDef = this.json.scenes[ sceneIndex ]; + var parser = this; + + // Loader returns Group, not Scene. + // See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172 + var scene = new Group(); + if ( sceneDef.name ) scene.name = sceneDef.name; + + assignExtrasToUserData( scene, sceneDef ); + + if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef ); + + var nodeIds = sceneDef.nodes || []; + + var pending = []; + + for ( var i = 0, il = nodeIds.length; i < il; i ++ ) { + + pending.push( buildNodeHierachy( nodeIds[ i ], scene, json, parser ) ); + + } + + return Promise.all( pending ).then( function () { + + return scene; + + } ); + + }; + + }(); + + return GLTFLoader; + +} )(); + +//export { GLTFLoader }; + + + + // GLTFLoader end. + + // + + function LensFlare() { + + console.error( 'THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js' ); + + } + + if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { + + /* eslint-disable no-undef */ + __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { + revision: REVISION, + } } ) ); + /* eslint-enable no-undef */ + + } + + exports.ACESFilmicToneMapping = ACESFilmicToneMapping; + exports.AddEquation = AddEquation; + exports.AddOperation = AddOperation; + exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode; + exports.AdditiveBlending = AdditiveBlending; + exports.AlphaFormat = AlphaFormat; + exports.AlwaysDepth = AlwaysDepth; + exports.AlwaysStencilFunc = AlwaysStencilFunc; + exports.AmbientLight = AmbientLight; + exports.AmbientLightProbe = AmbientLightProbe; + exports.AnimationClip = AnimationClip; + exports.AnimationLoader = AnimationLoader; + exports.AnimationMixer = AnimationMixer; + exports.AnimationObjectGroup = AnimationObjectGroup; + exports.AnimationUtils = AnimationUtils; + exports.ArcCurve = ArcCurve; + exports.ArrayCamera = ArrayCamera; + exports.ArrowHelper = ArrowHelper; + exports.Audio = Audio; + exports.AudioAnalyser = AudioAnalyser; + exports.AudioContext = AudioContext; + exports.AudioListener = AudioListener; + exports.AudioLoader = AudioLoader; + exports.AxesHelper = AxesHelper; + exports.AxisHelper = AxisHelper; + exports.BackSide = BackSide; + exports.BasicDepthPacking = BasicDepthPacking; + exports.BasicShadowMap = BasicShadowMap; + exports.BinaryTextureLoader = BinaryTextureLoader; + exports.Bone = Bone; + exports.BooleanKeyframeTrack = BooleanKeyframeTrack; + exports.BoundingBoxHelper = BoundingBoxHelper; + exports.Box2 = Box2; + exports.Box3 = Box3; + exports.Box3Helper = Box3Helper; + exports.BoxBufferGeometry = BoxBufferGeometry; + exports.BoxGeometry = BoxGeometry; + exports.BoxHelper = BoxHelper; + exports.BufferAttribute = BufferAttribute; + exports.BufferGeometry = BufferGeometry; + exports.BufferGeometryLoader = BufferGeometryLoader; + exports.ByteType = ByteType; + exports.Cache = Cache; + exports.Camera = Camera; + exports.CameraHelper = CameraHelper; + exports.CanvasRenderer = CanvasRenderer; + exports.CanvasTexture = CanvasTexture; + exports.CatmullRomCurve3 = CatmullRomCurve3; + exports.CineonToneMapping = CineonToneMapping; + exports.CircleBufferGeometry = CircleBufferGeometry; + exports.CircleGeometry = CircleGeometry; + exports.ClampToEdgeWrapping = ClampToEdgeWrapping; + exports.Clock = Clock; + exports.ClosedSplineCurve3 = ClosedSplineCurve3; + exports.Color = Color; + exports.ColorKeyframeTrack = ColorKeyframeTrack; + exports.CompressedTexture = CompressedTexture; + exports.CompressedTextureLoader = CompressedTextureLoader; + exports.ConeBufferGeometry = ConeBufferGeometry; + exports.ConeGeometry = ConeGeometry; + exports.CubeCamera = CubeCamera; + exports.CubeGeometry = BoxGeometry; + exports.CubeReflectionMapping = CubeReflectionMapping; + exports.CubeRefractionMapping = CubeRefractionMapping; + exports.CubeTexture = CubeTexture; + exports.CubeTextureLoader = CubeTextureLoader; + exports.CubeUVReflectionMapping = CubeUVReflectionMapping; + exports.CubeUVRefractionMapping = CubeUVRefractionMapping; + exports.CubicBezierCurve = CubicBezierCurve; + exports.CubicBezierCurve3 = CubicBezierCurve3; + exports.CubicInterpolant = CubicInterpolant; + exports.CullFaceBack = CullFaceBack; + exports.CullFaceFront = CullFaceFront; + exports.CullFaceFrontBack = CullFaceFrontBack; + exports.CullFaceNone = CullFaceNone; + exports.Curve = Curve; + exports.CurvePath = CurvePath; + exports.CustomBlending = CustomBlending; + exports.CustomToneMapping = CustomToneMapping; + exports.CylinderBufferGeometry = CylinderBufferGeometry; + exports.CylinderGeometry = CylinderGeometry; + exports.Cylindrical = Cylindrical; + exports.DataTexture = DataTexture; + exports.DataTexture2DArray = DataTexture2DArray; + exports.DataTexture3D = DataTexture3D; + exports.DataTextureLoader = DataTextureLoader; + exports.DecrementStencilOp = DecrementStencilOp; + exports.DecrementWrapStencilOp = DecrementWrapStencilOp; + exports.DefaultLoadingManager = DefaultLoadingManager; + exports.DepthFormat = DepthFormat; + exports.DepthStencilFormat = DepthStencilFormat; + exports.DepthTexture = DepthTexture; + exports.DirectionalLight = DirectionalLight; + exports.DirectionalLightHelper = DirectionalLightHelper; + exports.DirectionalLightShadow = DirectionalLightShadow; + exports.DiscreteInterpolant = DiscreteInterpolant; + exports.DodecahedronBufferGeometry = DodecahedronBufferGeometry; + exports.DodecahedronGeometry = DodecahedronGeometry; + exports.DoubleSide = DoubleSide; + exports.DstAlphaFactor = DstAlphaFactor; + exports.DstColorFactor = DstColorFactor; + exports.DynamicBufferAttribute = DynamicBufferAttribute; + exports.DynamicCopyUsage = DynamicCopyUsage; + exports.DynamicDrawUsage = DynamicDrawUsage; + exports.DynamicReadUsage = DynamicReadUsage; + exports.EdgesGeometry = EdgesGeometry; + exports.EdgesHelper = EdgesHelper; + exports.EllipseCurve = EllipseCurve; + exports.EqualDepth = EqualDepth; + exports.EqualStencilFunc = EqualStencilFunc; + exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping; + exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping; + exports.Euler = Euler; + exports.EventDispatcher = EventDispatcher; + exports.ExtrudeBufferGeometry = ExtrudeBufferGeometry; + exports.ExtrudeGeometry = ExtrudeGeometry; + exports.Face3 = Face3; + exports.Face4 = Face4; + exports.FaceColors = FaceColors; + exports.FileLoader = FileLoader; + exports.FlatShading = FlatShading; + exports.Float32Attribute = Float32Attribute; + exports.Float32BufferAttribute = Float32BufferAttribute; + exports.Float64Attribute = Float64Attribute; + exports.Float64BufferAttribute = Float64BufferAttribute; + exports.FloatType = FloatType; + exports.Fog = Fog; + exports.FogExp2 = FogExp2; + exports.Font = Font; + exports.FontLoader = FontLoader; + exports.FrontSide = FrontSide; + exports.Frustum = Frustum; + exports.GammaEncoding = GammaEncoding; + exports.Geometry = Geometry; + exports.GeometryUtils = GeometryUtils; + exports.GreaterDepth = GreaterDepth; + exports.GreaterEqualDepth = GreaterEqualDepth; + exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc; + exports.GreaterStencilFunc = GreaterStencilFunc; + exports.GridHelper = GridHelper; + exports.Group = Group; + exports.HalfFloatType = HalfFloatType; + exports.HemisphereLight = HemisphereLight; + exports.HemisphereLightHelper = HemisphereLightHelper; + exports.HemisphereLightProbe = HemisphereLightProbe; + exports.IcosahedronBufferGeometry = IcosahedronBufferGeometry; + exports.IcosahedronGeometry = IcosahedronGeometry; + exports.ImageBitmapLoader = ImageBitmapLoader; + exports.ImageLoader = ImageLoader; + exports.ImageUtils = ImageUtils; + exports.ImmediateRenderObject = ImmediateRenderObject; + exports.IncrementStencilOp = IncrementStencilOp; + exports.IncrementWrapStencilOp = IncrementWrapStencilOp; + exports.InstancedBufferAttribute = InstancedBufferAttribute; + exports.InstancedBufferGeometry = InstancedBufferGeometry; + exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer; + exports.InstancedMesh = InstancedMesh; + exports.Int16Attribute = Int16Attribute; + exports.Int16BufferAttribute = Int16BufferAttribute; + exports.Int32Attribute = Int32Attribute; + exports.Int32BufferAttribute = Int32BufferAttribute; + exports.Int8Attribute = Int8Attribute; + exports.Int8BufferAttribute = Int8BufferAttribute; + exports.IntType = IntType; + exports.InterleavedBuffer = InterleavedBuffer; + exports.InterleavedBufferAttribute = InterleavedBufferAttribute; + exports.Interpolant = Interpolant; + exports.InterpolateDiscrete = InterpolateDiscrete; + exports.InterpolateLinear = InterpolateLinear; + exports.InterpolateSmooth = InterpolateSmooth; + exports.InvertStencilOp = InvertStencilOp; + exports.JSONLoader = JSONLoader; + exports.KeepStencilOp = KeepStencilOp; + exports.KeyframeTrack = KeyframeTrack; + exports.LOD = LOD; + exports.LatheBufferGeometry = LatheBufferGeometry; + exports.LatheGeometry = LatheGeometry; + exports.Layers = Layers; + exports.LensFlare = LensFlare; + exports.LessDepth = LessDepth; + exports.LessEqualDepth = LessEqualDepth; + exports.LessEqualStencilFunc = LessEqualStencilFunc; + exports.LessStencilFunc = LessStencilFunc; + exports.Light = Light; + exports.LightProbe = LightProbe; + exports.LightShadow = LightShadow; + exports.Line = Line; + exports.Line3 = Line3; + exports.LineBasicMaterial = LineBasicMaterial; + exports.LineCurve = LineCurve; + exports.LineCurve3 = LineCurve3; + exports.LineDashedMaterial = LineDashedMaterial; + exports.LineLoop = LineLoop; + exports.LinePieces = LinePieces; + exports.LineSegments = LineSegments; + exports.LineStrip = LineStrip; + exports.LinearEncoding = LinearEncoding; + exports.LinearFilter = LinearFilter; + exports.LinearInterpolant = LinearInterpolant; + exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter; + exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter; + exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter; + exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter; + exports.LinearToneMapping = LinearToneMapping; + exports.Loader = Loader; + exports.LoaderUtils = LoaderUtils; + exports.LoadingManager = LoadingManager; + exports.LogLuvEncoding = LogLuvEncoding; + exports.LoopOnce = LoopOnce; + exports.LoopPingPong = LoopPingPong; + exports.LoopRepeat = LoopRepeat; + exports.LuminanceAlphaFormat = LuminanceAlphaFormat; + exports.LuminanceFormat = LuminanceFormat; + exports.MOUSE = MOUSE; + exports.Material = Material; + exports.MaterialLoader = MaterialLoader; + exports.Math = MathUtils; + exports.MathUtils = MathUtils; + exports.Matrix3 = Matrix3; + exports.Matrix4 = Matrix4; + exports.MaxEquation = MaxEquation; + exports.Mesh = Mesh; + exports.MeshBasicMaterial = MeshBasicMaterial; + exports.MeshDepthMaterial = MeshDepthMaterial; + exports.MeshDistanceMaterial = MeshDistanceMaterial; + exports.MeshFaceMaterial = MeshFaceMaterial; + exports.MeshLambertMaterial = MeshLambertMaterial; + exports.MeshMatcapMaterial = MeshMatcapMaterial; + exports.MeshNormalMaterial = MeshNormalMaterial; + exports.MeshPhongMaterial = MeshPhongMaterial; + exports.MeshPhysicalMaterial = MeshPhysicalMaterial; + exports.MeshStandardMaterial = MeshStandardMaterial; + exports.MeshToonMaterial = MeshToonMaterial; + exports.MinEquation = MinEquation; + exports.MirroredRepeatWrapping = MirroredRepeatWrapping; + exports.MixOperation = MixOperation; + exports.MultiMaterial = MultiMaterial; + exports.MultiplyBlending = MultiplyBlending; + exports.MultiplyOperation = MultiplyOperation; + exports.NearestFilter = NearestFilter; + exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter; + exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter; + exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter; + exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter; + exports.NeverDepth = NeverDepth; + exports.NeverStencilFunc = NeverStencilFunc; + exports.NoBlending = NoBlending; + exports.NoColors = NoColors; + exports.NoToneMapping = NoToneMapping; + exports.NormalAnimationBlendMode = NormalAnimationBlendMode; + exports.NormalBlending = NormalBlending; + exports.NotEqualDepth = NotEqualDepth; + exports.NotEqualStencilFunc = NotEqualStencilFunc; + exports.NumberKeyframeTrack = NumberKeyframeTrack; + exports.Object3D = Object3D; + exports.ObjectLoader = ObjectLoader; + exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap; + exports.OctahedronBufferGeometry = OctahedronBufferGeometry; + exports.OctahedronGeometry = OctahedronGeometry; + exports.OneFactor = OneFactor; + exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor; + exports.OneMinusDstColorFactor = OneMinusDstColorFactor; + exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor; + exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor; + exports.OrthographicCamera = OrthographicCamera; + exports.PCFShadowMap = PCFShadowMap; + exports.PCFSoftShadowMap = PCFSoftShadowMap; + exports.PMREMGenerator = PMREMGenerator; + exports.ParametricBufferGeometry = ParametricBufferGeometry; + exports.ParametricGeometry = ParametricGeometry; + exports.Particle = Particle; + exports.ParticleBasicMaterial = ParticleBasicMaterial; + exports.ParticleSystem = ParticleSystem; + exports.ParticleSystemMaterial = ParticleSystemMaterial; + exports.Path = Path; + exports.PerspectiveCamera = PerspectiveCamera; + exports.Plane = Plane; + exports.PlaneBufferGeometry = PlaneBufferGeometry; + exports.PlaneGeometry = PlaneGeometry; + exports.PlaneHelper = PlaneHelper; + exports.PointCloud = PointCloud; + exports.PointCloudMaterial = PointCloudMaterial; + exports.PointLight = PointLight; + exports.PointLightHelper = PointLightHelper; + exports.Points = Points; + exports.PointsMaterial = PointsMaterial; + exports.PolarGridHelper = PolarGridHelper; + exports.PolyhedronBufferGeometry = PolyhedronBufferGeometry; + exports.PolyhedronGeometry = PolyhedronGeometry; + exports.PositionalAudio = PositionalAudio; + exports.PropertyBinding = PropertyBinding; + exports.PropertyMixer = PropertyMixer; + exports.QuadraticBezierCurve = QuadraticBezierCurve; + exports.QuadraticBezierCurve3 = QuadraticBezierCurve3; + exports.Quaternion = Quaternion; + exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack; + exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant; + exports.REVISION = REVISION; + exports.RGBADepthPacking = RGBADepthPacking; + exports.RGBAFormat = RGBAFormat; + exports.RGBAIntegerFormat = RGBAIntegerFormat; + exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format; + exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format; + exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format; + exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format; + exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format; + exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format; + exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format; + exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format; + exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format; + exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format; + exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format; + exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format; + exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format; + exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format; + exports.RGBA_BPTC_Format = RGBA_BPTC_Format; + exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format; + exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format; + exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format; + exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format; + exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format; + exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format; + exports.RGBDEncoding = RGBDEncoding; + exports.RGBEEncoding = RGBEEncoding; + exports.RGBEFormat = RGBEFormat; + exports.RGBFormat = RGBFormat; + exports.RGBIntegerFormat = RGBIntegerFormat; + exports.RGBM16Encoding = RGBM16Encoding; + exports.RGBM7Encoding = RGBM7Encoding; + exports.RGB_ETC1_Format = RGB_ETC1_Format; + exports.RGB_ETC2_Format = RGB_ETC2_Format; + exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format; + exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format; + exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format; + exports.RGFormat = RGFormat; + exports.RGIntegerFormat = RGIntegerFormat; + exports.RawShaderMaterial = RawShaderMaterial; + exports.Ray = Ray; + exports.Raycaster = Raycaster; + exports.RectAreaLight = RectAreaLight; + exports.RedFormat = RedFormat; + exports.RedIntegerFormat = RedIntegerFormat; + exports.ReinhardToneMapping = ReinhardToneMapping; + exports.RepeatWrapping = RepeatWrapping; + exports.ReplaceStencilOp = ReplaceStencilOp; + exports.ReverseSubtractEquation = ReverseSubtractEquation; + exports.RingBufferGeometry = RingBufferGeometry; + exports.RingGeometry = RingGeometry; + exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format; + exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format; + exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format; + exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format; + exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format; + exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format; + exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format; + exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format; + exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format; + exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format; + exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format; + exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format; + exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format; + exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format; + exports.Scene = Scene; + exports.SceneUtils = SceneUtils; + exports.ShaderChunk = ShaderChunk; + exports.ShaderLib = ShaderLib; + exports.ShaderMaterial = ShaderMaterial; + exports.ShadowMaterial = ShadowMaterial; + exports.Shape = Shape; + exports.ShapeBufferGeometry = ShapeBufferGeometry; + exports.ShapeGeometry = ShapeGeometry; + exports.ShapePath = ShapePath; + exports.ShapeUtils = ShapeUtils; + exports.ShortType = ShortType; + exports.Skeleton = Skeleton; + exports.SkeletonHelper = SkeletonHelper; + exports.SkinnedMesh = SkinnedMesh; + exports.SmoothShading = SmoothShading; + exports.Sphere = Sphere; + exports.SphereBufferGeometry = SphereBufferGeometry; + exports.SphereGeometry = SphereGeometry; + exports.Spherical = Spherical; + exports.SphericalHarmonics3 = SphericalHarmonics3; + exports.Spline = Spline; + exports.SplineCurve = SplineCurve; + exports.SplineCurve3 = SplineCurve3; + exports.SpotLight = SpotLight; + exports.SpotLightHelper = SpotLightHelper; + exports.SpotLightShadow = SpotLightShadow; + exports.Sprite = Sprite; + exports.SpriteMaterial = SpriteMaterial; + exports.SrcAlphaFactor = SrcAlphaFactor; + exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor; + exports.SrcColorFactor = SrcColorFactor; + exports.StaticCopyUsage = StaticCopyUsage; + exports.StaticDrawUsage = StaticDrawUsage; + exports.StaticReadUsage = StaticReadUsage; + exports.StereoCamera = StereoCamera; + exports.StreamCopyUsage = StreamCopyUsage; + exports.StreamDrawUsage = StreamDrawUsage; + exports.StreamReadUsage = StreamReadUsage; + exports.StringKeyframeTrack = StringKeyframeTrack; + exports.SubtractEquation = SubtractEquation; + exports.SubtractiveBlending = SubtractiveBlending; + exports.TOUCH = TOUCH; + exports.TangentSpaceNormalMap = TangentSpaceNormalMap; + exports.TetrahedronBufferGeometry = TetrahedronBufferGeometry; + exports.TetrahedronGeometry = TetrahedronGeometry; + exports.TextBufferGeometry = TextBufferGeometry; + exports.TextGeometry = TextGeometry; + exports.Texture = Texture; + exports.TextureLoader = TextureLoader; + exports.TorusBufferGeometry = TorusBufferGeometry; + exports.TorusGeometry = TorusGeometry; + exports.TorusKnotBufferGeometry = TorusKnotBufferGeometry; + exports.TorusKnotGeometry = TorusKnotGeometry; + exports.Triangle = Triangle; + exports.TriangleFanDrawMode = TriangleFanDrawMode; + exports.TriangleStripDrawMode = TriangleStripDrawMode; + exports.TrianglesDrawMode = TrianglesDrawMode; + exports.TubeBufferGeometry = TubeBufferGeometry; + exports.TubeGeometry = TubeGeometry; + exports.UVMapping = UVMapping; + exports.Uint16Attribute = Uint16Attribute; + exports.Uint16BufferAttribute = Uint16BufferAttribute; + exports.Uint32Attribute = Uint32Attribute; + exports.Uint32BufferAttribute = Uint32BufferAttribute; + exports.Uint8Attribute = Uint8Attribute; + exports.Uint8BufferAttribute = Uint8BufferAttribute; + exports.Uint8ClampedAttribute = Uint8ClampedAttribute; + exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute; + exports.Uniform = Uniform; + exports.UniformsLib = UniformsLib; + exports.UniformsUtils = UniformsUtils; + exports.UnsignedByteType = UnsignedByteType; + exports.UnsignedInt248Type = UnsignedInt248Type; + exports.UnsignedIntType = UnsignedIntType; + exports.UnsignedShort4444Type = UnsignedShort4444Type; + exports.UnsignedShort5551Type = UnsignedShort5551Type; + exports.UnsignedShort565Type = UnsignedShort565Type; + exports.UnsignedShortType = UnsignedShortType; + exports.VSMShadowMap = VSMShadowMap; + exports.Vector2 = Vector2; + exports.Vector3 = Vector3; + exports.Vector4 = Vector4; + exports.VectorKeyframeTrack = VectorKeyframeTrack; + exports.Vertex = Vertex; + exports.VertexColors = VertexColors; + exports.VideoTexture = VideoTexture; + exports.WebGL1Renderer = WebGL1Renderer; + exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget; + exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget; + exports.WebGLRenderTarget = WebGLRenderTarget; + exports.WebGLRenderTargetCube = WebGLRenderTargetCube; + exports.WebGLRenderer = WebGLRenderer; + exports.WebGLUtils = WebGLUtils; + exports.WireframeGeometry = WireframeGeometry; + exports.WireframeHelper = WireframeHelper; + exports.WrapAroundEnding = WrapAroundEnding; + exports.XHRLoader = XHRLoader; + exports.ZeroCurvatureEnding = ZeroCurvatureEnding; + exports.ZeroFactor = ZeroFactor; + exports.ZeroSlopeEnding = ZeroSlopeEnding; + exports.ZeroStencilOp = ZeroStencilOp; + exports.sRGBEncoding = sRGBEncoding; + + Object.defineProperty(exports, '__esModule', { value: true }); + +}))); diff --git a/пуск|run.js b/пуск|run.js index bc54ddb..73a08c5 100644 --- a/пуск|run.js +++ b/пуск|run.js @@ -92,7 +92,8 @@ html, body { УстановитьThreeJS = мир => { var модуль = мир.модули.модульПоИмени(ИМЯ); - var код = модуль.содержимое["/three.min.js"]; + var код = модуль.содержимое["/three.js"]; + console.debug("УстановитьThreeJS"); // Загрузить скрипт. var скрипт = document.createElement("script");