From 3a6aa0c8c8ac87b7bbd647a0b9214377f3b68b98 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=D0=9C=D0=B8=D1=85=D0=B0=D0=B8=D0=BB=20=D0=9A=D0=B0=D0=BF?= =?UTF-8?q?=D0=B5=D0=BB=D1=8C=D0=BA=D0=BE?= Date: Thu, 2 Sep 2021 14:48:21 +0300 Subject: [PATCH] k --- 3.0/редактор/100.редактор.js | 53 +- 3.0/редактор/index.html | 2 +- 3.0/редактор/pako/pako.js | 6727 ++++++++++++++++++ 3 files changed, 6768 insertions(+), 14 deletions(-) create mode 100644 3.0/редактор/pako/pako.js diff --git a/3.0/редактор/100.редактор.js b/3.0/редактор/100.редактор.js index 9047ced..6b94382 100644 --- a/3.0/редактор/100.редактор.js +++ b/3.0/редактор/100.редактор.js @@ -22,9 +22,23 @@ function Редактор(события, имяОбласти) this.преобразоватьВZ64 = function() { var содержимое = this.ace.session.getValue(); - var z64 = this.вZ64(содержимое); -/**/console.debug("ИГР z64:", z64); -/**/console.debug("ИГР обратно:", this.изZ64(z64)); + var в = this.в64(содержимое); + var из = this.из64(в); +/**/console.debug("ИГР в/из", в, из); + +/**/console.debug("ИГР-01 содержимое:", содержимое); + var байты1 = new TextEncoder("utf-8").encode(содержимое); +/**/console.debug("ИГР-02 байты1:", байты1); + var архив1 = pako.deflate(байты1, { to: 'string' }); +/**/console.debug("ИГР-03 архив1:", архив1); + var z64 = base64js.fromByteArray(архив1); +/**/console.debug("ИГР-04 z64:", z64); + var архив2 = base64js.toByteArray(z64); +/**/console.debug("ИГР-05 архив2:", архив2); + var байты2 = pako.inflate(архив2); +/**/console.debug("ИГР-06 байты2:", байты2); + var текст = new TextDecoder("utf-8").decode(байты2); +/**/console.debug("ИГР-07 текст", текст); }; this.установитьAce = function() @@ -72,25 +86,38 @@ function Редактор(события, имяОбласти) return base64js.fromByteArray(байты); }; - this.вZ64 = function(строка) - { - var байты = new TextEncoder("utf-8").encode(строка); - var сжатиеZip = window.pako.deflate(байты, {to: 'string'}); - return this.в64(сжатиеZip); - }; - this.из64 = function(шифр) { var байты = base64js.toByteArray(шифр); return new TextDecoder("utf-8").decode(байты); }; + /* + this.вZ64 = function(строка) + { + var байты = new TextEncoder("utf-8").encode(строка); + var архив = pako.deflate(байты, { to: 'string' }); + var ret = this.в64(архив); + return ret + }; + this.изZ64 = function(шифр) { - var сжатиеZip = this.из64(шифр); - var байты = window.pako.inflate(сжатиеZip) - return new TextDecoder("utf-8").decode(байты); + //var архив = this.из64(шифр); + var архив = base64js.toByteArray(шифр); + + var байты = null; + try { + байты = pako.inflate(архив); + } catch (err) { +console.error(err); + } + + + var ret = new TextDecoder("utf-8").decode(байты); + return ret; }; + */ this.uuid = function() { diff --git a/3.0/редактор/index.html b/3.0/редактор/index.html index 85986ba..169bf33 100644 --- a/3.0/редактор/index.html +++ b/3.0/редактор/index.html @@ -8,7 +8,7 @@ - + diff --git a/3.0/редактор/pako/pako.js b/3.0/редактор/pako/pako.js new file mode 100644 index 0000000..f4efe65 --- /dev/null +++ b/3.0/редактор/pako/pako.js @@ -0,0 +1,6727 @@ + +/*! pako 2.0.4 https://github.com/nodeca/pako @license (MIT AND Zlib) */ +(function (global, factory) { + typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : + typeof define === 'function' && define.amd ? define(['exports'], factory) : + (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.pako = {})); +}(this, (function (exports) { 'use strict'; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + /* eslint-disable space-unary-ops */ + + /* Public constants ==========================================================*/ + /* ===========================================================================*/ + + + //const Z_FILTERED = 1; + //const Z_HUFFMAN_ONLY = 2; + //const Z_RLE = 3; + const Z_FIXED$1 = 4; + //const Z_DEFAULT_STRATEGY = 0; + + /* Possible values of the data_type field (though see inflate()) */ + const Z_BINARY = 0; + const Z_TEXT = 1; + //const Z_ASCII = 1; // = Z_TEXT + const Z_UNKNOWN$1 = 2; + + /*============================================================================*/ + + + function zero$1(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } } + + // From zutil.h + + const STORED_BLOCK = 0; + const STATIC_TREES = 1; + const DYN_TREES = 2; + /* The three kinds of block type */ + + const MIN_MATCH$1 = 3; + const MAX_MATCH$1 = 258; + /* The minimum and maximum match lengths */ + + // From deflate.h + /* =========================================================================== + * Internal compression state. + */ + + const LENGTH_CODES$1 = 29; + /* number of length codes, not counting the special END_BLOCK code */ + + const LITERALS$1 = 256; + /* number of literal bytes 0..255 */ + + const L_CODES$1 = LITERALS$1 + 1 + LENGTH_CODES$1; + /* number of Literal or Length codes, including the END_BLOCK code */ + + const D_CODES$1 = 30; + /* number of distance codes */ + + const BL_CODES$1 = 19; + /* number of codes used to transfer the bit lengths */ + + const HEAP_SIZE$1 = 2 * L_CODES$1 + 1; + /* maximum heap size */ + + const MAX_BITS$1 = 15; + /* All codes must not exceed MAX_BITS bits */ + + const Buf_size = 16; + /* size of bit buffer in bi_buf */ + + + /* =========================================================================== + * Constants + */ + + const MAX_BL_BITS = 7; + /* Bit length codes must not exceed MAX_BL_BITS bits */ + + const END_BLOCK = 256; + /* end of block literal code */ + + const REP_3_6 = 16; + /* repeat previous bit length 3-6 times (2 bits of repeat count) */ + + const REPZ_3_10 = 17; + /* repeat a zero length 3-10 times (3 bits of repeat count) */ + + const REPZ_11_138 = 18; + /* repeat a zero length 11-138 times (7 bits of repeat count) */ + + /* eslint-disable comma-spacing,array-bracket-spacing */ + const extra_lbits = /* extra bits for each length code */ + new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]); + + const extra_dbits = /* extra bits for each distance code */ + new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]); + + const extra_blbits = /* extra bits for each bit length code */ + new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]); + + const bl_order = + new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]); + /* eslint-enable comma-spacing,array-bracket-spacing */ + + /* The lengths of the bit length codes are sent in order of decreasing + * probability, to avoid transmitting the lengths for unused bit length codes. + */ + + /* =========================================================================== + * Local data. These are initialized only once. + */ + + // We pre-fill arrays with 0 to avoid uninitialized gaps + + const DIST_CODE_LEN = 512; /* see definition of array dist_code below */ + + // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1 + const static_ltree = new Array((L_CODES$1 + 2) * 2); + zero$1(static_ltree); + /* The static literal tree. Since the bit lengths are imposed, there is no + * need for the L_CODES extra codes used during heap construction. However + * The codes 286 and 287 are needed to build a canonical tree (see _tr_init + * below). + */ + + const static_dtree = new Array(D_CODES$1 * 2); + zero$1(static_dtree); + /* The static distance tree. (Actually a trivial tree since all codes use + * 5 bits.) + */ + + const _dist_code = new Array(DIST_CODE_LEN); + zero$1(_dist_code); + /* Distance codes. The first 256 values correspond to the distances + * 3 .. 258, the last 256 values correspond to the top 8 bits of + * the 15 bit distances. + */ + + const _length_code = new Array(MAX_MATCH$1 - MIN_MATCH$1 + 1); + zero$1(_length_code); + /* length code for each normalized match length (0 == MIN_MATCH) */ + + const base_length = new Array(LENGTH_CODES$1); + zero$1(base_length); + /* First normalized length for each code (0 = MIN_MATCH) */ + + const base_dist = new Array(D_CODES$1); + zero$1(base_dist); + /* First normalized distance for each code (0 = distance of 1) */ + + + function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { + + this.static_tree = static_tree; /* static tree or NULL */ + this.extra_bits = extra_bits; /* extra bits for each code or NULL */ + this.extra_base = extra_base; /* base index for extra_bits */ + this.elems = elems; /* max number of elements in the tree */ + this.max_length = max_length; /* max bit length for the codes */ + + // show if `static_tree` has data or dummy - needed for monomorphic objects + this.has_stree = static_tree && static_tree.length; + } + + + let static_l_desc; + let static_d_desc; + let static_bl_desc; + + + function TreeDesc(dyn_tree, stat_desc) { + this.dyn_tree = dyn_tree; /* the dynamic tree */ + this.max_code = 0; /* largest code with non zero frequency */ + this.stat_desc = stat_desc; /* the corresponding static tree */ + } + + + + const d_code = (dist) => { + + return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; + }; + + + /* =========================================================================== + * Output a short LSB first on the stream. + * IN assertion: there is enough room in pendingBuf. + */ + const put_short = (s, w) => { + // put_byte(s, (uch)((w) & 0xff)); + // put_byte(s, (uch)((ush)(w) >> 8)); + s.pending_buf[s.pending++] = (w) & 0xff; + s.pending_buf[s.pending++] = (w >>> 8) & 0xff; + }; + + + /* =========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ + const send_bits = (s, value, length) => { + + if (s.bi_valid > (Buf_size - length)) { + s.bi_buf |= (value << s.bi_valid) & 0xffff; + put_short(s, s.bi_buf); + s.bi_buf = value >> (Buf_size - s.bi_valid); + s.bi_valid += length - Buf_size; + } else { + s.bi_buf |= (value << s.bi_valid) & 0xffff; + s.bi_valid += length; + } + }; + + + const send_code = (s, c, tree) => { + + send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); + }; + + + /* =========================================================================== + * Reverse the first len bits of a code, using straightforward code (a faster + * method would use a table) + * IN assertion: 1 <= len <= 15 + */ + const bi_reverse = (code, len) => { + + let res = 0; + do { + res |= code & 1; + code >>>= 1; + res <<= 1; + } while (--len > 0); + return res >>> 1; + }; + + + /* =========================================================================== + * Flush the bit buffer, keeping at most 7 bits in it. + */ + const bi_flush = (s) => { + + if (s.bi_valid === 16) { + put_short(s, s.bi_buf); + s.bi_buf = 0; + s.bi_valid = 0; + + } else if (s.bi_valid >= 8) { + s.pending_buf[s.pending++] = s.bi_buf & 0xff; + s.bi_buf >>= 8; + s.bi_valid -= 8; + } + }; + + + /* =========================================================================== + * Compute the optimal bit lengths for a tree and update the total bit length + * for the current block. + * IN assertion: the fields freq and dad are set, heap[heap_max] and + * above are the tree nodes sorted by increasing frequency. + * OUT assertions: the field len is set to the optimal bit length, the + * array bl_count contains the frequencies for each bit length. + * The length opt_len is updated; static_len is also updated if stree is + * not null. + */ + const gen_bitlen = (s, desc) => + // deflate_state *s; + // tree_desc *desc; /* the tree descriptor */ + { + const tree = desc.dyn_tree; + const max_code = desc.max_code; + const stree = desc.stat_desc.static_tree; + const has_stree = desc.stat_desc.has_stree; + const extra = desc.stat_desc.extra_bits; + const base = desc.stat_desc.extra_base; + const max_length = desc.stat_desc.max_length; + let h; /* heap index */ + let n, m; /* iterate over the tree elements */ + let bits; /* bit length */ + let xbits; /* extra bits */ + let f; /* frequency */ + let overflow = 0; /* number of elements with bit length too large */ + + for (bits = 0; bits <= MAX_BITS$1; bits++) { + s.bl_count[bits] = 0; + } + + /* In a first pass, compute the optimal bit lengths (which may + * overflow in the case of the bit length tree). + */ + tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ + + for (h = s.heap_max + 1; h < HEAP_SIZE$1; h++) { + n = s.heap[h]; + bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; + if (bits > max_length) { + bits = max_length; + overflow++; + } + tree[n * 2 + 1]/*.Len*/ = bits; + /* We overwrite tree[n].Dad which is no longer needed */ + + if (n > max_code) { continue; } /* not a leaf node */ + + s.bl_count[bits]++; + xbits = 0; + if (n >= base) { + xbits = extra[n - base]; + } + f = tree[n * 2]/*.Freq*/; + s.opt_len += f * (bits + xbits); + if (has_stree) { + s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); + } + } + if (overflow === 0) { return; } + + // Trace((stderr,"\nbit length overflow\n")); + /* This happens for example on obj2 and pic of the Calgary corpus */ + + /* Find the first bit length which could increase: */ + do { + bits = max_length - 1; + while (s.bl_count[bits] === 0) { bits--; } + s.bl_count[bits]--; /* move one leaf down the tree */ + s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ + s.bl_count[max_length]--; + /* The brother of the overflow item also moves one step up, + * but this does not affect bl_count[max_length] + */ + overflow -= 2; + } while (overflow > 0); + + /* Now recompute all bit lengths, scanning in increasing frequency. + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all + * lengths instead of fixing only the wrong ones. This idea is taken + * from 'ar' written by Haruhiko Okumura.) + */ + for (bits = max_length; bits !== 0; bits--) { + n = s.bl_count[bits]; + while (n !== 0) { + m = s.heap[--h]; + if (m > max_code) { continue; } + if (tree[m * 2 + 1]/*.Len*/ !== bits) { + // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); + s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; + tree[m * 2 + 1]/*.Len*/ = bits; + } + n--; + } + } + }; + + + /* =========================================================================== + * Generate the codes for a given tree and bit counts (which need not be + * optimal). + * IN assertion: the array bl_count contains the bit length statistics for + * the given tree and the field len is set for all tree elements. + * OUT assertion: the field code is set for all tree elements of non + * zero code length. + */ + const gen_codes = (tree, max_code, bl_count) => + // ct_data *tree; /* the tree to decorate */ + // int max_code; /* largest code with non zero frequency */ + // ushf *bl_count; /* number of codes at each bit length */ + { + const next_code = new Array(MAX_BITS$1 + 1); /* next code value for each bit length */ + let code = 0; /* running code value */ + let bits; /* bit index */ + let n; /* code index */ + + /* The distribution counts are first used to generate the code values + * without bit reversal. + */ + for (bits = 1; bits <= MAX_BITS$1; bits++) { + next_code[bits] = code = (code + bl_count[bits - 1]) << 1; + } + /* Check that the bit counts in bl_count are consistent. The last code + * must be all ones. + */ + //Assert (code + bl_count[MAX_BITS]-1 == (1< { + + let n; /* iterates over tree elements */ + let bits; /* bit counter */ + let length; /* length value */ + let code; /* code value */ + let dist; /* distance index */ + const bl_count = new Array(MAX_BITS$1 + 1); + /* number of codes at each bit length for an optimal tree */ + + // do check in _tr_init() + //if (static_init_done) return; + + /* For some embedded targets, global variables are not initialized: */ + /*#ifdef NO_INIT_GLOBAL_POINTERS + static_l_desc.static_tree = static_ltree; + static_l_desc.extra_bits = extra_lbits; + static_d_desc.static_tree = static_dtree; + static_d_desc.extra_bits = extra_dbits; + static_bl_desc.extra_bits = extra_blbits; + #endif*/ + + /* Initialize the mapping length (0..255) -> length code (0..28) */ + length = 0; + for (code = 0; code < LENGTH_CODES$1 - 1; code++) { + base_length[code] = length; + for (n = 0; n < (1 << extra_lbits[code]); n++) { + _length_code[length++] = code; + } + } + //Assert (length == 256, "tr_static_init: length != 256"); + /* Note that the length 255 (match length 258) can be represented + * in two different ways: code 284 + 5 bits or code 285, so we + * overwrite length_code[255] to use the best encoding: + */ + _length_code[length - 1] = code; + + /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ + dist = 0; + for (code = 0; code < 16; code++) { + base_dist[code] = dist; + for (n = 0; n < (1 << extra_dbits[code]); n++) { + _dist_code[dist++] = code; + } + } + //Assert (dist == 256, "tr_static_init: dist != 256"); + dist >>= 7; /* from now on, all distances are divided by 128 */ + for (; code < D_CODES$1; code++) { + base_dist[code] = dist << 7; + for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { + _dist_code[256 + dist++] = code; + } + } + //Assert (dist == 256, "tr_static_init: 256+dist != 512"); + + /* Construct the codes of the static literal tree */ + for (bits = 0; bits <= MAX_BITS$1; bits++) { + bl_count[bits] = 0; + } + + n = 0; + while (n <= 143) { + static_ltree[n * 2 + 1]/*.Len*/ = 8; + n++; + bl_count[8]++; + } + while (n <= 255) { + static_ltree[n * 2 + 1]/*.Len*/ = 9; + n++; + bl_count[9]++; + } + while (n <= 279) { + static_ltree[n * 2 + 1]/*.Len*/ = 7; + n++; + bl_count[7]++; + } + while (n <= 287) { + static_ltree[n * 2 + 1]/*.Len*/ = 8; + n++; + bl_count[8]++; + } + /* Codes 286 and 287 do not exist, but we must include them in the + * tree construction to get a canonical Huffman tree (longest code + * all ones) + */ + gen_codes(static_ltree, L_CODES$1 + 1, bl_count); + + /* The static distance tree is trivial: */ + for (n = 0; n < D_CODES$1; n++) { + static_dtree[n * 2 + 1]/*.Len*/ = 5; + static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); + } + + // Now data ready and we can init static trees + static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS$1 + 1, L_CODES$1, MAX_BITS$1); + static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES$1, MAX_BITS$1); + static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES$1, MAX_BL_BITS); + + //static_init_done = true; + }; + + + /* =========================================================================== + * Initialize a new block. + */ + const init_block = (s) => { + + let n; /* iterates over tree elements */ + + /* Initialize the trees. */ + for (n = 0; n < L_CODES$1; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } + for (n = 0; n < D_CODES$1; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } + for (n = 0; n < BL_CODES$1; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } + + s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; + s.opt_len = s.static_len = 0; + s.last_lit = s.matches = 0; + }; + + + /* =========================================================================== + * Flush the bit buffer and align the output on a byte boundary + */ + const bi_windup = (s) => + { + if (s.bi_valid > 8) { + put_short(s, s.bi_buf); + } else if (s.bi_valid > 0) { + //put_byte(s, (Byte)s->bi_buf); + s.pending_buf[s.pending++] = s.bi_buf; + } + s.bi_buf = 0; + s.bi_valid = 0; + }; + + /* =========================================================================== + * Copy a stored block, storing first the length and its + * one's complement if requested. + */ + const copy_block = (s, buf, len, header) => + //DeflateState *s; + //charf *buf; /* the input data */ + //unsigned len; /* its length */ + //int header; /* true if block header must be written */ + { + bi_windup(s); /* align on byte boundary */ + + if (header) { + put_short(s, len); + put_short(s, ~len); + } + // while (len--) { + // put_byte(s, *buf++); + // } + s.pending_buf.set(s.window.subarray(buf, buf + len), s.pending); + s.pending += len; + }; + + /* =========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ + const smaller = (tree, n, m, depth) => { + + const _n2 = n * 2; + const _m2 = m * 2; + return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || + (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); + }; + + /* =========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ + const pqdownheap = (s, tree, k) => + // deflate_state *s; + // ct_data *tree; /* the tree to restore */ + // int k; /* node to move down */ + { + const v = s.heap[k]; + let j = k << 1; /* left son of k */ + while (j <= s.heap_len) { + /* Set j to the smallest of the two sons: */ + if (j < s.heap_len && + smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { + j++; + } + /* Exit if v is smaller than both sons */ + if (smaller(tree, v, s.heap[j], s.depth)) { break; } + + /* Exchange v with the smallest son */ + s.heap[k] = s.heap[j]; + k = j; + + /* And continue down the tree, setting j to the left son of k */ + j <<= 1; + } + s.heap[k] = v; + }; + + + // inlined manually + // const SMALLEST = 1; + + /* =========================================================================== + * Send the block data compressed using the given Huffman trees + */ + const compress_block = (s, ltree, dtree) => + // deflate_state *s; + // const ct_data *ltree; /* literal tree */ + // const ct_data *dtree; /* distance tree */ + { + let dist; /* distance of matched string */ + let lc; /* match length or unmatched char (if dist == 0) */ + let lx = 0; /* running index in l_buf */ + let code; /* the code to send */ + let extra; /* number of extra bits to send */ + + if (s.last_lit !== 0) { + do { + dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); + lc = s.pending_buf[s.l_buf + lx]; + lx++; + + if (dist === 0) { + send_code(s, lc, ltree); /* send a literal byte */ + //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); + } else { + /* Here, lc is the match length - MIN_MATCH */ + code = _length_code[lc]; + send_code(s, code + LITERALS$1 + 1, ltree); /* send the length code */ + extra = extra_lbits[code]; + if (extra !== 0) { + lc -= base_length[code]; + send_bits(s, lc, extra); /* send the extra length bits */ + } + dist--; /* dist is now the match distance - 1 */ + code = d_code(dist); + //Assert (code < D_CODES, "bad d_code"); + + send_code(s, code, dtree); /* send the distance code */ + extra = extra_dbits[code]; + if (extra !== 0) { + dist -= base_dist[code]; + send_bits(s, dist, extra); /* send the extra distance bits */ + } + } /* literal or match pair ? */ + + /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ + //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, + // "pendingBuf overflow"); + + } while (lx < s.last_lit); + } + + send_code(s, END_BLOCK, ltree); + }; + + + /* =========================================================================== + * Construct one Huffman tree and assigns the code bit strings and lengths. + * Update the total bit length for the current block. + * IN assertion: the field freq is set for all tree elements. + * OUT assertions: the fields len and code are set to the optimal bit length + * and corresponding code. The length opt_len is updated; static_len is + * also updated if stree is not null. The field max_code is set. + */ + const build_tree = (s, desc) => + // deflate_state *s; + // tree_desc *desc; /* the tree descriptor */ + { + const tree = desc.dyn_tree; + const stree = desc.stat_desc.static_tree; + const has_stree = desc.stat_desc.has_stree; + const elems = desc.stat_desc.elems; + let n, m; /* iterate over heap elements */ + let max_code = -1; /* largest code with non zero frequency */ + let node; /* new node being created */ + + /* Construct the initial heap, with least frequent element in + * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. + * heap[0] is not used. + */ + s.heap_len = 0; + s.heap_max = HEAP_SIZE$1; + + for (n = 0; n < elems; n++) { + if (tree[n * 2]/*.Freq*/ !== 0) { + s.heap[++s.heap_len] = max_code = n; + s.depth[n] = 0; + + } else { + tree[n * 2 + 1]/*.Len*/ = 0; + } + } + + /* The pkzip format requires that at least one distance code exists, + * and that at least one bit should be sent even if there is only one + * possible code. So to avoid special checks later on we force at least + * two codes of non zero frequency. + */ + while (s.heap_len < 2) { + node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); + tree[node * 2]/*.Freq*/ = 1; + s.depth[node] = 0; + s.opt_len--; + + if (has_stree) { + s.static_len -= stree[node * 2 + 1]/*.Len*/; + } + /* node is 0 or 1 so it does not have extra bits */ + } + desc.max_code = max_code; + + /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, + * establish sub-heaps of increasing lengths: + */ + for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } + + /* Construct the Huffman tree by repeatedly combining the least two + * frequent nodes. + */ + node = elems; /* next internal node of the tree */ + do { + //pqremove(s, tree, n); /* n = node of least frequency */ + /*** pqremove ***/ + n = s.heap[1/*SMALLEST*/]; + s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; + pqdownheap(s, tree, 1/*SMALLEST*/); + /***/ + + m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ + + s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ + s.heap[--s.heap_max] = m; + + /* Create a new node father of n and m */ + tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; + s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; + tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; + + /* and insert the new node in the heap */ + s.heap[1/*SMALLEST*/] = node++; + pqdownheap(s, tree, 1/*SMALLEST*/); + + } while (s.heap_len >= 2); + + s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; + + /* At this point, the fields freq and dad are set. We can now + * generate the bit lengths. + */ + gen_bitlen(s, desc); + + /* The field len is now set, we can generate the bit codes */ + gen_codes(tree, max_code, s.bl_count); + }; + + + /* =========================================================================== + * Scan a literal or distance tree to determine the frequencies of the codes + * in the bit length tree. + */ + const scan_tree = (s, tree, max_code) => + // deflate_state *s; + // ct_data *tree; /* the tree to be scanned */ + // int max_code; /* and its largest code of non zero frequency */ + { + let n; /* iterates over all tree elements */ + let prevlen = -1; /* last emitted length */ + let curlen; /* length of current code */ + + let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ + + let count = 0; /* repeat count of the current code */ + let max_count = 7; /* max repeat count */ + let min_count = 4; /* min repeat count */ + + if (nextlen === 0) { + max_count = 138; + min_count = 3; + } + tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; + nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; + + if (++count < max_count && curlen === nextlen) { + continue; + + } else if (count < min_count) { + s.bl_tree[curlen * 2]/*.Freq*/ += count; + + } else if (curlen !== 0) { + + if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } + s.bl_tree[REP_3_6 * 2]/*.Freq*/++; + + } else if (count <= 10) { + s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; + + } else { + s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; + } + + count = 0; + prevlen = curlen; + + if (nextlen === 0) { + max_count = 138; + min_count = 3; + + } else if (curlen === nextlen) { + max_count = 6; + min_count = 3; + + } else { + max_count = 7; + min_count = 4; + } + } + }; + + + /* =========================================================================== + * Send a literal or distance tree in compressed form, using the codes in + * bl_tree. + */ + const send_tree = (s, tree, max_code) => + // deflate_state *s; + // ct_data *tree; /* the tree to be scanned */ + // int max_code; /* and its largest code of non zero frequency */ + { + let n; /* iterates over all tree elements */ + let prevlen = -1; /* last emitted length */ + let curlen; /* length of current code */ + + let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ + + let count = 0; /* repeat count of the current code */ + let max_count = 7; /* max repeat count */ + let min_count = 4; /* min repeat count */ + + /* tree[max_code+1].Len = -1; */ /* guard already set */ + if (nextlen === 0) { + max_count = 138; + min_count = 3; + } + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; + nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; + + if (++count < max_count && curlen === nextlen) { + continue; + + } else if (count < min_count) { + do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); + + } else if (curlen !== 0) { + if (curlen !== prevlen) { + send_code(s, curlen, s.bl_tree); + count--; + } + //Assert(count >= 3 && count <= 6, " 3_6?"); + send_code(s, REP_3_6, s.bl_tree); + send_bits(s, count - 3, 2); + + } else if (count <= 10) { + send_code(s, REPZ_3_10, s.bl_tree); + send_bits(s, count - 3, 3); + + } else { + send_code(s, REPZ_11_138, s.bl_tree); + send_bits(s, count - 11, 7); + } + + count = 0; + prevlen = curlen; + if (nextlen === 0) { + max_count = 138; + min_count = 3; + + } else if (curlen === nextlen) { + max_count = 6; + min_count = 3; + + } else { + max_count = 7; + min_count = 4; + } + } + }; + + + /* =========================================================================== + * Construct the Huffman tree for the bit lengths and return the index in + * bl_order of the last bit length code to send. + */ + const build_bl_tree = (s) => { + + let max_blindex; /* index of last bit length code of non zero freq */ + + /* Determine the bit length frequencies for literal and distance trees */ + scan_tree(s, s.dyn_ltree, s.l_desc.max_code); + scan_tree(s, s.dyn_dtree, s.d_desc.max_code); + + /* Build the bit length tree: */ + build_tree(s, s.bl_desc); + /* opt_len now includes the length of the tree representations, except + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. + */ + + /* Determine the number of bit length codes to send. The pkzip format + * requires that at least 4 bit length codes be sent. (appnote.txt says + * 3 but the actual value used is 4.) + */ + for (max_blindex = BL_CODES$1 - 1; max_blindex >= 3; max_blindex--) { + if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { + break; + } + } + /* Update opt_len to include the bit length tree and counts */ + s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; + //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", + // s->opt_len, s->static_len)); + + return max_blindex; + }; + + + /* =========================================================================== + * Send the header for a block using dynamic Huffman trees: the counts, the + * lengths of the bit length codes, the literal tree and the distance tree. + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. + */ + const send_all_trees = (s, lcodes, dcodes, blcodes) => + // deflate_state *s; + // int lcodes, dcodes, blcodes; /* number of codes for each tree */ + { + let rank; /* index in bl_order */ + + //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); + //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, + // "too many codes"); + //Tracev((stderr, "\nbl counts: ")); + send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ + send_bits(s, dcodes - 1, 5); + send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ + for (rank = 0; rank < blcodes; rank++) { + //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); + send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); + } + //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); + + send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ + //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); + + send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ + //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); + }; + + + /* =========================================================================== + * Check if the data type is TEXT or BINARY, using the following algorithm: + * - TEXT if the two conditions below are satisfied: + * a) There are no non-portable control characters belonging to the + * "black list" (0..6, 14..25, 28..31). + * b) There is at least one printable character belonging to the + * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). + * - BINARY otherwise. + * - The following partially-portable control characters form a + * "gray list" that is ignored in this detection algorithm: + * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). + * IN assertion: the fields Freq of dyn_ltree are set. + */ + const detect_data_type = (s) => { + /* black_mask is the bit mask of black-listed bytes + * set bits 0..6, 14..25, and 28..31 + * 0xf3ffc07f = binary 11110011111111111100000001111111 + */ + let black_mask = 0xf3ffc07f; + let n; + + /* Check for non-textual ("black-listed") bytes. */ + for (n = 0; n <= 31; n++, black_mask >>>= 1) { + if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { + return Z_BINARY; + } + } + + /* Check for textual ("white-listed") bytes. */ + if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || + s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { + return Z_TEXT; + } + for (n = 32; n < LITERALS$1; n++) { + if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { + return Z_TEXT; + } + } + + /* There are no "black-listed" or "white-listed" bytes: + * this stream either is empty or has tolerated ("gray-listed") bytes only. + */ + return Z_BINARY; + }; + + + let static_init_done = false; + + /* =========================================================================== + * Initialize the tree data structures for a new zlib stream. + */ + const _tr_init$1 = (s) => + { + + if (!static_init_done) { + tr_static_init(); + static_init_done = true; + } + + s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); + s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); + s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); + + s.bi_buf = 0; + s.bi_valid = 0; + + /* Initialize the first block of the first file: */ + init_block(s); + }; + + + /* =========================================================================== + * Send a stored block + */ + const _tr_stored_block$1 = (s, buf, stored_len, last) => + //DeflateState *s; + //charf *buf; /* input block */ + //ulg stored_len; /* length of input block */ + //int last; /* one if this is the last block for a file */ + { + send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ + copy_block(s, buf, stored_len, true); /* with header */ + }; + + + /* =========================================================================== + * Send one empty static block to give enough lookahead for inflate. + * This takes 10 bits, of which 7 may remain in the bit buffer. + */ + const _tr_align$1 = (s) => { + send_bits(s, STATIC_TREES << 1, 3); + send_code(s, END_BLOCK, static_ltree); + bi_flush(s); + }; + + + /* =========================================================================== + * Determine the best encoding for the current block: dynamic trees, static + * trees or store, and output the encoded block to the zip file. + */ + const _tr_flush_block$1 = (s, buf, stored_len, last) => + //DeflateState *s; + //charf *buf; /* input block, or NULL if too old */ + //ulg stored_len; /* length of input block */ + //int last; /* one if this is the last block for a file */ + { + let opt_lenb, static_lenb; /* opt_len and static_len in bytes */ + let max_blindex = 0; /* index of last bit length code of non zero freq */ + + /* Build the Huffman trees unless a stored block is forced */ + if (s.level > 0) { + + /* Check if the file is binary or text */ + if (s.strm.data_type === Z_UNKNOWN$1) { + s.strm.data_type = detect_data_type(s); + } + + /* Construct the literal and distance trees */ + build_tree(s, s.l_desc); + // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, + // s->static_len)); + + build_tree(s, s.d_desc); + // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, + // s->static_len)); + /* At this point, opt_len and static_len are the total bit lengths of + * the compressed block data, excluding the tree representations. + */ + + /* Build the bit length tree for the above two trees, and get the index + * in bl_order of the last bit length code to send. + */ + max_blindex = build_bl_tree(s); + + /* Determine the best encoding. Compute the block lengths in bytes. */ + opt_lenb = (s.opt_len + 3 + 7) >>> 3; + static_lenb = (s.static_len + 3 + 7) >>> 3; + + // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", + // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, + // s->last_lit)); + + if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } + + } else { + // Assert(buf != (char*)0, "lost buf"); + opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ + } + + if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { + /* 4: two words for the lengths */ + + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. + * Otherwise we can't have processed more than WSIZE input bytes since + * the last block flush, because compression would have been + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to + * transform a block into a stored block. + */ + _tr_stored_block$1(s, buf, stored_len, last); + + } else if (s.strategy === Z_FIXED$1 || static_lenb === opt_lenb) { + + send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); + compress_block(s, static_ltree, static_dtree); + + } else { + send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); + send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); + compress_block(s, s.dyn_ltree, s.dyn_dtree); + } + // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); + /* The above check is made mod 2^32, for files larger than 512 MB + * and uLong implemented on 32 bits. + */ + init_block(s); + + if (last) { + bi_windup(s); + } + // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, + // s->compressed_len-7*last)); + }; + + /* =========================================================================== + * Save the match info and tally the frequency counts. Return true if + * the current block must be flushed. + */ + const _tr_tally$1 = (s, dist, lc) => + // deflate_state *s; + // unsigned dist; /* distance of matched string */ + // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ + { + //let out_length, in_length, dcode; + + s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; + s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; + + s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; + s.last_lit++; + + if (dist === 0) { + /* lc is the unmatched char */ + s.dyn_ltree[lc * 2]/*.Freq*/++; + } else { + s.matches++; + /* Here, lc is the match length - MIN_MATCH */ + dist--; /* dist = match distance - 1 */ + //Assert((ush)dist < (ush)MAX_DIST(s) && + // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && + // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); + + s.dyn_ltree[(_length_code[lc] + LITERALS$1 + 1) * 2]/*.Freq*/++; + s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; + } + + // (!) This block is disabled in zlib defaults, + // don't enable it for binary compatibility + + //#ifdef TRUNCATE_BLOCK + // /* Try to guess if it is profitable to stop the current block here */ + // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { + // /* Compute an upper bound for the compressed length */ + // out_length = s.last_lit*8; + // in_length = s.strstart - s.block_start; + // + // for (dcode = 0; dcode < D_CODES; dcode++) { + // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); + // } + // out_length >>>= 3; + // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", + // // s->last_lit, in_length, out_length, + // // 100L - out_length*100L/in_length)); + // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { + // return true; + // } + // } + //#endif + + return (s.last_lit === s.lit_bufsize - 1); + /* We avoid equality with lit_bufsize because of wraparound at 64K + * on 16 bit machines and because stored blocks are restricted to + * 64K-1 bytes. + */ + }; + + var _tr_init_1 = _tr_init$1; + var _tr_stored_block_1 = _tr_stored_block$1; + var _tr_flush_block_1 = _tr_flush_block$1; + var _tr_tally_1 = _tr_tally$1; + var _tr_align_1 = _tr_align$1; + + var trees = { + _tr_init: _tr_init_1, + _tr_stored_block: _tr_stored_block_1, + _tr_flush_block: _tr_flush_block_1, + _tr_tally: _tr_tally_1, + _tr_align: _tr_align_1 + }; + + // Note: adler32 takes 12% for level 0 and 2% for level 6. + // It isn't worth it to make additional optimizations as in original. + // Small size is preferable. + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + const adler32 = (adler, buf, len, pos) => { + let s1 = (adler & 0xffff) |0, + s2 = ((adler >>> 16) & 0xffff) |0, + n = 0; + + while (len !== 0) { + // Set limit ~ twice less than 5552, to keep + // s2 in 31-bits, because we force signed ints. + // in other case %= will fail. + n = len > 2000 ? 2000 : len; + len -= n; + + do { + s1 = (s1 + buf[pos++]) |0; + s2 = (s2 + s1) |0; + } while (--n); + + s1 %= 65521; + s2 %= 65521; + } + + return (s1 | (s2 << 16)) |0; + }; + + + var adler32_1 = adler32; + + // Note: we can't get significant speed boost here. + // So write code to minimize size - no pregenerated tables + // and array tools dependencies. + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + // Use ordinary array, since untyped makes no boost here + const makeTable = () => { + let c, table = []; + + for (var n = 0; n < 256; n++) { + c = n; + for (var k = 0; k < 8; k++) { + c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); + } + table[n] = c; + } + + return table; + }; + + // Create table on load. Just 255 signed longs. Not a problem. + const crcTable = new Uint32Array(makeTable()); + + + const crc32 = (crc, buf, len, pos) => { + const t = crcTable; + const end = pos + len; + + crc ^= -1; + + for (let i = pos; i < end; i++) { + crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; + } + + return (crc ^ (-1)); // >>> 0; + }; + + + var crc32_1 = crc32; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + var messages = { + 2: 'need dictionary', /* Z_NEED_DICT 2 */ + 1: 'stream end', /* Z_STREAM_END 1 */ + 0: '', /* Z_OK 0 */ + '-1': 'file error', /* Z_ERRNO (-1) */ + '-2': 'stream error', /* Z_STREAM_ERROR (-2) */ + '-3': 'data error', /* Z_DATA_ERROR (-3) */ + '-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */ + '-5': 'buffer error', /* Z_BUF_ERROR (-5) */ + '-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */ + }; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + var constants$2 = { + + /* Allowed flush values; see deflate() and inflate() below for details */ + Z_NO_FLUSH: 0, + Z_PARTIAL_FLUSH: 1, + Z_SYNC_FLUSH: 2, + Z_FULL_FLUSH: 3, + Z_FINISH: 4, + Z_BLOCK: 5, + Z_TREES: 6, + + /* Return codes for the compression/decompression functions. Negative values + * are errors, positive values are used for special but normal events. + */ + Z_OK: 0, + Z_STREAM_END: 1, + Z_NEED_DICT: 2, + Z_ERRNO: -1, + Z_STREAM_ERROR: -2, + Z_DATA_ERROR: -3, + Z_MEM_ERROR: -4, + Z_BUF_ERROR: -5, + //Z_VERSION_ERROR: -6, + + /* compression levels */ + Z_NO_COMPRESSION: 0, + Z_BEST_SPEED: 1, + Z_BEST_COMPRESSION: 9, + Z_DEFAULT_COMPRESSION: -1, + + + Z_FILTERED: 1, + Z_HUFFMAN_ONLY: 2, + Z_RLE: 3, + Z_FIXED: 4, + Z_DEFAULT_STRATEGY: 0, + + /* Possible values of the data_type field (though see inflate()) */ + Z_BINARY: 0, + Z_TEXT: 1, + //Z_ASCII: 1, // = Z_TEXT (deprecated) + Z_UNKNOWN: 2, + + /* The deflate compression method */ + Z_DEFLATED: 8 + //Z_NULL: null // Use -1 or null inline, depending on var type + }; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + const { _tr_init, _tr_stored_block, _tr_flush_block, _tr_tally, _tr_align } = trees; + + + + + /* Public constants ==========================================================*/ + /* ===========================================================================*/ + + const { + Z_NO_FLUSH: Z_NO_FLUSH$2, Z_PARTIAL_FLUSH, Z_FULL_FLUSH: Z_FULL_FLUSH$1, Z_FINISH: Z_FINISH$3, Z_BLOCK: Z_BLOCK$1, + Z_OK: Z_OK$3, Z_STREAM_END: Z_STREAM_END$3, Z_STREAM_ERROR: Z_STREAM_ERROR$2, Z_DATA_ERROR: Z_DATA_ERROR$2, Z_BUF_ERROR: Z_BUF_ERROR$1, + Z_DEFAULT_COMPRESSION: Z_DEFAULT_COMPRESSION$1, + Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED, Z_DEFAULT_STRATEGY: Z_DEFAULT_STRATEGY$1, + Z_UNKNOWN, + Z_DEFLATED: Z_DEFLATED$2 + } = constants$2; + + /*============================================================================*/ + + + const MAX_MEM_LEVEL = 9; + /* Maximum value for memLevel in deflateInit2 */ + const MAX_WBITS$1 = 15; + /* 32K LZ77 window */ + const DEF_MEM_LEVEL = 8; + + + const LENGTH_CODES = 29; + /* number of length codes, not counting the special END_BLOCK code */ + const LITERALS = 256; + /* number of literal bytes 0..255 */ + const L_CODES = LITERALS + 1 + LENGTH_CODES; + /* number of Literal or Length codes, including the END_BLOCK code */ + const D_CODES = 30; + /* number of distance codes */ + const BL_CODES = 19; + /* number of codes used to transfer the bit lengths */ + const HEAP_SIZE = 2 * L_CODES + 1; + /* maximum heap size */ + const MAX_BITS = 15; + /* All codes must not exceed MAX_BITS bits */ + + const MIN_MATCH = 3; + const MAX_MATCH = 258; + const MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); + + const PRESET_DICT = 0x20; + + const INIT_STATE = 42; + const EXTRA_STATE = 69; + const NAME_STATE = 73; + const COMMENT_STATE = 91; + const HCRC_STATE = 103; + const BUSY_STATE = 113; + const FINISH_STATE = 666; + + const BS_NEED_MORE = 1; /* block not completed, need more input or more output */ + const BS_BLOCK_DONE = 2; /* block flush performed */ + const BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ + const BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ + + const OS_CODE = 0x03; // Unix :) . Don't detect, use this default. + + const err = (strm, errorCode) => { + strm.msg = messages[errorCode]; + return errorCode; + }; + + const rank = (f) => { + return ((f) << 1) - ((f) > 4 ? 9 : 0); + }; + + const zero = (buf) => { + let len = buf.length; while (--len >= 0) { buf[len] = 0; } + }; + + + /* eslint-disable new-cap */ + let HASH_ZLIB = (s, prev, data) => ((prev << s.hash_shift) ^ data) & s.hash_mask; + // This hash causes less collisions, https://github.com/nodeca/pako/issues/135 + // But breaks binary compatibility + //let HASH_FAST = (s, prev, data) => ((prev << 8) + (prev >> 8) + (data << 4)) & s.hash_mask; + let HASH = HASH_ZLIB; + + /* ========================================================================= + * Flush as much pending output as possible. All deflate() output goes + * through this function so some applications may wish to modify it + * to avoid allocating a large strm->output buffer and copying into it. + * (See also read_buf()). + */ + const flush_pending = (strm) => { + const s = strm.state; + + //_tr_flush_bits(s); + let len = s.pending; + if (len > strm.avail_out) { + len = strm.avail_out; + } + if (len === 0) { return; } + + strm.output.set(s.pending_buf.subarray(s.pending_out, s.pending_out + len), strm.next_out); + strm.next_out += len; + s.pending_out += len; + strm.total_out += len; + strm.avail_out -= len; + s.pending -= len; + if (s.pending === 0) { + s.pending_out = 0; + } + }; + + + const flush_block_only = (s, last) => { + _tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); + s.block_start = s.strstart; + flush_pending(s.strm); + }; + + + const put_byte = (s, b) => { + s.pending_buf[s.pending++] = b; + }; + + + /* ========================================================================= + * Put a short in the pending buffer. The 16-bit value is put in MSB order. + * IN assertion: the stream state is correct and there is enough room in + * pending_buf. + */ + const putShortMSB = (s, b) => { + + // put_byte(s, (Byte)(b >> 8)); + // put_byte(s, (Byte)(b & 0xff)); + s.pending_buf[s.pending++] = (b >>> 8) & 0xff; + s.pending_buf[s.pending++] = b & 0xff; + }; + + + /* =========================================================================== + * Read a new buffer from the current input stream, update the adler32 + * and total number of bytes read. All deflate() input goes through + * this function so some applications may wish to modify it to avoid + * allocating a large strm->input buffer and copying from it. + * (See also flush_pending()). + */ + const read_buf = (strm, buf, start, size) => { + + let len = strm.avail_in; + + if (len > size) { len = size; } + if (len === 0) { return 0; } + + strm.avail_in -= len; + + // zmemcpy(buf, strm->next_in, len); + buf.set(strm.input.subarray(strm.next_in, strm.next_in + len), start); + if (strm.state.wrap === 1) { + strm.adler = adler32_1(strm.adler, buf, len, start); + } + + else if (strm.state.wrap === 2) { + strm.adler = crc32_1(strm.adler, buf, len, start); + } + + strm.next_in += len; + strm.total_in += len; + + return len; + }; + + + /* =========================================================================== + * Set match_start to the longest match starting at the given string and + * return its length. Matches shorter or equal to prev_length are discarded, + * in which case the result is equal to prev_length and match_start is + * garbage. + * IN assertions: cur_match is the head of the hash chain for the current + * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 + * OUT assertion: the match length is not greater than s->lookahead. + */ + const longest_match = (s, cur_match) => { + + let chain_length = s.max_chain_length; /* max hash chain length */ + let scan = s.strstart; /* current string */ + let match; /* matched string */ + let len; /* length of current match */ + let best_len = s.prev_length; /* best match length so far */ + let nice_match = s.nice_match; /* stop if match long enough */ + const limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? + s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/; + + const _win = s.window; // shortcut + + const wmask = s.w_mask; + const prev = s.prev; + + /* Stop when cur_match becomes <= limit. To simplify the code, + * we prevent matches with the string of window index 0. + */ + + const strend = s.strstart + MAX_MATCH; + let scan_end1 = _win[scan + best_len - 1]; + let scan_end = _win[scan + best_len]; + + /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. + * It is easy to get rid of this optimization if necessary. + */ + // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); + + /* Do not waste too much time if we already have a good match: */ + if (s.prev_length >= s.good_match) { + chain_length >>= 2; + } + /* Do not look for matches beyond the end of the input. This is necessary + * to make deflate deterministic. + */ + if (nice_match > s.lookahead) { nice_match = s.lookahead; } + + // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); + + do { + // Assert(cur_match < s->strstart, "no future"); + match = cur_match; + + /* Skip to next match if the match length cannot increase + * or if the match length is less than 2. Note that the checks below + * for insufficient lookahead only occur occasionally for performance + * reasons. Therefore uninitialized memory will be accessed, and + * conditional jumps will be made that depend on those values. + * However the length of the match is limited to the lookahead, so + * the output of deflate is not affected by the uninitialized values. + */ + + if (_win[match + best_len] !== scan_end || + _win[match + best_len - 1] !== scan_end1 || + _win[match] !== _win[scan] || + _win[++match] !== _win[scan + 1]) { + continue; + } + + /* The check at best_len-1 can be removed because it will be made + * again later. (This heuristic is not always a win.) + * It is not necessary to compare scan[2] and match[2] since they + * are always equal when the other bytes match, given that + * the hash keys are equal and that HASH_BITS >= 8. + */ + scan += 2; + match++; + // Assert(*scan == *match, "match[2]?"); + + /* We check for insufficient lookahead only every 8th comparison; + * the 256th check will be made at strstart+258. + */ + do { + /*jshint noempty:false*/ + } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + scan < strend); + + // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); + + len = MAX_MATCH - (strend - scan); + scan = strend - MAX_MATCH; + + if (len > best_len) { + s.match_start = cur_match; + best_len = len; + if (len >= nice_match) { + break; + } + scan_end1 = _win[scan + best_len - 1]; + scan_end = _win[scan + best_len]; + } + } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); + + if (best_len <= s.lookahead) { + return best_len; + } + return s.lookahead; + }; + + + /* =========================================================================== + * Fill the window when the lookahead becomes insufficient. + * Updates strstart and lookahead. + * + * IN assertion: lookahead < MIN_LOOKAHEAD + * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD + * At least one byte has been read, or avail_in == 0; reads are + * performed for at least two bytes (required for the zip translate_eol + * option -- not supported here). + */ + const fill_window = (s) => { + + const _w_size = s.w_size; + let p, n, m, more, str; + + //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); + + do { + more = s.window_size - s.lookahead - s.strstart; + + // JS ints have 32 bit, block below not needed + /* Deal with !@#$% 64K limit: */ + //if (sizeof(int) <= 2) { + // if (more == 0 && s->strstart == 0 && s->lookahead == 0) { + // more = wsize; + // + // } else if (more == (unsigned)(-1)) { + // /* Very unlikely, but possible on 16 bit machine if + // * strstart == 0 && lookahead == 1 (input done a byte at time) + // */ + // more--; + // } + //} + + + /* If the window is almost full and there is insufficient lookahead, + * move the upper half to the lower one to make room in the upper half. + */ + if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { + + s.window.set(s.window.subarray(_w_size, _w_size + _w_size), 0); + s.match_start -= _w_size; + s.strstart -= _w_size; + /* we now have strstart >= MAX_DIST */ + s.block_start -= _w_size; + + /* Slide the hash table (could be avoided with 32 bit values + at the expense of memory usage). We slide even when level == 0 + to keep the hash table consistent if we switch back to level > 0 + later. (Using level 0 permanently is not an optimal usage of + zlib, so we don't care about this pathological case.) + */ + + n = s.hash_size; + p = n; + + do { + m = s.head[--p]; + s.head[p] = (m >= _w_size ? m - _w_size : 0); + } while (--n); + + n = _w_size; + p = n; + + do { + m = s.prev[--p]; + s.prev[p] = (m >= _w_size ? m - _w_size : 0); + /* If n is not on any hash chain, prev[n] is garbage but + * its value will never be used. + */ + } while (--n); + + more += _w_size; + } + if (s.strm.avail_in === 0) { + break; + } + + /* If there was no sliding: + * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && + * more == window_size - lookahead - strstart + * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) + * => more >= window_size - 2*WSIZE + 2 + * In the BIG_MEM or MMAP case (not yet supported), + * window_size == input_size + MIN_LOOKAHEAD && + * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. + * Otherwise, window_size == 2*WSIZE so more >= 2. + * If there was sliding, more >= WSIZE. So in all cases, more >= 2. + */ + //Assert(more >= 2, "more < 2"); + n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); + s.lookahead += n; + + /* Initialize the hash value now that we have some input: */ + if (s.lookahead + s.insert >= MIN_MATCH) { + str = s.strstart - s.insert; + s.ins_h = s.window[str]; + + /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ + s.ins_h = HASH(s, s.ins_h, s.window[str + 1]); + //#if MIN_MATCH != 3 + // Call update_hash() MIN_MATCH-3 more times + //#endif + while (s.insert) { + /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ + s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]); + + s.prev[str & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = str; + str++; + s.insert--; + if (s.lookahead + s.insert < MIN_MATCH) { + break; + } + } + } + /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, + * but this is not important since only literal bytes will be emitted. + */ + + } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); + + /* If the WIN_INIT bytes after the end of the current data have never been + * written, then zero those bytes in order to avoid memory check reports of + * the use of uninitialized (or uninitialised as Julian writes) bytes by + * the longest match routines. Update the high water mark for the next + * time through here. WIN_INIT is set to MAX_MATCH since the longest match + * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. + */ + // if (s.high_water < s.window_size) { + // const curr = s.strstart + s.lookahead; + // let init = 0; + // + // if (s.high_water < curr) { + // /* Previous high water mark below current data -- zero WIN_INIT + // * bytes or up to end of window, whichever is less. + // */ + // init = s.window_size - curr; + // if (init > WIN_INIT) + // init = WIN_INIT; + // zmemzero(s->window + curr, (unsigned)init); + // s->high_water = curr + init; + // } + // else if (s->high_water < (ulg)curr + WIN_INIT) { + // /* High water mark at or above current data, but below current data + // * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up + // * to end of window, whichever is less. + // */ + // init = (ulg)curr + WIN_INIT - s->high_water; + // if (init > s->window_size - s->high_water) + // init = s->window_size - s->high_water; + // zmemzero(s->window + s->high_water, (unsigned)init); + // s->high_water += init; + // } + // } + // + // Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, + // "not enough room for search"); + }; + + /* =========================================================================== + * Copy without compression as much as possible from the input stream, return + * the current block state. + * This function does not insert new strings in the dictionary since + * uncompressible data is probably not useful. This function is used + * only for the level=0 compression option. + * NOTE: this function should be optimized to avoid extra copying from + * window to pending_buf. + */ + const deflate_stored = (s, flush) => { + + /* Stored blocks are limited to 0xffff bytes, pending_buf is limited + * to pending_buf_size, and each stored block has a 5 byte header: + */ + let max_block_size = 0xffff; + + if (max_block_size > s.pending_buf_size - 5) { + max_block_size = s.pending_buf_size - 5; + } + + /* Copy as much as possible from input to output: */ + for (;;) { + /* Fill the window as much as possible: */ + if (s.lookahead <= 1) { + + //Assert(s->strstart < s->w_size+MAX_DIST(s) || + // s->block_start >= (long)s->w_size, "slide too late"); + // if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || + // s.block_start >= s.w_size)) { + // throw new Error("slide too late"); + // } + + fill_window(s); + if (s.lookahead === 0 && flush === Z_NO_FLUSH$2) { + return BS_NEED_MORE; + } + + if (s.lookahead === 0) { + break; + } + /* flush the current block */ + } + //Assert(s->block_start >= 0L, "block gone"); + // if (s.block_start < 0) throw new Error("block gone"); + + s.strstart += s.lookahead; + s.lookahead = 0; + + /* Emit a stored block if pending_buf will be full: */ + const max_start = s.block_start + max_block_size; + + if (s.strstart === 0 || s.strstart >= max_start) { + /* strstart == 0 is possible when wraparound on 16-bit machine */ + s.lookahead = s.strstart - max_start; + s.strstart = max_start; + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + + + } + /* Flush if we may have to slide, otherwise block_start may become + * negative and the data will be gone: + */ + if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + + s.insert = 0; + + if (flush === Z_FINISH$3) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + + if (s.strstart > s.block_start) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + + return BS_NEED_MORE; + }; + + /* =========================================================================== + * Compress as much as possible from the input stream, return the current + * block state. + * This function does not perform lazy evaluation of matches and inserts + * new strings in the dictionary only for unmatched strings or for short + * matches. It is used only for the fast compression options. + */ + const deflate_fast = (s, flush) => { + + let hash_head; /* head of the hash chain */ + let bflush; /* set if current block must be flushed */ + + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s.lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$2) { + return BS_NEED_MORE; + } + if (s.lookahead === 0) { + break; /* flush the current block */ + } + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + hash_head = 0/*NIL*/; + if (s.lookahead >= MIN_MATCH) { + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]); + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + } + + /* Find the longest match, discarding those <= prev_length. + * At this point we have always match_length < MIN_MATCH + */ + if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + s.match_length = longest_match(s, hash_head); + /* longest_match() sets match_start */ + } + if (s.match_length >= MIN_MATCH) { + // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only + + /*** _tr_tally_dist(s, s.strstart - s.match_start, + s.match_length - MIN_MATCH, bflush); ***/ + bflush = _tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); + + s.lookahead -= s.match_length; + + /* Insert new strings in the hash table only if the match length + * is not too large. This saves time but degrades compression. + */ + if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { + s.match_length--; /* string at strstart already in table */ + do { + s.strstart++; + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]); + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. + */ + } while (--s.match_length !== 0); + s.strstart++; + } else + { + s.strstart += s.match_length; + s.match_length = 0; + s.ins_h = s.window[s.strstart]; + /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ + s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + 1]); + + //#if MIN_MATCH != 3 + // Call UPDATE_HASH() MIN_MATCH-3 more times + //#endif + /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not + * matter since it will be recomputed at next deflate call. + */ + } + } else { + /* No match, output a literal byte */ + //Tracevv((stderr,"%c", s.window[s.strstart])); + /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ + bflush = _tr_tally(s, 0, s.window[s.strstart]); + + s.lookahead--; + s.strstart++; + } + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); + if (flush === Z_FINISH$3) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + return BS_BLOCK_DONE; + }; + + /* =========================================================================== + * Same as above, but achieves better compression. We use a lazy + * evaluation for matches: a match is finally adopted only if there is + * no better match at the next window position. + */ + const deflate_slow = (s, flush) => { + + let hash_head; /* head of hash chain */ + let bflush; /* set if current block must be flushed */ + + let max_insert; + + /* Process the input block. */ + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s.lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$2) { + return BS_NEED_MORE; + } + if (s.lookahead === 0) { break; } /* flush the current block */ + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + hash_head = 0/*NIL*/; + if (s.lookahead >= MIN_MATCH) { + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]); + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + } + + /* Find the longest match, discarding those <= prev_length. + */ + s.prev_length = s.match_length; + s.prev_match = s.match_start; + s.match_length = MIN_MATCH - 1; + + if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && + s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + s.match_length = longest_match(s, hash_head); + /* longest_match() sets match_start */ + + if (s.match_length <= 5 && + (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { + + /* If prev_match is also MIN_MATCH, match_start is garbage + * but we will ignore the current match anyway. + */ + s.match_length = MIN_MATCH - 1; + } + } + /* If there was a match at the previous step and the current + * match is not better, output the previous match: + */ + if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { + max_insert = s.strstart + s.lookahead - MIN_MATCH; + /* Do not insert strings in hash table beyond this. */ + + //check_match(s, s.strstart-1, s.prev_match, s.prev_length); + + /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, + s.prev_length - MIN_MATCH, bflush);***/ + bflush = _tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); + /* Insert in hash table all strings up to the end of the match. + * strstart-1 and strstart are already inserted. If there is not + * enough lookahead, the last two strings are not inserted in + * the hash table. + */ + s.lookahead -= s.prev_length - 1; + s.prev_length -= 2; + do { + if (++s.strstart <= max_insert) { + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = HASH(s, s.ins_h, s.window[s.strstart + MIN_MATCH - 1]); + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + } + } while (--s.prev_length !== 0); + s.match_available = 0; + s.match_length = MIN_MATCH - 1; + s.strstart++; + + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + + } else if (s.match_available) { + /* If there was no match at the previous position, output a + * single literal. If there was a match but the current match + * is longer, truncate the previous match to a single literal. + */ + //Tracevv((stderr,"%c", s->window[s->strstart-1])); + /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ + bflush = _tr_tally(s, 0, s.window[s.strstart - 1]); + + if (bflush) { + /*** FLUSH_BLOCK_ONLY(s, 0) ***/ + flush_block_only(s, false); + /***/ + } + s.strstart++; + s.lookahead--; + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + } else { + /* There is no previous match to compare with, wait for + * the next step to decide. + */ + s.match_available = 1; + s.strstart++; + s.lookahead--; + } + } + //Assert (flush != Z_NO_FLUSH, "no flush?"); + if (s.match_available) { + //Tracevv((stderr,"%c", s->window[s->strstart-1])); + /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ + bflush = _tr_tally(s, 0, s.window[s.strstart - 1]); + + s.match_available = 0; + } + s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; + if (flush === Z_FINISH$3) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + + return BS_BLOCK_DONE; + }; + + + /* =========================================================================== + * For Z_RLE, simply look for runs of bytes, generate matches only of distance + * one. Do not maintain a hash table. (It will be regenerated if this run of + * deflate switches away from Z_RLE.) + */ + const deflate_rle = (s, flush) => { + + let bflush; /* set if current block must be flushed */ + let prev; /* byte at distance one to match */ + let scan, strend; /* scan goes up to strend for length of run */ + + const _win = s.window; + + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the longest run, plus one for the unrolled loop. + */ + if (s.lookahead <= MAX_MATCH) { + fill_window(s); + if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH$2) { + return BS_NEED_MORE; + } + if (s.lookahead === 0) { break; } /* flush the current block */ + } + + /* See how many times the previous byte repeats */ + s.match_length = 0; + if (s.lookahead >= MIN_MATCH && s.strstart > 0) { + scan = s.strstart - 1; + prev = _win[scan]; + if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { + strend = s.strstart + MAX_MATCH; + do { + /*jshint noempty:false*/ + } while (prev === _win[++scan] && prev === _win[++scan] && + prev === _win[++scan] && prev === _win[++scan] && + prev === _win[++scan] && prev === _win[++scan] && + prev === _win[++scan] && prev === _win[++scan] && + scan < strend); + s.match_length = MAX_MATCH - (strend - scan); + if (s.match_length > s.lookahead) { + s.match_length = s.lookahead; + } + } + //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); + } + + /* Emit match if have run of MIN_MATCH or longer, else emit literal */ + if (s.match_length >= MIN_MATCH) { + //check_match(s, s.strstart, s.strstart - 1, s.match_length); + + /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ + bflush = _tr_tally(s, 1, s.match_length - MIN_MATCH); + + s.lookahead -= s.match_length; + s.strstart += s.match_length; + s.match_length = 0; + } else { + /* No match, output a literal byte */ + //Tracevv((stderr,"%c", s->window[s->strstart])); + /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ + bflush = _tr_tally(s, 0, s.window[s.strstart]); + + s.lookahead--; + s.strstart++; + } + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + s.insert = 0; + if (flush === Z_FINISH$3) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + return BS_BLOCK_DONE; + }; + + /* =========================================================================== + * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. + * (It will be regenerated if this run of deflate switches away from Huffman.) + */ + const deflate_huff = (s, flush) => { + + let bflush; /* set if current block must be flushed */ + + for (;;) { + /* Make sure that we have a literal to write. */ + if (s.lookahead === 0) { + fill_window(s); + if (s.lookahead === 0) { + if (flush === Z_NO_FLUSH$2) { + return BS_NEED_MORE; + } + break; /* flush the current block */ + } + } + + /* Output a literal byte */ + s.match_length = 0; + //Tracevv((stderr,"%c", s->window[s->strstart])); + /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ + bflush = _tr_tally(s, 0, s.window[s.strstart]); + s.lookahead--; + s.strstart++; + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + s.insert = 0; + if (flush === Z_FINISH$3) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + return BS_BLOCK_DONE; + }; + + /* Values for max_lazy_match, good_match and max_chain_length, depending on + * the desired pack level (0..9). The values given below have been tuned to + * exclude worst case performance for pathological files. Better values may be + * found for specific files. + */ + function Config(good_length, max_lazy, nice_length, max_chain, func) { + + this.good_length = good_length; + this.max_lazy = max_lazy; + this.nice_length = nice_length; + this.max_chain = max_chain; + this.func = func; + } + + const configuration_table = [ + /* good lazy nice chain */ + new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ + new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ + new Config(4, 5, 16, 8, deflate_fast), /* 2 */ + new Config(4, 6, 32, 32, deflate_fast), /* 3 */ + + new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ + new Config(8, 16, 32, 32, deflate_slow), /* 5 */ + new Config(8, 16, 128, 128, deflate_slow), /* 6 */ + new Config(8, 32, 128, 256, deflate_slow), /* 7 */ + new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ + new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ + ]; + + + /* =========================================================================== + * Initialize the "longest match" routines for a new zlib stream + */ + const lm_init = (s) => { + + s.window_size = 2 * s.w_size; + + /*** CLEAR_HASH(s); ***/ + zero(s.head); // Fill with NIL (= 0); + + /* Set the default configuration parameters: + */ + s.max_lazy_match = configuration_table[s.level].max_lazy; + s.good_match = configuration_table[s.level].good_length; + s.nice_match = configuration_table[s.level].nice_length; + s.max_chain_length = configuration_table[s.level].max_chain; + + s.strstart = 0; + s.block_start = 0; + s.lookahead = 0; + s.insert = 0; + s.match_length = s.prev_length = MIN_MATCH - 1; + s.match_available = 0; + s.ins_h = 0; + }; + + + function DeflateState() { + this.strm = null; /* pointer back to this zlib stream */ + this.status = 0; /* as the name implies */ + this.pending_buf = null; /* output still pending */ + this.pending_buf_size = 0; /* size of pending_buf */ + this.pending_out = 0; /* next pending byte to output to the stream */ + this.pending = 0; /* nb of bytes in the pending buffer */ + this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ + this.gzhead = null; /* gzip header information to write */ + this.gzindex = 0; /* where in extra, name, or comment */ + this.method = Z_DEFLATED$2; /* can only be DEFLATED */ + this.last_flush = -1; /* value of flush param for previous deflate call */ + + this.w_size = 0; /* LZ77 window size (32K by default) */ + this.w_bits = 0; /* log2(w_size) (8..16) */ + this.w_mask = 0; /* w_size - 1 */ + + this.window = null; + /* Sliding window. Input bytes are read into the second half of the window, + * and move to the first half later to keep a dictionary of at least wSize + * bytes. With this organization, matches are limited to a distance of + * wSize-MAX_MATCH bytes, but this ensures that IO is always + * performed with a length multiple of the block size. + */ + + this.window_size = 0; + /* Actual size of window: 2*wSize, except when the user input buffer + * is directly used as sliding window. + */ + + this.prev = null; + /* Link to older string with same hash index. To limit the size of this + * array to 64K, this link is maintained only for the last 32K strings. + * An index in this array is thus a window index modulo 32K. + */ + + this.head = null; /* Heads of the hash chains or NIL. */ + + this.ins_h = 0; /* hash index of string to be inserted */ + this.hash_size = 0; /* number of elements in hash table */ + this.hash_bits = 0; /* log2(hash_size) */ + this.hash_mask = 0; /* hash_size-1 */ + + this.hash_shift = 0; + /* Number of bits by which ins_h must be shifted at each input + * step. It must be such that after MIN_MATCH steps, the oldest + * byte no longer takes part in the hash key, that is: + * hash_shift * MIN_MATCH >= hash_bits + */ + + this.block_start = 0; + /* Window position at the beginning of the current output block. Gets + * negative when the window is moved backwards. + */ + + this.match_length = 0; /* length of best match */ + this.prev_match = 0; /* previous match */ + this.match_available = 0; /* set if previous match exists */ + this.strstart = 0; /* start of string to insert */ + this.match_start = 0; /* start of matching string */ + this.lookahead = 0; /* number of valid bytes ahead in window */ + + this.prev_length = 0; + /* Length of the best match at previous step. Matches not greater than this + * are discarded. This is used in the lazy match evaluation. + */ + + this.max_chain_length = 0; + /* To speed up deflation, hash chains are never searched beyond this + * length. A higher limit improves compression ratio but degrades the + * speed. + */ + + this.max_lazy_match = 0; + /* Attempt to find a better match only when the current match is strictly + * smaller than this value. This mechanism is used only for compression + * levels >= 4. + */ + // That's alias to max_lazy_match, don't use directly + //this.max_insert_length = 0; + /* Insert new strings in the hash table only if the match length is not + * greater than this length. This saves time but degrades compression. + * max_insert_length is used only for compression levels <= 3. + */ + + this.level = 0; /* compression level (1..9) */ + this.strategy = 0; /* favor or force Huffman coding*/ + + this.good_match = 0; + /* Use a faster search when the previous match is longer than this */ + + this.nice_match = 0; /* Stop searching when current match exceeds this */ + + /* used by trees.c: */ + + /* Didn't use ct_data typedef below to suppress compiler warning */ + + // struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ + // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ + // struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ + + // Use flat array of DOUBLE size, with interleaved fata, + // because JS does not support effective + this.dyn_ltree = new Uint16Array(HEAP_SIZE * 2); + this.dyn_dtree = new Uint16Array((2 * D_CODES + 1) * 2); + this.bl_tree = new Uint16Array((2 * BL_CODES + 1) * 2); + zero(this.dyn_ltree); + zero(this.dyn_dtree); + zero(this.bl_tree); + + this.l_desc = null; /* desc. for literal tree */ + this.d_desc = null; /* desc. for distance tree */ + this.bl_desc = null; /* desc. for bit length tree */ + + //ush bl_count[MAX_BITS+1]; + this.bl_count = new Uint16Array(MAX_BITS + 1); + /* number of codes at each bit length for an optimal tree */ + + //int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ + this.heap = new Uint16Array(2 * L_CODES + 1); /* heap used to build the Huffman trees */ + zero(this.heap); + + this.heap_len = 0; /* number of elements in the heap */ + this.heap_max = 0; /* element of largest frequency */ + /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. + * The same heap array is used to build all trees. + */ + + this.depth = new Uint16Array(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; + zero(this.depth); + /* Depth of each subtree used as tie breaker for trees of equal frequency + */ + + this.l_buf = 0; /* buffer index for literals or lengths */ + + this.lit_bufsize = 0; + /* Size of match buffer for literals/lengths. There are 4 reasons for + * limiting lit_bufsize to 64K: + * - frequencies can be kept in 16 bit counters + * - if compression is not successful for the first block, all input + * data is still in the window so we can still emit a stored block even + * when input comes from standard input. (This can also be done for + * all blocks if lit_bufsize is not greater than 32K.) + * - if compression is not successful for a file smaller than 64K, we can + * even emit a stored file instead of a stored block (saving 5 bytes). + * This is applicable only for zip (not gzip or zlib). + * - creating new Huffman trees less frequently may not provide fast + * adaptation to changes in the input data statistics. (Take for + * example a binary file with poorly compressible code followed by + * a highly compressible string table.) Smaller buffer sizes give + * fast adaptation but have of course the overhead of transmitting + * trees more frequently. + * - I can't count above 4 + */ + + this.last_lit = 0; /* running index in l_buf */ + + this.d_buf = 0; + /* Buffer index for distances. To simplify the code, d_buf and l_buf have + * the same number of elements. To use different lengths, an extra flag + * array would be necessary. + */ + + this.opt_len = 0; /* bit length of current block with optimal trees */ + this.static_len = 0; /* bit length of current block with static trees */ + this.matches = 0; /* number of string matches in current block */ + this.insert = 0; /* bytes at end of window left to insert */ + + + this.bi_buf = 0; + /* Output buffer. bits are inserted starting at the bottom (least + * significant bits). + */ + this.bi_valid = 0; + /* Number of valid bits in bi_buf. All bits above the last valid bit + * are always zero. + */ + + // Used for window memory init. We safely ignore it for JS. That makes + // sense only for pointers and memory check tools. + //this.high_water = 0; + /* High water mark offset in window for initialized bytes -- bytes above + * this are set to zero in order to avoid memory check warnings when + * longest match routines access bytes past the input. This is then + * updated to the new high water mark. + */ + } + + + const deflateResetKeep = (strm) => { + + if (!strm || !strm.state) { + return err(strm, Z_STREAM_ERROR$2); + } + + strm.total_in = strm.total_out = 0; + strm.data_type = Z_UNKNOWN; + + const s = strm.state; + s.pending = 0; + s.pending_out = 0; + + if (s.wrap < 0) { + s.wrap = -s.wrap; + /* was made negative by deflate(..., Z_FINISH); */ + } + s.status = (s.wrap ? INIT_STATE : BUSY_STATE); + strm.adler = (s.wrap === 2) ? + 0 // crc32(0, Z_NULL, 0) + : + 1; // adler32(0, Z_NULL, 0) + s.last_flush = Z_NO_FLUSH$2; + _tr_init(s); + return Z_OK$3; + }; + + + const deflateReset = (strm) => { + + const ret = deflateResetKeep(strm); + if (ret === Z_OK$3) { + lm_init(strm.state); + } + return ret; + }; + + + const deflateSetHeader = (strm, head) => { + + if (!strm || !strm.state) { return Z_STREAM_ERROR$2; } + if (strm.state.wrap !== 2) { return Z_STREAM_ERROR$2; } + strm.state.gzhead = head; + return Z_OK$3; + }; + + + const deflateInit2 = (strm, level, method, windowBits, memLevel, strategy) => { + + if (!strm) { // === Z_NULL + return Z_STREAM_ERROR$2; + } + let wrap = 1; + + if (level === Z_DEFAULT_COMPRESSION$1) { + level = 6; + } + + if (windowBits < 0) { /* suppress zlib wrapper */ + wrap = 0; + windowBits = -windowBits; + } + + else if (windowBits > 15) { + wrap = 2; /* write gzip wrapper instead */ + windowBits -= 16; + } + + + if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED$2 || + windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || + strategy < 0 || strategy > Z_FIXED) { + return err(strm, Z_STREAM_ERROR$2); + } + + + if (windowBits === 8) { + windowBits = 9; + } + /* until 256-byte window bug fixed */ + + const s = new DeflateState(); + + strm.state = s; + s.strm = strm; + + s.wrap = wrap; + s.gzhead = null; + s.w_bits = windowBits; + s.w_size = 1 << s.w_bits; + s.w_mask = s.w_size - 1; + + s.hash_bits = memLevel + 7; + s.hash_size = 1 << s.hash_bits; + s.hash_mask = s.hash_size - 1; + s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); + + s.window = new Uint8Array(s.w_size * 2); + s.head = new Uint16Array(s.hash_size); + s.prev = new Uint16Array(s.w_size); + + // Don't need mem init magic for JS. + //s.high_water = 0; /* nothing written to s->window yet */ + + s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ + + s.pending_buf_size = s.lit_bufsize * 4; + + //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); + //s->pending_buf = (uchf *) overlay; + s.pending_buf = new Uint8Array(s.pending_buf_size); + + // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) + //s->d_buf = overlay + s->lit_bufsize/sizeof(ush); + s.d_buf = 1 * s.lit_bufsize; + + //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; + s.l_buf = (1 + 2) * s.lit_bufsize; + + s.level = level; + s.strategy = strategy; + s.method = method; + + return deflateReset(strm); + }; + + const deflateInit = (strm, level) => { + + return deflateInit2(strm, level, Z_DEFLATED$2, MAX_WBITS$1, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY$1); + }; + + + const deflate$2 = (strm, flush) => { + + let beg, val; // for gzip header write only + + if (!strm || !strm.state || + flush > Z_BLOCK$1 || flush < 0) { + return strm ? err(strm, Z_STREAM_ERROR$2) : Z_STREAM_ERROR$2; + } + + const s = strm.state; + + if (!strm.output || + (!strm.input && strm.avail_in !== 0) || + (s.status === FINISH_STATE && flush !== Z_FINISH$3)) { + return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR$1 : Z_STREAM_ERROR$2); + } + + s.strm = strm; /* just in case */ + const old_flush = s.last_flush; + s.last_flush = flush; + + /* Write the header */ + if (s.status === INIT_STATE) { + + if (s.wrap === 2) { // GZIP header + strm.adler = 0; //crc32(0L, Z_NULL, 0); + put_byte(s, 31); + put_byte(s, 139); + put_byte(s, 8); + if (!s.gzhead) { // s->gzhead == Z_NULL + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, s.level === 9 ? 2 : + (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? + 4 : 0)); + put_byte(s, OS_CODE); + s.status = BUSY_STATE; + } + else { + put_byte(s, (s.gzhead.text ? 1 : 0) + + (s.gzhead.hcrc ? 2 : 0) + + (!s.gzhead.extra ? 0 : 4) + + (!s.gzhead.name ? 0 : 8) + + (!s.gzhead.comment ? 0 : 16) + ); + put_byte(s, s.gzhead.time & 0xff); + put_byte(s, (s.gzhead.time >> 8) & 0xff); + put_byte(s, (s.gzhead.time >> 16) & 0xff); + put_byte(s, (s.gzhead.time >> 24) & 0xff); + put_byte(s, s.level === 9 ? 2 : + (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? + 4 : 0)); + put_byte(s, s.gzhead.os & 0xff); + if (s.gzhead.extra && s.gzhead.extra.length) { + put_byte(s, s.gzhead.extra.length & 0xff); + put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); + } + if (s.gzhead.hcrc) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending, 0); + } + s.gzindex = 0; + s.status = EXTRA_STATE; + } + } + else // DEFLATE header + { + let header = (Z_DEFLATED$2 + ((s.w_bits - 8) << 4)) << 8; + let level_flags = -1; + + if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { + level_flags = 0; + } else if (s.level < 6) { + level_flags = 1; + } else if (s.level === 6) { + level_flags = 2; + } else { + level_flags = 3; + } + header |= (level_flags << 6); + if (s.strstart !== 0) { header |= PRESET_DICT; } + header += 31 - (header % 31); + + s.status = BUSY_STATE; + putShortMSB(s, header); + + /* Save the adler32 of the preset dictionary: */ + if (s.strstart !== 0) { + putShortMSB(s, strm.adler >>> 16); + putShortMSB(s, strm.adler & 0xffff); + } + strm.adler = 1; // adler32(0L, Z_NULL, 0); + } + } + + //#ifdef GZIP + if (s.status === EXTRA_STATE) { + if (s.gzhead.extra/* != Z_NULL*/) { + beg = s.pending; /* start of bytes to update crc */ + + while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { + if (s.pending === s.pending_buf_size) { + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + flush_pending(strm); + beg = s.pending; + if (s.pending === s.pending_buf_size) { + break; + } + } + put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); + s.gzindex++; + } + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + if (s.gzindex === s.gzhead.extra.length) { + s.gzindex = 0; + s.status = NAME_STATE; + } + } + else { + s.status = NAME_STATE; + } + } + if (s.status === NAME_STATE) { + if (s.gzhead.name/* != Z_NULL*/) { + beg = s.pending; /* start of bytes to update crc */ + //int val; + + do { + if (s.pending === s.pending_buf_size) { + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + flush_pending(strm); + beg = s.pending; + if (s.pending === s.pending_buf_size) { + val = 1; + break; + } + } + // JS specific: little magic to add zero terminator to end of string + if (s.gzindex < s.gzhead.name.length) { + val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; + } else { + val = 0; + } + put_byte(s, val); + } while (val !== 0); + + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + if (val === 0) { + s.gzindex = 0; + s.status = COMMENT_STATE; + } + } + else { + s.status = COMMENT_STATE; + } + } + if (s.status === COMMENT_STATE) { + if (s.gzhead.comment/* != Z_NULL*/) { + beg = s.pending; /* start of bytes to update crc */ + //int val; + + do { + if (s.pending === s.pending_buf_size) { + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + flush_pending(strm); + beg = s.pending; + if (s.pending === s.pending_buf_size) { + val = 1; + break; + } + } + // JS specific: little magic to add zero terminator to end of string + if (s.gzindex < s.gzhead.comment.length) { + val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; + } else { + val = 0; + } + put_byte(s, val); + } while (val !== 0); + + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + if (val === 0) { + s.status = HCRC_STATE; + } + } + else { + s.status = HCRC_STATE; + } + } + if (s.status === HCRC_STATE) { + if (s.gzhead.hcrc) { + if (s.pending + 2 > s.pending_buf_size) { + flush_pending(strm); + } + if (s.pending + 2 <= s.pending_buf_size) { + put_byte(s, strm.adler & 0xff); + put_byte(s, (strm.adler >> 8) & 0xff); + strm.adler = 0; //crc32(0L, Z_NULL, 0); + s.status = BUSY_STATE; + } + } + else { + s.status = BUSY_STATE; + } + } + //#endif + + /* Flush as much pending output as possible */ + if (s.pending !== 0) { + flush_pending(strm); + if (strm.avail_out === 0) { + /* Since avail_out is 0, deflate will be called again with + * more output space, but possibly with both pending and + * avail_in equal to zero. There won't be anything to do, + * but this is not an error situation so make sure we + * return OK instead of BUF_ERROR at next call of deflate: + */ + s.last_flush = -1; + return Z_OK$3; + } + + /* Make sure there is something to do and avoid duplicate consecutive + * flushes. For repeated and useless calls with Z_FINISH, we keep + * returning Z_STREAM_END instead of Z_BUF_ERROR. + */ + } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && + flush !== Z_FINISH$3) { + return err(strm, Z_BUF_ERROR$1); + } + + /* User must not provide more input after the first FINISH: */ + if (s.status === FINISH_STATE && strm.avail_in !== 0) { + return err(strm, Z_BUF_ERROR$1); + } + + /* Start a new block or continue the current one. + */ + if (strm.avail_in !== 0 || s.lookahead !== 0 || + (flush !== Z_NO_FLUSH$2 && s.status !== FINISH_STATE)) { + let bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : + (s.strategy === Z_RLE ? deflate_rle(s, flush) : + configuration_table[s.level].func(s, flush)); + + if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { + s.status = FINISH_STATE; + } + if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { + if (strm.avail_out === 0) { + s.last_flush = -1; + /* avoid BUF_ERROR next call, see above */ + } + return Z_OK$3; + /* If flush != Z_NO_FLUSH && avail_out == 0, the next call + * of deflate should use the same flush parameter to make sure + * that the flush is complete. So we don't have to output an + * empty block here, this will be done at next call. This also + * ensures that for a very small output buffer, we emit at most + * one empty block. + */ + } + if (bstate === BS_BLOCK_DONE) { + if (flush === Z_PARTIAL_FLUSH) { + _tr_align(s); + } + else if (flush !== Z_BLOCK$1) { /* FULL_FLUSH or SYNC_FLUSH */ + + _tr_stored_block(s, 0, 0, false); + /* For a full flush, this empty block will be recognized + * as a special marker by inflate_sync(). + */ + if (flush === Z_FULL_FLUSH$1) { + /*** CLEAR_HASH(s); ***/ /* forget history */ + zero(s.head); // Fill with NIL (= 0); + + if (s.lookahead === 0) { + s.strstart = 0; + s.block_start = 0; + s.insert = 0; + } + } + } + flush_pending(strm); + if (strm.avail_out === 0) { + s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ + return Z_OK$3; + } + } + } + //Assert(strm->avail_out > 0, "bug2"); + //if (strm.avail_out <= 0) { throw new Error("bug2");} + + if (flush !== Z_FINISH$3) { return Z_OK$3; } + if (s.wrap <= 0) { return Z_STREAM_END$3; } + + /* Write the trailer */ + if (s.wrap === 2) { + put_byte(s, strm.adler & 0xff); + put_byte(s, (strm.adler >> 8) & 0xff); + put_byte(s, (strm.adler >> 16) & 0xff); + put_byte(s, (strm.adler >> 24) & 0xff); + put_byte(s, strm.total_in & 0xff); + put_byte(s, (strm.total_in >> 8) & 0xff); + put_byte(s, (strm.total_in >> 16) & 0xff); + put_byte(s, (strm.total_in >> 24) & 0xff); + } + else + { + putShortMSB(s, strm.adler >>> 16); + putShortMSB(s, strm.adler & 0xffff); + } + + flush_pending(strm); + /* If avail_out is zero, the application will call deflate again + * to flush the rest. + */ + if (s.wrap > 0) { s.wrap = -s.wrap; } + /* write the trailer only once! */ + return s.pending !== 0 ? Z_OK$3 : Z_STREAM_END$3; + }; + + + const deflateEnd = (strm) => { + + if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { + return Z_STREAM_ERROR$2; + } + + const status = strm.state.status; + if (status !== INIT_STATE && + status !== EXTRA_STATE && + status !== NAME_STATE && + status !== COMMENT_STATE && + status !== HCRC_STATE && + status !== BUSY_STATE && + status !== FINISH_STATE + ) { + return err(strm, Z_STREAM_ERROR$2); + } + + strm.state = null; + + return status === BUSY_STATE ? err(strm, Z_DATA_ERROR$2) : Z_OK$3; + }; + + + /* ========================================================================= + * Initializes the compression dictionary from the given byte + * sequence without producing any compressed output. + */ + const deflateSetDictionary = (strm, dictionary) => { + + let dictLength = dictionary.length; + + if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { + return Z_STREAM_ERROR$2; + } + + const s = strm.state; + const wrap = s.wrap; + + if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { + return Z_STREAM_ERROR$2; + } + + /* when using zlib wrappers, compute Adler-32 for provided dictionary */ + if (wrap === 1) { + /* adler32(strm->adler, dictionary, dictLength); */ + strm.adler = adler32_1(strm.adler, dictionary, dictLength, 0); + } + + s.wrap = 0; /* avoid computing Adler-32 in read_buf */ + + /* if dictionary would fill window, just replace the history */ + if (dictLength >= s.w_size) { + if (wrap === 0) { /* already empty otherwise */ + /*** CLEAR_HASH(s); ***/ + zero(s.head); // Fill with NIL (= 0); + s.strstart = 0; + s.block_start = 0; + s.insert = 0; + } + /* use the tail */ + // dictionary = dictionary.slice(dictLength - s.w_size); + let tmpDict = new Uint8Array(s.w_size); + tmpDict.set(dictionary.subarray(dictLength - s.w_size, dictLength), 0); + dictionary = tmpDict; + dictLength = s.w_size; + } + /* insert dictionary into window and hash */ + const avail = strm.avail_in; + const next = strm.next_in; + const input = strm.input; + strm.avail_in = dictLength; + strm.next_in = 0; + strm.input = dictionary; + fill_window(s); + while (s.lookahead >= MIN_MATCH) { + let str = s.strstart; + let n = s.lookahead - (MIN_MATCH - 1); + do { + /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ + s.ins_h = HASH(s, s.ins_h, s.window[str + MIN_MATCH - 1]); + + s.prev[str & s.w_mask] = s.head[s.ins_h]; + + s.head[s.ins_h] = str; + str++; + } while (--n); + s.strstart = str; + s.lookahead = MIN_MATCH - 1; + fill_window(s); + } + s.strstart += s.lookahead; + s.block_start = s.strstart; + s.insert = s.lookahead; + s.lookahead = 0; + s.match_length = s.prev_length = MIN_MATCH - 1; + s.match_available = 0; + strm.next_in = next; + strm.input = input; + strm.avail_in = avail; + s.wrap = wrap; + return Z_OK$3; + }; + + + var deflateInit_1 = deflateInit; + var deflateInit2_1 = deflateInit2; + var deflateReset_1 = deflateReset; + var deflateResetKeep_1 = deflateResetKeep; + var deflateSetHeader_1 = deflateSetHeader; + var deflate_2$1 = deflate$2; + var deflateEnd_1 = deflateEnd; + var deflateSetDictionary_1 = deflateSetDictionary; + var deflateInfo = 'pako deflate (from Nodeca project)'; + + /* Not implemented + module.exports.deflateBound = deflateBound; + module.exports.deflateCopy = deflateCopy; + module.exports.deflateParams = deflateParams; + module.exports.deflatePending = deflatePending; + module.exports.deflatePrime = deflatePrime; + module.exports.deflateTune = deflateTune; + */ + + var deflate_1$2 = { + deflateInit: deflateInit_1, + deflateInit2: deflateInit2_1, + deflateReset: deflateReset_1, + deflateResetKeep: deflateResetKeep_1, + deflateSetHeader: deflateSetHeader_1, + deflate: deflate_2$1, + deflateEnd: deflateEnd_1, + deflateSetDictionary: deflateSetDictionary_1, + deflateInfo: deflateInfo + }; + + const _has = (obj, key) => { + return Object.prototype.hasOwnProperty.call(obj, key); + }; + + var assign = function (obj /*from1, from2, from3, ...*/) { + const sources = Array.prototype.slice.call(arguments, 1); + while (sources.length) { + const source = sources.shift(); + if (!source) { continue; } + + if (typeof source !== 'object') { + throw new TypeError(source + 'must be non-object'); + } + + for (const p in source) { + if (_has(source, p)) { + obj[p] = source[p]; + } + } + } + + return obj; + }; + + + // Join array of chunks to single array. + var flattenChunks = (chunks) => { + // calculate data length + let len = 0; + + for (let i = 0, l = chunks.length; i < l; i++) { + len += chunks[i].length; + } + + // join chunks + const result = new Uint8Array(len); + + for (let i = 0, pos = 0, l = chunks.length; i < l; i++) { + let chunk = chunks[i]; + result.set(chunk, pos); + pos += chunk.length; + } + + return result; + }; + + var common = { + assign: assign, + flattenChunks: flattenChunks + }; + + // String encode/decode helpers + + + // Quick check if we can use fast array to bin string conversion + // + // - apply(Array) can fail on Android 2.2 + // - apply(Uint8Array) can fail on iOS 5.1 Safari + // + let STR_APPLY_UIA_OK = true; + + try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; } + + + // Table with utf8 lengths (calculated by first byte of sequence) + // Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS, + // because max possible codepoint is 0x10ffff + const _utf8len = new Uint8Array(256); + for (let q = 0; q < 256; q++) { + _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1); + } + _utf8len[254] = _utf8len[254] = 1; // Invalid sequence start + + + // convert string to array (typed, when possible) + var string2buf = (str) => { + if (typeof TextEncoder === 'function' && TextEncoder.prototype.encode) { + return new TextEncoder().encode(str); + } + + let buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0; + + // count binary size + for (m_pos = 0; m_pos < str_len; m_pos++) { + c = str.charCodeAt(m_pos); + if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { + c2 = str.charCodeAt(m_pos + 1); + if ((c2 & 0xfc00) === 0xdc00) { + c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); + m_pos++; + } + } + buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4; + } + + // allocate buffer + buf = new Uint8Array(buf_len); + + // convert + for (i = 0, m_pos = 0; i < buf_len; m_pos++) { + c = str.charCodeAt(m_pos); + if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { + c2 = str.charCodeAt(m_pos + 1); + if ((c2 & 0xfc00) === 0xdc00) { + c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); + m_pos++; + } + } + if (c < 0x80) { + /* one byte */ + buf[i++] = c; + } else if (c < 0x800) { + /* two bytes */ + buf[i++] = 0xC0 | (c >>> 6); + buf[i++] = 0x80 | (c & 0x3f); + } else if (c < 0x10000) { + /* three bytes */ + buf[i++] = 0xE0 | (c >>> 12); + buf[i++] = 0x80 | (c >>> 6 & 0x3f); + buf[i++] = 0x80 | (c & 0x3f); + } else { + /* four bytes */ + buf[i++] = 0xf0 | (c >>> 18); + buf[i++] = 0x80 | (c >>> 12 & 0x3f); + buf[i++] = 0x80 | (c >>> 6 & 0x3f); + buf[i++] = 0x80 | (c & 0x3f); + } + } + + return buf; + }; + + // Helper + const buf2binstring = (buf, len) => { + // On Chrome, the arguments in a function call that are allowed is `65534`. + // If the length of the buffer is smaller than that, we can use this optimization, + // otherwise we will take a slower path. + if (len < 65534) { + if (buf.subarray && STR_APPLY_UIA_OK) { + return String.fromCharCode.apply(null, buf.length === len ? buf : buf.subarray(0, len)); + } + } + + let result = ''; + for (let i = 0; i < len; i++) { + result += String.fromCharCode(buf[i]); + } + return result; + }; + + + // convert array to string + var buf2string = (buf, max) => { + const len = max || buf.length; + + if (typeof TextDecoder === 'function' && TextDecoder.prototype.decode) { + return new TextDecoder().decode(buf.subarray(0, max)); + } + + let i, out; + + // Reserve max possible length (2 words per char) + // NB: by unknown reasons, Array is significantly faster for + // String.fromCharCode.apply than Uint16Array. + const utf16buf = new Array(len * 2); + + for (out = 0, i = 0; i < len;) { + let c = buf[i++]; + // quick process ascii + if (c < 0x80) { utf16buf[out++] = c; continue; } + + let c_len = _utf8len[c]; + // skip 5 & 6 byte codes + if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; } + + // apply mask on first byte + c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07; + // join the rest + while (c_len > 1 && i < len) { + c = (c << 6) | (buf[i++] & 0x3f); + c_len--; + } + + // terminated by end of string? + if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; } + + if (c < 0x10000) { + utf16buf[out++] = c; + } else { + c -= 0x10000; + utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff); + utf16buf[out++] = 0xdc00 | (c & 0x3ff); + } + } + + return buf2binstring(utf16buf, out); + }; + + + // Calculate max possible position in utf8 buffer, + // that will not break sequence. If that's not possible + // - (very small limits) return max size as is. + // + // buf[] - utf8 bytes array + // max - length limit (mandatory); + var utf8border = (buf, max) => { + + max = max || buf.length; + if (max > buf.length) { max = buf.length; } + + // go back from last position, until start of sequence found + let pos = max - 1; + while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; } + + // Very small and broken sequence, + // return max, because we should return something anyway. + if (pos < 0) { return max; } + + // If we came to start of buffer - that means buffer is too small, + // return max too. + if (pos === 0) { return max; } + + return (pos + _utf8len[buf[pos]] > max) ? pos : max; + }; + + var strings = { + string2buf: string2buf, + buf2string: buf2string, + utf8border: utf8border + }; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + function ZStream() { + /* next input byte */ + this.input = null; // JS specific, because we have no pointers + this.next_in = 0; + /* number of bytes available at input */ + this.avail_in = 0; + /* total number of input bytes read so far */ + this.total_in = 0; + /* next output byte should be put there */ + this.output = null; // JS specific, because we have no pointers + this.next_out = 0; + /* remaining free space at output */ + this.avail_out = 0; + /* total number of bytes output so far */ + this.total_out = 0; + /* last error message, NULL if no error */ + this.msg = ''/*Z_NULL*/; + /* not visible by applications */ + this.state = null; + /* best guess about the data type: binary or text */ + this.data_type = 2/*Z_UNKNOWN*/; + /* adler32 value of the uncompressed data */ + this.adler = 0; + } + + var zstream = ZStream; + + const toString$1 = Object.prototype.toString; + + /* Public constants ==========================================================*/ + /* ===========================================================================*/ + + const { + Z_NO_FLUSH: Z_NO_FLUSH$1, Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH: Z_FINISH$2, + Z_OK: Z_OK$2, Z_STREAM_END: Z_STREAM_END$2, + Z_DEFAULT_COMPRESSION, + Z_DEFAULT_STRATEGY, + Z_DEFLATED: Z_DEFLATED$1 + } = constants$2; + + /* ===========================================================================*/ + + + /** + * class Deflate + * + * Generic JS-style wrapper for zlib calls. If you don't need + * streaming behaviour - use more simple functions: [[deflate]], + * [[deflateRaw]] and [[gzip]]. + **/ + + /* internal + * Deflate.chunks -> Array + * + * Chunks of output data, if [[Deflate#onData]] not overridden. + **/ + + /** + * Deflate.result -> Uint8Array + * + * Compressed result, generated by default [[Deflate#onData]] + * and [[Deflate#onEnd]] handlers. Filled after you push last chunk + * (call [[Deflate#push]] with `Z_FINISH` / `true` param). + **/ + + /** + * Deflate.err -> Number + * + * Error code after deflate finished. 0 (Z_OK) on success. + * You will not need it in real life, because deflate errors + * are possible only on wrong options or bad `onData` / `onEnd` + * custom handlers. + **/ + + /** + * Deflate.msg -> String + * + * Error message, if [[Deflate.err]] != 0 + **/ + + + /** + * new Deflate(options) + * - options (Object): zlib deflate options. + * + * Creates new deflator instance with specified params. Throws exception + * on bad params. Supported options: + * + * - `level` + * - `windowBits` + * - `memLevel` + * - `strategy` + * - `dictionary` + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information on these. + * + * Additional options, for internal needs: + * + * - `chunkSize` - size of generated data chunks (16K by default) + * - `raw` (Boolean) - do raw deflate + * - `gzip` (Boolean) - create gzip wrapper + * - `header` (Object) - custom header for gzip + * - `text` (Boolean) - true if compressed data believed to be text + * - `time` (Number) - modification time, unix timestamp + * - `os` (Number) - operation system code + * - `extra` (Array) - array of bytes with extra data (max 65536) + * - `name` (String) - file name (binary string) + * - `comment` (String) - comment (binary string) + * - `hcrc` (Boolean) - true if header crc should be added + * + * ##### Example: + * + * ```javascript + * const pako = require('pako') + * , chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9]) + * , chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]); + * + * const deflate = new pako.Deflate({ level: 3}); + * + * deflate.push(chunk1, false); + * deflate.push(chunk2, true); // true -> last chunk + * + * if (deflate.err) { throw new Error(deflate.err); } + * + * console.log(deflate.result); + * ``` + **/ + function Deflate$1(options) { + this.options = common.assign({ + level: Z_DEFAULT_COMPRESSION, + method: Z_DEFLATED$1, + chunkSize: 16384, + windowBits: 15, + memLevel: 8, + strategy: Z_DEFAULT_STRATEGY + }, options || {}); + + let opt = this.options; + + if (opt.raw && (opt.windowBits > 0)) { + opt.windowBits = -opt.windowBits; + } + + else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) { + opt.windowBits += 16; + } + + this.err = 0; // error code, if happens (0 = Z_OK) + this.msg = ''; // error message + this.ended = false; // used to avoid multiple onEnd() calls + this.chunks = []; // chunks of compressed data + + this.strm = new zstream(); + this.strm.avail_out = 0; + + let status = deflate_1$2.deflateInit2( + this.strm, + opt.level, + opt.method, + opt.windowBits, + opt.memLevel, + opt.strategy + ); + + if (status !== Z_OK$2) { + throw new Error(messages[status]); + } + + if (opt.header) { + deflate_1$2.deflateSetHeader(this.strm, opt.header); + } + + if (opt.dictionary) { + let dict; + // Convert data if needed + if (typeof opt.dictionary === 'string') { + // If we need to compress text, change encoding to utf8. + dict = strings.string2buf(opt.dictionary); + } else if (toString$1.call(opt.dictionary) === '[object ArrayBuffer]') { + dict = new Uint8Array(opt.dictionary); + } else { + dict = opt.dictionary; + } + + status = deflate_1$2.deflateSetDictionary(this.strm, dict); + + if (status !== Z_OK$2) { + throw new Error(messages[status]); + } + + this._dict_set = true; + } + } + + /** + * Deflate#push(data[, flush_mode]) -> Boolean + * - data (Uint8Array|ArrayBuffer|String): input data. Strings will be + * converted to utf8 byte sequence. + * - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + * See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH. + * + * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + * new compressed chunks. Returns `true` on success. The last data block must + * have `flush_mode` Z_FINISH (or `true`). That will flush internal pending + * buffers and call [[Deflate#onEnd]]. + * + * On fail call [[Deflate#onEnd]] with error code and return false. + * + * ##### Example + * + * ```javascript + * push(chunk, false); // push one of data chunks + * ... + * push(chunk, true); // push last chunk + * ``` + **/ + Deflate$1.prototype.push = function (data, flush_mode) { + const strm = this.strm; + const chunkSize = this.options.chunkSize; + let status, _flush_mode; + + if (this.ended) { return false; } + + if (flush_mode === ~~flush_mode) _flush_mode = flush_mode; + else _flush_mode = flush_mode === true ? Z_FINISH$2 : Z_NO_FLUSH$1; + + // Convert data if needed + if (typeof data === 'string') { + // If we need to compress text, change encoding to utf8. + strm.input = strings.string2buf(data); + } else if (toString$1.call(data) === '[object ArrayBuffer]') { + strm.input = new Uint8Array(data); + } else { + strm.input = data; + } + + strm.next_in = 0; + strm.avail_in = strm.input.length; + + for (;;) { + if (strm.avail_out === 0) { + strm.output = new Uint8Array(chunkSize); + strm.next_out = 0; + strm.avail_out = chunkSize; + } + + // Make sure avail_out > 6 to avoid repeating markers + if ((_flush_mode === Z_SYNC_FLUSH || _flush_mode === Z_FULL_FLUSH) && strm.avail_out <= 6) { + this.onData(strm.output.subarray(0, strm.next_out)); + strm.avail_out = 0; + continue; + } + + status = deflate_1$2.deflate(strm, _flush_mode); + + // Ended => flush and finish + if (status === Z_STREAM_END$2) { + if (strm.next_out > 0) { + this.onData(strm.output.subarray(0, strm.next_out)); + } + status = deflate_1$2.deflateEnd(this.strm); + this.onEnd(status); + this.ended = true; + return status === Z_OK$2; + } + + // Flush if out buffer full + if (strm.avail_out === 0) { + this.onData(strm.output); + continue; + } + + // Flush if requested and has data + if (_flush_mode > 0 && strm.next_out > 0) { + this.onData(strm.output.subarray(0, strm.next_out)); + strm.avail_out = 0; + continue; + } + + if (strm.avail_in === 0) break; + } + + return true; + }; + + + /** + * Deflate#onData(chunk) -> Void + * - chunk (Uint8Array): output data. + * + * By default, stores data blocks in `chunks[]` property and glue + * those in `onEnd`. Override this handler, if you need another behaviour. + **/ + Deflate$1.prototype.onData = function (chunk) { + this.chunks.push(chunk); + }; + + + /** + * Deflate#onEnd(status) -> Void + * - status (Number): deflate status. 0 (Z_OK) on success, + * other if not. + * + * Called once after you tell deflate that the input stream is + * complete (Z_FINISH). By default - join collected chunks, + * free memory and fill `results` / `err` properties. + **/ + Deflate$1.prototype.onEnd = function (status) { + // On success - join + if (status === Z_OK$2) { + this.result = common.flattenChunks(this.chunks); + } + this.chunks = []; + this.err = status; + this.msg = this.strm.msg; + }; + + + /** + * deflate(data[, options]) -> Uint8Array + * - data (Uint8Array|String): input data to compress. + * - options (Object): zlib deflate options. + * + * Compress `data` with deflate algorithm and `options`. + * + * Supported options are: + * + * - level + * - windowBits + * - memLevel + * - strategy + * - dictionary + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information on these. + * + * Sugar (options): + * + * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify + * negative windowBits implicitly. + * + * ##### Example: + * + * ```javascript + * const pako = require('pako') + * const data = new Uint8Array([1,2,3,4,5,6,7,8,9]); + * + * console.log(pako.deflate(data)); + * ``` + **/ + function deflate$1(input, options) { + const deflator = new Deflate$1(options); + + deflator.push(input, true); + + // That will never happens, if you don't cheat with options :) + if (deflator.err) { throw deflator.msg || messages[deflator.err]; } + + return deflator.result; + } + + + /** + * deflateRaw(data[, options]) -> Uint8Array + * - data (Uint8Array|String): input data to compress. + * - options (Object): zlib deflate options. + * + * The same as [[deflate]], but creates raw data, without wrapper + * (header and adler32 crc). + **/ + function deflateRaw$1(input, options) { + options = options || {}; + options.raw = true; + return deflate$1(input, options); + } + + + /** + * gzip(data[, options]) -> Uint8Array + * - data (Uint8Array|String): input data to compress. + * - options (Object): zlib deflate options. + * + * The same as [[deflate]], but create gzip wrapper instead of + * deflate one. + **/ + function gzip$1(input, options) { + options = options || {}; + options.gzip = true; + return deflate$1(input, options); + } + + + var Deflate_1$1 = Deflate$1; + var deflate_2 = deflate$1; + var deflateRaw_1$1 = deflateRaw$1; + var gzip_1$1 = gzip$1; + var constants$1 = constants$2; + + var deflate_1$1 = { + Deflate: Deflate_1$1, + deflate: deflate_2, + deflateRaw: deflateRaw_1$1, + gzip: gzip_1$1, + constants: constants$1 + }; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + // See state defs from inflate.js + const BAD$1 = 30; /* got a data error -- remain here until reset */ + const TYPE$1 = 12; /* i: waiting for type bits, including last-flag bit */ + + /* + Decode literal, length, and distance codes and write out the resulting + literal and match bytes until either not enough input or output is + available, an end-of-block is encountered, or a data error is encountered. + When large enough input and output buffers are supplied to inflate(), for + example, a 16K input buffer and a 64K output buffer, more than 95% of the + inflate execution time is spent in this routine. + + Entry assumptions: + + state.mode === LEN + strm.avail_in >= 6 + strm.avail_out >= 258 + start >= strm.avail_out + state.bits < 8 + + On return, state.mode is one of: + + LEN -- ran out of enough output space or enough available input + TYPE -- reached end of block code, inflate() to interpret next block + BAD -- error in block data + + Notes: + + - The maximum input bits used by a length/distance pair is 15 bits for the + length code, 5 bits for the length extra, 15 bits for the distance code, + and 13 bits for the distance extra. This totals 48 bits, or six bytes. + Therefore if strm.avail_in >= 6, then there is enough input to avoid + checking for available input while decoding. + + - The maximum bytes that a single length/distance pair can output is 258 + bytes, which is the maximum length that can be coded. inflate_fast() + requires strm.avail_out >= 258 for each loop to avoid checking for + output space. + */ + var inffast = function inflate_fast(strm, start) { + let _in; /* local strm.input */ + let last; /* have enough input while in < last */ + let _out; /* local strm.output */ + let beg; /* inflate()'s initial strm.output */ + let end; /* while out < end, enough space available */ + //#ifdef INFLATE_STRICT + let dmax; /* maximum distance from zlib header */ + //#endif + let wsize; /* window size or zero if not using window */ + let whave; /* valid bytes in the window */ + let wnext; /* window write index */ + // Use `s_window` instead `window`, avoid conflict with instrumentation tools + let s_window; /* allocated sliding window, if wsize != 0 */ + let hold; /* local strm.hold */ + let bits; /* local strm.bits */ + let lcode; /* local strm.lencode */ + let dcode; /* local strm.distcode */ + let lmask; /* mask for first level of length codes */ + let dmask; /* mask for first level of distance codes */ + let here; /* retrieved table entry */ + let op; /* code bits, operation, extra bits, or */ + /* window position, window bytes to copy */ + let len; /* match length, unused bytes */ + let dist; /* match distance */ + let from; /* where to copy match from */ + let from_source; + + + let input, output; // JS specific, because we have no pointers + + /* copy state to local variables */ + const state = strm.state; + //here = state.here; + _in = strm.next_in; + input = strm.input; + last = _in + (strm.avail_in - 5); + _out = strm.next_out; + output = strm.output; + beg = _out - (start - strm.avail_out); + end = _out + (strm.avail_out - 257); + //#ifdef INFLATE_STRICT + dmax = state.dmax; + //#endif + wsize = state.wsize; + whave = state.whave; + wnext = state.wnext; + s_window = state.window; + hold = state.hold; + bits = state.bits; + lcode = state.lencode; + dcode = state.distcode; + lmask = (1 << state.lenbits) - 1; + dmask = (1 << state.distbits) - 1; + + + /* decode literals and length/distances until end-of-block or not enough + input data or output space */ + + top: + do { + if (bits < 15) { + hold += input[_in++] << bits; + bits += 8; + hold += input[_in++] << bits; + bits += 8; + } + + here = lcode[hold & lmask]; + + dolen: + for (;;) { // Goto emulation + op = here >>> 24/*here.bits*/; + hold >>>= op; + bits -= op; + op = (here >>> 16) & 0xff/*here.op*/; + if (op === 0) { /* literal */ + //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? + // "inflate: literal '%c'\n" : + // "inflate: literal 0x%02x\n", here.val)); + output[_out++] = here & 0xffff/*here.val*/; + } + else if (op & 16) { /* length base */ + len = here & 0xffff/*here.val*/; + op &= 15; /* number of extra bits */ + if (op) { + if (bits < op) { + hold += input[_in++] << bits; + bits += 8; + } + len += hold & ((1 << op) - 1); + hold >>>= op; + bits -= op; + } + //Tracevv((stderr, "inflate: length %u\n", len)); + if (bits < 15) { + hold += input[_in++] << bits; + bits += 8; + hold += input[_in++] << bits; + bits += 8; + } + here = dcode[hold & dmask]; + + dodist: + for (;;) { // goto emulation + op = here >>> 24/*here.bits*/; + hold >>>= op; + bits -= op; + op = (here >>> 16) & 0xff/*here.op*/; + + if (op & 16) { /* distance base */ + dist = here & 0xffff/*here.val*/; + op &= 15; /* number of extra bits */ + if (bits < op) { + hold += input[_in++] << bits; + bits += 8; + if (bits < op) { + hold += input[_in++] << bits; + bits += 8; + } + } + dist += hold & ((1 << op) - 1); + //#ifdef INFLATE_STRICT + if (dist > dmax) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD$1; + break top; + } + //#endif + hold >>>= op; + bits -= op; + //Tracevv((stderr, "inflate: distance %u\n", dist)); + op = _out - beg; /* max distance in output */ + if (dist > op) { /* see if copy from window */ + op = dist - op; /* distance back in window */ + if (op > whave) { + if (state.sane) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD$1; + break top; + } + + // (!) This block is disabled in zlib defaults, + // don't enable it for binary compatibility + //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR + // if (len <= op - whave) { + // do { + // output[_out++] = 0; + // } while (--len); + // continue top; + // } + // len -= op - whave; + // do { + // output[_out++] = 0; + // } while (--op > whave); + // if (op === 0) { + // from = _out - dist; + // do { + // output[_out++] = output[from++]; + // } while (--len); + // continue top; + // } + //#endif + } + from = 0; // window index + from_source = s_window; + if (wnext === 0) { /* very common case */ + from += wsize - op; + if (op < len) { /* some from window */ + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = _out - dist; /* rest from output */ + from_source = output; + } + } + else if (wnext < op) { /* wrap around window */ + from += wsize + wnext - op; + op -= wnext; + if (op < len) { /* some from end of window */ + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = 0; + if (wnext < len) { /* some from start of window */ + op = wnext; + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = _out - dist; /* rest from output */ + from_source = output; + } + } + } + else { /* contiguous in window */ + from += wnext - op; + if (op < len) { /* some from window */ + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = _out - dist; /* rest from output */ + from_source = output; + } + } + while (len > 2) { + output[_out++] = from_source[from++]; + output[_out++] = from_source[from++]; + output[_out++] = from_source[from++]; + len -= 3; + } + if (len) { + output[_out++] = from_source[from++]; + if (len > 1) { + output[_out++] = from_source[from++]; + } + } + } + else { + from = _out - dist; /* copy direct from output */ + do { /* minimum length is three */ + output[_out++] = output[from++]; + output[_out++] = output[from++]; + output[_out++] = output[from++]; + len -= 3; + } while (len > 2); + if (len) { + output[_out++] = output[from++]; + if (len > 1) { + output[_out++] = output[from++]; + } + } + } + } + else if ((op & 64) === 0) { /* 2nd level distance code */ + here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; + continue dodist; + } + else { + strm.msg = 'invalid distance code'; + state.mode = BAD$1; + break top; + } + + break; // need to emulate goto via "continue" + } + } + else if ((op & 64) === 0) { /* 2nd level length code */ + here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; + continue dolen; + } + else if (op & 32) { /* end-of-block */ + //Tracevv((stderr, "inflate: end of block\n")); + state.mode = TYPE$1; + break top; + } + else { + strm.msg = 'invalid literal/length code'; + state.mode = BAD$1; + break top; + } + + break; // need to emulate goto via "continue" + } + } while (_in < last && _out < end); + + /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ + len = bits >> 3; + _in -= len; + bits -= len << 3; + hold &= (1 << bits) - 1; + + /* update state and return */ + strm.next_in = _in; + strm.next_out = _out; + strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last)); + strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end)); + state.hold = hold; + state.bits = bits; + return; + }; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + const MAXBITS = 15; + const ENOUGH_LENS$1 = 852; + const ENOUGH_DISTS$1 = 592; + //const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); + + const CODES$1 = 0; + const LENS$1 = 1; + const DISTS$1 = 2; + + const lbase = new Uint16Array([ /* Length codes 257..285 base */ + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, + 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 + ]); + + const lext = new Uint8Array([ /* Length codes 257..285 extra */ + 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, + 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78 + ]); + + const dbase = new Uint16Array([ /* Distance codes 0..29 base */ + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, + 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, + 8193, 12289, 16385, 24577, 0, 0 + ]); + + const dext = new Uint8Array([ /* Distance codes 0..29 extra */ + 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, + 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, + 28, 28, 29, 29, 64, 64 + ]); + + const inflate_table = (type, lens, lens_index, codes, table, table_index, work, opts) => + { + const bits = opts.bits; + //here = opts.here; /* table entry for duplication */ + + let len = 0; /* a code's length in bits */ + let sym = 0; /* index of code symbols */ + let min = 0, max = 0; /* minimum and maximum code lengths */ + let root = 0; /* number of index bits for root table */ + let curr = 0; /* number of index bits for current table */ + let drop = 0; /* code bits to drop for sub-table */ + let left = 0; /* number of prefix codes available */ + let used = 0; /* code entries in table used */ + let huff = 0; /* Huffman code */ + let incr; /* for incrementing code, index */ + let fill; /* index for replicating entries */ + let low; /* low bits for current root entry */ + let mask; /* mask for low root bits */ + let next; /* next available space in table */ + let base = null; /* base value table to use */ + let base_index = 0; + // let shoextra; /* extra bits table to use */ + let end; /* use base and extra for symbol > end */ + const count = new Uint16Array(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */ + const offs = new Uint16Array(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */ + let extra = null; + let extra_index = 0; + + let here_bits, here_op, here_val; + + /* + Process a set of code lengths to create a canonical Huffman code. The + code lengths are lens[0..codes-1]. Each length corresponds to the + symbols 0..codes-1. The Huffman code is generated by first sorting the + symbols by length from short to long, and retaining the symbol order + for codes with equal lengths. Then the code starts with all zero bits + for the first code of the shortest length, and the codes are integer + increments for the same length, and zeros are appended as the length + increases. For the deflate format, these bits are stored backwards + from their more natural integer increment ordering, and so when the + decoding tables are built in the large loop below, the integer codes + are incremented backwards. + + This routine assumes, but does not check, that all of the entries in + lens[] are in the range 0..MAXBITS. The caller must assure this. + 1..MAXBITS is interpreted as that code length. zero means that that + symbol does not occur in this code. + + The codes are sorted by computing a count of codes for each length, + creating from that a table of starting indices for each length in the + sorted table, and then entering the symbols in order in the sorted + table. The sorted table is work[], with that space being provided by + the caller. + + The length counts are used for other purposes as well, i.e. finding + the minimum and maximum length codes, determining if there are any + codes at all, checking for a valid set of lengths, and looking ahead + at length counts to determine sub-table sizes when building the + decoding tables. + */ + + /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ + for (len = 0; len <= MAXBITS; len++) { + count[len] = 0; + } + for (sym = 0; sym < codes; sym++) { + count[lens[lens_index + sym]]++; + } + + /* bound code lengths, force root to be within code lengths */ + root = bits; + for (max = MAXBITS; max >= 1; max--) { + if (count[max] !== 0) { break; } + } + if (root > max) { + root = max; + } + if (max === 0) { /* no symbols to code at all */ + //table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */ + //table.bits[opts.table_index] = 1; //here.bits = (var char)1; + //table.val[opts.table_index++] = 0; //here.val = (var short)0; + table[table_index++] = (1 << 24) | (64 << 16) | 0; + + + //table.op[opts.table_index] = 64; + //table.bits[opts.table_index] = 1; + //table.val[opts.table_index++] = 0; + table[table_index++] = (1 << 24) | (64 << 16) | 0; + + opts.bits = 1; + return 0; /* no symbols, but wait for decoding to report error */ + } + for (min = 1; min < max; min++) { + if (count[min] !== 0) { break; } + } + if (root < min) { + root = min; + } + + /* check for an over-subscribed or incomplete set of lengths */ + left = 1; + for (len = 1; len <= MAXBITS; len++) { + left <<= 1; + left -= count[len]; + if (left < 0) { + return -1; + } /* over-subscribed */ + } + if (left > 0 && (type === CODES$1 || max !== 1)) { + return -1; /* incomplete set */ + } + + /* generate offsets into symbol table for each length for sorting */ + offs[1] = 0; + for (len = 1; len < MAXBITS; len++) { + offs[len + 1] = offs[len] + count[len]; + } + + /* sort symbols by length, by symbol order within each length */ + for (sym = 0; sym < codes; sym++) { + if (lens[lens_index + sym] !== 0) { + work[offs[lens[lens_index + sym]]++] = sym; + } + } + + /* + Create and fill in decoding tables. In this loop, the table being + filled is at next and has curr index bits. The code being used is huff + with length len. That code is converted to an index by dropping drop + bits off of the bottom. For codes where len is less than drop + curr, + those top drop + curr - len bits are incremented through all values to + fill the table with replicated entries. + + root is the number of index bits for the root table. When len exceeds + root, sub-tables are created pointed to by the root entry with an index + of the low root bits of huff. This is saved in low to check for when a + new sub-table should be started. drop is zero when the root table is + being filled, and drop is root when sub-tables are being filled. + + When a new sub-table is needed, it is necessary to look ahead in the + code lengths to determine what size sub-table is needed. The length + counts are used for this, and so count[] is decremented as codes are + entered in the tables. + + used keeps track of how many table entries have been allocated from the + provided *table space. It is checked for LENS and DIST tables against + the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in + the initial root table size constants. See the comments in inftrees.h + for more information. + + sym increments through all symbols, and the loop terminates when + all codes of length max, i.e. all codes, have been processed. This + routine permits incomplete codes, so another loop after this one fills + in the rest of the decoding tables with invalid code markers. + */ + + /* set up for code type */ + // poor man optimization - use if-else instead of switch, + // to avoid deopts in old v8 + if (type === CODES$1) { + base = extra = work; /* dummy value--not used */ + end = 19; + + } else if (type === LENS$1) { + base = lbase; + base_index -= 257; + extra = lext; + extra_index -= 257; + end = 256; + + } else { /* DISTS */ + base = dbase; + extra = dext; + end = -1; + } + + /* initialize opts for loop */ + huff = 0; /* starting code */ + sym = 0; /* starting code symbol */ + len = min; /* starting code length */ + next = table_index; /* current table to fill in */ + curr = root; /* current table index bits */ + drop = 0; /* current bits to drop from code for index */ + low = -1; /* trigger new sub-table when len > root */ + used = 1 << root; /* use root table entries */ + mask = used - 1; /* mask for comparing low */ + + /* check available table space */ + if ((type === LENS$1 && used > ENOUGH_LENS$1) || + (type === DISTS$1 && used > ENOUGH_DISTS$1)) { + return 1; + } + + /* process all codes and make table entries */ + for (;;) { + /* create table entry */ + here_bits = len - drop; + if (work[sym] < end) { + here_op = 0; + here_val = work[sym]; + } + else if (work[sym] > end) { + here_op = extra[extra_index + work[sym]]; + here_val = base[base_index + work[sym]]; + } + else { + here_op = 32 + 64; /* end of block */ + here_val = 0; + } + + /* replicate for those indices with low len bits equal to huff */ + incr = 1 << (len - drop); + fill = 1 << curr; + min = fill; /* save offset to next table */ + do { + fill -= incr; + table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0; + } while (fill !== 0); + + /* backwards increment the len-bit code huff */ + incr = 1 << (len - 1); + while (huff & incr) { + incr >>= 1; + } + if (incr !== 0) { + huff &= incr - 1; + huff += incr; + } else { + huff = 0; + } + + /* go to next symbol, update count, len */ + sym++; + if (--count[len] === 0) { + if (len === max) { break; } + len = lens[lens_index + work[sym]]; + } + + /* create new sub-table if needed */ + if (len > root && (huff & mask) !== low) { + /* if first time, transition to sub-tables */ + if (drop === 0) { + drop = root; + } + + /* increment past last table */ + next += min; /* here min is 1 << curr */ + + /* determine length of next table */ + curr = len - drop; + left = 1 << curr; + while (curr + drop < max) { + left -= count[curr + drop]; + if (left <= 0) { break; } + curr++; + left <<= 1; + } + + /* check for enough space */ + used += 1 << curr; + if ((type === LENS$1 && used > ENOUGH_LENS$1) || + (type === DISTS$1 && used > ENOUGH_DISTS$1)) { + return 1; + } + + /* point entry in root table to sub-table */ + low = huff & mask; + /*table.op[low] = curr; + table.bits[low] = root; + table.val[low] = next - opts.table_index;*/ + table[low] = (root << 24) | (curr << 16) | (next - table_index) |0; + } + } + + /* fill in remaining table entry if code is incomplete (guaranteed to have + at most one remaining entry, since if the code is incomplete, the + maximum code length that was allowed to get this far is one bit) */ + if (huff !== 0) { + //table.op[next + huff] = 64; /* invalid code marker */ + //table.bits[next + huff] = len - drop; + //table.val[next + huff] = 0; + table[next + huff] = ((len - drop) << 24) | (64 << 16) |0; + } + + /* set return parameters */ + //opts.table_index += used; + opts.bits = root; + return 0; + }; + + + var inftrees = inflate_table; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + + + + + + const CODES = 0; + const LENS = 1; + const DISTS = 2; + + /* Public constants ==========================================================*/ + /* ===========================================================================*/ + + const { + Z_FINISH: Z_FINISH$1, Z_BLOCK, Z_TREES, + Z_OK: Z_OK$1, Z_STREAM_END: Z_STREAM_END$1, Z_NEED_DICT: Z_NEED_DICT$1, Z_STREAM_ERROR: Z_STREAM_ERROR$1, Z_DATA_ERROR: Z_DATA_ERROR$1, Z_MEM_ERROR: Z_MEM_ERROR$1, Z_BUF_ERROR, + Z_DEFLATED + } = constants$2; + + + /* STATES ====================================================================*/ + /* ===========================================================================*/ + + + const HEAD = 1; /* i: waiting for magic header */ + const FLAGS = 2; /* i: waiting for method and flags (gzip) */ + const TIME = 3; /* i: waiting for modification time (gzip) */ + const OS = 4; /* i: waiting for extra flags and operating system (gzip) */ + const EXLEN = 5; /* i: waiting for extra length (gzip) */ + const EXTRA = 6; /* i: waiting for extra bytes (gzip) */ + const NAME = 7; /* i: waiting for end of file name (gzip) */ + const COMMENT = 8; /* i: waiting for end of comment (gzip) */ + const HCRC = 9; /* i: waiting for header crc (gzip) */ + const DICTID = 10; /* i: waiting for dictionary check value */ + const DICT = 11; /* waiting for inflateSetDictionary() call */ + const TYPE = 12; /* i: waiting for type bits, including last-flag bit */ + const TYPEDO = 13; /* i: same, but skip check to exit inflate on new block */ + const STORED = 14; /* i: waiting for stored size (length and complement) */ + const COPY_ = 15; /* i/o: same as COPY below, but only first time in */ + const COPY = 16; /* i/o: waiting for input or output to copy stored block */ + const TABLE = 17; /* i: waiting for dynamic block table lengths */ + const LENLENS = 18; /* i: waiting for code length code lengths */ + const CODELENS = 19; /* i: waiting for length/lit and distance code lengths */ + const LEN_ = 20; /* i: same as LEN below, but only first time in */ + const LEN = 21; /* i: waiting for length/lit/eob code */ + const LENEXT = 22; /* i: waiting for length extra bits */ + const DIST = 23; /* i: waiting for distance code */ + const DISTEXT = 24; /* i: waiting for distance extra bits */ + const MATCH = 25; /* o: waiting for output space to copy string */ + const LIT = 26; /* o: waiting for output space to write literal */ + const CHECK = 27; /* i: waiting for 32-bit check value */ + const LENGTH = 28; /* i: waiting for 32-bit length (gzip) */ + const DONE = 29; /* finished check, done -- remain here until reset */ + const BAD = 30; /* got a data error -- remain here until reset */ + const MEM = 31; /* got an inflate() memory error -- remain here until reset */ + const SYNC = 32; /* looking for synchronization bytes to restart inflate() */ + + /* ===========================================================================*/ + + + + const ENOUGH_LENS = 852; + const ENOUGH_DISTS = 592; + //const ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); + + const MAX_WBITS = 15; + /* 32K LZ77 window */ + const DEF_WBITS = MAX_WBITS; + + + const zswap32 = (q) => { + + return (((q >>> 24) & 0xff) + + ((q >>> 8) & 0xff00) + + ((q & 0xff00) << 8) + + ((q & 0xff) << 24)); + }; + + + function InflateState() { + this.mode = 0; /* current inflate mode */ + this.last = false; /* true if processing last block */ + this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ + this.havedict = false; /* true if dictionary provided */ + this.flags = 0; /* gzip header method and flags (0 if zlib) */ + this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */ + this.check = 0; /* protected copy of check value */ + this.total = 0; /* protected copy of output count */ + // TODO: may be {} + this.head = null; /* where to save gzip header information */ + + /* sliding window */ + this.wbits = 0; /* log base 2 of requested window size */ + this.wsize = 0; /* window size or zero if not using window */ + this.whave = 0; /* valid bytes in the window */ + this.wnext = 0; /* window write index */ + this.window = null; /* allocated sliding window, if needed */ + + /* bit accumulator */ + this.hold = 0; /* input bit accumulator */ + this.bits = 0; /* number of bits in "in" */ + + /* for string and stored block copying */ + this.length = 0; /* literal or length of data to copy */ + this.offset = 0; /* distance back to copy string from */ + + /* for table and code decoding */ + this.extra = 0; /* extra bits needed */ + + /* fixed and dynamic code tables */ + this.lencode = null; /* starting table for length/literal codes */ + this.distcode = null; /* starting table for distance codes */ + this.lenbits = 0; /* index bits for lencode */ + this.distbits = 0; /* index bits for distcode */ + + /* dynamic table building */ + this.ncode = 0; /* number of code length code lengths */ + this.nlen = 0; /* number of length code lengths */ + this.ndist = 0; /* number of distance code lengths */ + this.have = 0; /* number of code lengths in lens[] */ + this.next = null; /* next available space in codes[] */ + + this.lens = new Uint16Array(320); /* temporary storage for code lengths */ + this.work = new Uint16Array(288); /* work area for code table building */ + + /* + because we don't have pointers in js, we use lencode and distcode directly + as buffers so we don't need codes + */ + //this.codes = new Int32Array(ENOUGH); /* space for code tables */ + this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */ + this.distdyn = null; /* dynamic table for distance codes (JS specific) */ + this.sane = 0; /* if false, allow invalid distance too far */ + this.back = 0; /* bits back of last unprocessed length/lit */ + this.was = 0; /* initial length of match */ + } + + + const inflateResetKeep = (strm) => { + + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + const state = strm.state; + strm.total_in = strm.total_out = state.total = 0; + strm.msg = ''; /*Z_NULL*/ + if (state.wrap) { /* to support ill-conceived Java test suite */ + strm.adler = state.wrap & 1; + } + state.mode = HEAD; + state.last = 0; + state.havedict = 0; + state.dmax = 32768; + state.head = null/*Z_NULL*/; + state.hold = 0; + state.bits = 0; + //state.lencode = state.distcode = state.next = state.codes; + state.lencode = state.lendyn = new Int32Array(ENOUGH_LENS); + state.distcode = state.distdyn = new Int32Array(ENOUGH_DISTS); + + state.sane = 1; + state.back = -1; + //Tracev((stderr, "inflate: reset\n")); + return Z_OK$1; + }; + + + const inflateReset = (strm) => { + + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + const state = strm.state; + state.wsize = 0; + state.whave = 0; + state.wnext = 0; + return inflateResetKeep(strm); + + }; + + + const inflateReset2 = (strm, windowBits) => { + let wrap; + + /* get the state */ + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + const state = strm.state; + + /* extract wrap request from windowBits parameter */ + if (windowBits < 0) { + wrap = 0; + windowBits = -windowBits; + } + else { + wrap = (windowBits >> 4) + 1; + if (windowBits < 48) { + windowBits &= 15; + } + } + + /* set number of window bits, free window if different */ + if (windowBits && (windowBits < 8 || windowBits > 15)) { + return Z_STREAM_ERROR$1; + } + if (state.window !== null && state.wbits !== windowBits) { + state.window = null; + } + + /* update state and reset the rest of it */ + state.wrap = wrap; + state.wbits = windowBits; + return inflateReset(strm); + }; + + + const inflateInit2 = (strm, windowBits) => { + + if (!strm) { return Z_STREAM_ERROR$1; } + //strm.msg = Z_NULL; /* in case we return an error */ + + const state = new InflateState(); + + //if (state === Z_NULL) return Z_MEM_ERROR; + //Tracev((stderr, "inflate: allocated\n")); + strm.state = state; + state.window = null/*Z_NULL*/; + const ret = inflateReset2(strm, windowBits); + if (ret !== Z_OK$1) { + strm.state = null/*Z_NULL*/; + } + return ret; + }; + + + const inflateInit = (strm) => { + + return inflateInit2(strm, DEF_WBITS); + }; + + + /* + Return state with length and distance decoding tables and index sizes set to + fixed code decoding. Normally this returns fixed tables from inffixed.h. + If BUILDFIXED is defined, then instead this routine builds the tables the + first time it's called, and returns those tables the first time and + thereafter. This reduces the size of the code by about 2K bytes, in + exchange for a little execution time. However, BUILDFIXED should not be + used for threaded applications, since the rewriting of the tables and virgin + may not be thread-safe. + */ + let virgin = true; + + let lenfix, distfix; // We have no pointers in JS, so keep tables separate + + + const fixedtables = (state) => { + + /* build fixed huffman tables if first call (may not be thread safe) */ + if (virgin) { + lenfix = new Int32Array(512); + distfix = new Int32Array(32); + + /* literal/length table */ + let sym = 0; + while (sym < 144) { state.lens[sym++] = 8; } + while (sym < 256) { state.lens[sym++] = 9; } + while (sym < 280) { state.lens[sym++] = 7; } + while (sym < 288) { state.lens[sym++] = 8; } + + inftrees(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 }); + + /* distance table */ + sym = 0; + while (sym < 32) { state.lens[sym++] = 5; } + + inftrees(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 }); + + /* do this just once */ + virgin = false; + } + + state.lencode = lenfix; + state.lenbits = 9; + state.distcode = distfix; + state.distbits = 5; + }; + + + /* + Update the window with the last wsize (normally 32K) bytes written before + returning. If window does not exist yet, create it. This is only called + when a window is already in use, or when output has been written during this + inflate call, but the end of the deflate stream has not been reached yet. + It is also called to create a window for dictionary data when a dictionary + is loaded. + + Providing output buffers larger than 32K to inflate() should provide a speed + advantage, since only the last 32K of output is copied to the sliding window + upon return from inflate(), and since all distances after the first 32K of + output will fall in the output data, making match copies simpler and faster. + The advantage may be dependent on the size of the processor's data caches. + */ + const updatewindow = (strm, src, end, copy) => { + + let dist; + const state = strm.state; + + /* if it hasn't been done already, allocate space for the window */ + if (state.window === null) { + state.wsize = 1 << state.wbits; + state.wnext = 0; + state.whave = 0; + + state.window = new Uint8Array(state.wsize); + } + + /* copy state->wsize or less output bytes into the circular window */ + if (copy >= state.wsize) { + state.window.set(src.subarray(end - state.wsize, end), 0); + state.wnext = 0; + state.whave = state.wsize; + } + else { + dist = state.wsize - state.wnext; + if (dist > copy) { + dist = copy; + } + //zmemcpy(state->window + state->wnext, end - copy, dist); + state.window.set(src.subarray(end - copy, end - copy + dist), state.wnext); + copy -= dist; + if (copy) { + //zmemcpy(state->window, end - copy, copy); + state.window.set(src.subarray(end - copy, end), 0); + state.wnext = copy; + state.whave = state.wsize; + } + else { + state.wnext += dist; + if (state.wnext === state.wsize) { state.wnext = 0; } + if (state.whave < state.wsize) { state.whave += dist; } + } + } + return 0; + }; + + + const inflate$2 = (strm, flush) => { + + let state; + let input, output; // input/output buffers + let next; /* next input INDEX */ + let put; /* next output INDEX */ + let have, left; /* available input and output */ + let hold; /* bit buffer */ + let bits; /* bits in bit buffer */ + let _in, _out; /* save starting available input and output */ + let copy; /* number of stored or match bytes to copy */ + let from; /* where to copy match bytes from */ + let from_source; + let here = 0; /* current decoding table entry */ + let here_bits, here_op, here_val; // paked "here" denormalized (JS specific) + //let last; /* parent table entry */ + let last_bits, last_op, last_val; // paked "last" denormalized (JS specific) + let len; /* length to copy for repeats, bits to drop */ + let ret; /* return code */ + const hbuf = new Uint8Array(4); /* buffer for gzip header crc calculation */ + let opts; + + let n; // temporary variable for NEED_BITS + + const order = /* permutation of code lengths */ + new Uint8Array([ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]); + + + if (!strm || !strm.state || !strm.output || + (!strm.input && strm.avail_in !== 0)) { + return Z_STREAM_ERROR$1; + } + + state = strm.state; + if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */ + + + //--- LOAD() --- + put = strm.next_out; + output = strm.output; + left = strm.avail_out; + next = strm.next_in; + input = strm.input; + have = strm.avail_in; + hold = state.hold; + bits = state.bits; + //--- + + _in = have; + _out = left; + ret = Z_OK$1; + + inf_leave: // goto emulation + for (;;) { + switch (state.mode) { + case HEAD: + if (state.wrap === 0) { + state.mode = TYPEDO; + break; + } + //=== NEEDBITS(16); + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */ + state.check = 0/*crc32(0L, Z_NULL, 0)*/; + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = FLAGS; + break; + } + state.flags = 0; /* expect zlib header */ + if (state.head) { + state.head.done = false; + } + if (!(state.wrap & 1) || /* check if zlib header allowed */ + (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) { + strm.msg = 'incorrect header check'; + state.mode = BAD; + break; + } + if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) { + strm.msg = 'unknown compression method'; + state.mode = BAD; + break; + } + //--- DROPBITS(4) ---// + hold >>>= 4; + bits -= 4; + //---// + len = (hold & 0x0f)/*BITS(4)*/ + 8; + if (state.wbits === 0) { + state.wbits = len; + } + else if (len > state.wbits) { + strm.msg = 'invalid window size'; + state.mode = BAD; + break; + } + + // !!! pako patch. Force use `options.windowBits` if passed. + // Required to always use max window size by default. + state.dmax = 1 << state.wbits; + //state.dmax = 1 << len; + + //Tracev((stderr, "inflate: zlib header ok\n")); + strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/; + state.mode = hold & 0x200 ? DICTID : TYPE; + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + break; + case FLAGS: + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.flags = hold; + if ((state.flags & 0xff) !== Z_DEFLATED) { + strm.msg = 'unknown compression method'; + state.mode = BAD; + break; + } + if (state.flags & 0xe000) { + strm.msg = 'unknown header flags set'; + state.mode = BAD; + break; + } + if (state.head) { + state.head.text = ((hold >> 8) & 1); + } + if (state.flags & 0x0200) { + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = TIME; + /* falls through */ + case TIME: + //=== NEEDBITS(32); */ + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (state.head) { + state.head.time = hold; + } + if (state.flags & 0x0200) { + //=== CRC4(state.check, hold) + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + hbuf[2] = (hold >>> 16) & 0xff; + hbuf[3] = (hold >>> 24) & 0xff; + state.check = crc32_1(state.check, hbuf, 4, 0); + //=== + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = OS; + /* falls through */ + case OS: + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (state.head) { + state.head.xflags = (hold & 0xff); + state.head.os = (hold >> 8); + } + if (state.flags & 0x0200) { + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = EXLEN; + /* falls through */ + case EXLEN: + if (state.flags & 0x0400) { + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.length = hold; + if (state.head) { + state.head.extra_len = hold; + } + if (state.flags & 0x0200) { + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + } + else if (state.head) { + state.head.extra = null/*Z_NULL*/; + } + state.mode = EXTRA; + /* falls through */ + case EXTRA: + if (state.flags & 0x0400) { + copy = state.length; + if (copy > have) { copy = have; } + if (copy) { + if (state.head) { + len = state.head.extra_len - state.length; + if (!state.head.extra) { + // Use untyped array for more convenient processing later + state.head.extra = new Uint8Array(state.head.extra_len); + } + state.head.extra.set( + input.subarray( + next, + // extra field is limited to 65536 bytes + // - no need for additional size check + next + copy + ), + /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/ + len + ); + //zmemcpy(state.head.extra + len, next, + // len + copy > state.head.extra_max ? + // state.head.extra_max - len : copy); + } + if (state.flags & 0x0200) { + state.check = crc32_1(state.check, input, copy, next); + } + have -= copy; + next += copy; + state.length -= copy; + } + if (state.length) { break inf_leave; } + } + state.length = 0; + state.mode = NAME; + /* falls through */ + case NAME: + if (state.flags & 0x0800) { + if (have === 0) { break inf_leave; } + copy = 0; + do { + // TODO: 2 or 1 bytes? + len = input[next + copy++]; + /* use constant limit because in js we should not preallocate memory */ + if (state.head && len && + (state.length < 65536 /*state.head.name_max*/)) { + state.head.name += String.fromCharCode(len); + } + } while (len && copy < have); + + if (state.flags & 0x0200) { + state.check = crc32_1(state.check, input, copy, next); + } + have -= copy; + next += copy; + if (len) { break inf_leave; } + } + else if (state.head) { + state.head.name = null; + } + state.length = 0; + state.mode = COMMENT; + /* falls through */ + case COMMENT: + if (state.flags & 0x1000) { + if (have === 0) { break inf_leave; } + copy = 0; + do { + len = input[next + copy++]; + /* use constant limit because in js we should not preallocate memory */ + if (state.head && len && + (state.length < 65536 /*state.head.comm_max*/)) { + state.head.comment += String.fromCharCode(len); + } + } while (len && copy < have); + if (state.flags & 0x0200) { + state.check = crc32_1(state.check, input, copy, next); + } + have -= copy; + next += copy; + if (len) { break inf_leave; } + } + else if (state.head) { + state.head.comment = null; + } + state.mode = HCRC; + /* falls through */ + case HCRC: + if (state.flags & 0x0200) { + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (hold !== (state.check & 0xffff)) { + strm.msg = 'header crc mismatch'; + state.mode = BAD; + break; + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + } + if (state.head) { + state.head.hcrc = ((state.flags >> 9) & 1); + state.head.done = true; + } + strm.adler = state.check = 0; + state.mode = TYPE; + break; + case DICTID: + //=== NEEDBITS(32); */ + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + strm.adler = state.check = zswap32(hold); + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = DICT; + /* falls through */ + case DICT: + if (state.havedict === 0) { + //--- RESTORE() --- + strm.next_out = put; + strm.avail_out = left; + strm.next_in = next; + strm.avail_in = have; + state.hold = hold; + state.bits = bits; + //--- + return Z_NEED_DICT$1; + } + strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/; + state.mode = TYPE; + /* falls through */ + case TYPE: + if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; } + /* falls through */ + case TYPEDO: + if (state.last) { + //--- BYTEBITS() ---// + hold >>>= bits & 7; + bits -= bits & 7; + //---// + state.mode = CHECK; + break; + } + //=== NEEDBITS(3); */ + while (bits < 3) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.last = (hold & 0x01)/*BITS(1)*/; + //--- DROPBITS(1) ---// + hold >>>= 1; + bits -= 1; + //---// + + switch ((hold & 0x03)/*BITS(2)*/) { + case 0: /* stored block */ + //Tracev((stderr, "inflate: stored block%s\n", + // state.last ? " (last)" : "")); + state.mode = STORED; + break; + case 1: /* fixed block */ + fixedtables(state); + //Tracev((stderr, "inflate: fixed codes block%s\n", + // state.last ? " (last)" : "")); + state.mode = LEN_; /* decode codes */ + if (flush === Z_TREES) { + //--- DROPBITS(2) ---// + hold >>>= 2; + bits -= 2; + //---// + break inf_leave; + } + break; + case 2: /* dynamic block */ + //Tracev((stderr, "inflate: dynamic codes block%s\n", + // state.last ? " (last)" : "")); + state.mode = TABLE; + break; + case 3: + strm.msg = 'invalid block type'; + state.mode = BAD; + } + //--- DROPBITS(2) ---// + hold >>>= 2; + bits -= 2; + //---// + break; + case STORED: + //--- BYTEBITS() ---// /* go to byte boundary */ + hold >>>= bits & 7; + bits -= bits & 7; + //---// + //=== NEEDBITS(32); */ + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) { + strm.msg = 'invalid stored block lengths'; + state.mode = BAD; + break; + } + state.length = hold & 0xffff; + //Tracev((stderr, "inflate: stored length %u\n", + // state.length)); + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = COPY_; + if (flush === Z_TREES) { break inf_leave; } + /* falls through */ + case COPY_: + state.mode = COPY; + /* falls through */ + case COPY: + copy = state.length; + if (copy) { + if (copy > have) { copy = have; } + if (copy > left) { copy = left; } + if (copy === 0) { break inf_leave; } + //--- zmemcpy(put, next, copy); --- + output.set(input.subarray(next, next + copy), put); + //---// + have -= copy; + next += copy; + left -= copy; + put += copy; + state.length -= copy; + break; + } + //Tracev((stderr, "inflate: stored end\n")); + state.mode = TYPE; + break; + case TABLE: + //=== NEEDBITS(14); */ + while (bits < 14) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257; + //--- DROPBITS(5) ---// + hold >>>= 5; + bits -= 5; + //---// + state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1; + //--- DROPBITS(5) ---// + hold >>>= 5; + bits -= 5; + //---// + state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4; + //--- DROPBITS(4) ---// + hold >>>= 4; + bits -= 4; + //---// + //#ifndef PKZIP_BUG_WORKAROUND + if (state.nlen > 286 || state.ndist > 30) { + strm.msg = 'too many length or distance symbols'; + state.mode = BAD; + break; + } + //#endif + //Tracev((stderr, "inflate: table sizes ok\n")); + state.have = 0; + state.mode = LENLENS; + /* falls through */ + case LENLENS: + while (state.have < state.ncode) { + //=== NEEDBITS(3); + while (bits < 3) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.lens[order[state.have++]] = (hold & 0x07);//BITS(3); + //--- DROPBITS(3) ---// + hold >>>= 3; + bits -= 3; + //---// + } + while (state.have < 19) { + state.lens[order[state.have++]] = 0; + } + // We have separate tables & no pointers. 2 commented lines below not needed. + //state.next = state.codes; + //state.lencode = state.next; + // Switch to use dynamic table + state.lencode = state.lendyn; + state.lenbits = 7; + + opts = { bits: state.lenbits }; + ret = inftrees(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts); + state.lenbits = opts.bits; + + if (ret) { + strm.msg = 'invalid code lengths set'; + state.mode = BAD; + break; + } + //Tracev((stderr, "inflate: code lengths ok\n")); + state.have = 0; + state.mode = CODELENS; + /* falls through */ + case CODELENS: + while (state.have < state.nlen + state.ndist) { + for (;;) { + here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/ + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + if (here_val < 16) { + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + state.lens[state.have++] = here_val; + } + else { + if (here_val === 16) { + //=== NEEDBITS(here.bits + 2); + n = here_bits + 2; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + if (state.have === 0) { + strm.msg = 'invalid bit length repeat'; + state.mode = BAD; + break; + } + len = state.lens[state.have - 1]; + copy = 3 + (hold & 0x03);//BITS(2); + //--- DROPBITS(2) ---// + hold >>>= 2; + bits -= 2; + //---// + } + else if (here_val === 17) { + //=== NEEDBITS(here.bits + 3); + n = here_bits + 3; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + len = 0; + copy = 3 + (hold & 0x07);//BITS(3); + //--- DROPBITS(3) ---// + hold >>>= 3; + bits -= 3; + //---// + } + else { + //=== NEEDBITS(here.bits + 7); + n = here_bits + 7; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + len = 0; + copy = 11 + (hold & 0x7f);//BITS(7); + //--- DROPBITS(7) ---// + hold >>>= 7; + bits -= 7; + //---// + } + if (state.have + copy > state.nlen + state.ndist) { + strm.msg = 'invalid bit length repeat'; + state.mode = BAD; + break; + } + while (copy--) { + state.lens[state.have++] = len; + } + } + } + + /* handle error breaks in while */ + if (state.mode === BAD) { break; } + + /* check for end-of-block code (better have one) */ + if (state.lens[256] === 0) { + strm.msg = 'invalid code -- missing end-of-block'; + state.mode = BAD; + break; + } + + /* build code tables -- note: do not change the lenbits or distbits + values here (9 and 6) without reading the comments in inftrees.h + concerning the ENOUGH constants, which depend on those values */ + state.lenbits = 9; + + opts = { bits: state.lenbits }; + ret = inftrees(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts); + // We have separate tables & no pointers. 2 commented lines below not needed. + // state.next_index = opts.table_index; + state.lenbits = opts.bits; + // state.lencode = state.next; + + if (ret) { + strm.msg = 'invalid literal/lengths set'; + state.mode = BAD; + break; + } + + state.distbits = 6; + //state.distcode.copy(state.codes); + // Switch to use dynamic table + state.distcode = state.distdyn; + opts = { bits: state.distbits }; + ret = inftrees(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts); + // We have separate tables & no pointers. 2 commented lines below not needed. + // state.next_index = opts.table_index; + state.distbits = opts.bits; + // state.distcode = state.next; + + if (ret) { + strm.msg = 'invalid distances set'; + state.mode = BAD; + break; + } + //Tracev((stderr, 'inflate: codes ok\n')); + state.mode = LEN_; + if (flush === Z_TREES) { break inf_leave; } + /* falls through */ + case LEN_: + state.mode = LEN; + /* falls through */ + case LEN: + if (have >= 6 && left >= 258) { + //--- RESTORE() --- + strm.next_out = put; + strm.avail_out = left; + strm.next_in = next; + strm.avail_in = have; + state.hold = hold; + state.bits = bits; + //--- + inffast(strm, _out); + //--- LOAD() --- + put = strm.next_out; + output = strm.output; + left = strm.avail_out; + next = strm.next_in; + input = strm.input; + have = strm.avail_in; + hold = state.hold; + bits = state.bits; + //--- + + if (state.mode === TYPE) { + state.back = -1; + } + break; + } + state.back = 0; + for (;;) { + here = state.lencode[hold & ((1 << state.lenbits) - 1)]; /*BITS(state.lenbits)*/ + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if (here_bits <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + if (here_op && (here_op & 0xf0) === 0) { + last_bits = here_bits; + last_op = here_op; + last_val = here_val; + for (;;) { + here = state.lencode[last_val + + ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)]; + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((last_bits + here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + //--- DROPBITS(last.bits) ---// + hold >>>= last_bits; + bits -= last_bits; + //---// + state.back += last_bits; + } + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + state.back += here_bits; + state.length = here_val; + if (here_op === 0) { + //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? + // "inflate: literal '%c'\n" : + // "inflate: literal 0x%02x\n", here.val)); + state.mode = LIT; + break; + } + if (here_op & 32) { + //Tracevv((stderr, "inflate: end of block\n")); + state.back = -1; + state.mode = TYPE; + break; + } + if (here_op & 64) { + strm.msg = 'invalid literal/length code'; + state.mode = BAD; + break; + } + state.extra = here_op & 15; + state.mode = LENEXT; + /* falls through */ + case LENEXT: + if (state.extra) { + //=== NEEDBITS(state.extra); + n = state.extra; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/; + //--- DROPBITS(state.extra) ---// + hold >>>= state.extra; + bits -= state.extra; + //---// + state.back += state.extra; + } + //Tracevv((stderr, "inflate: length %u\n", state.length)); + state.was = state.length; + state.mode = DIST; + /* falls through */ + case DIST: + for (;;) { + here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/ + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + if ((here_op & 0xf0) === 0) { + last_bits = here_bits; + last_op = here_op; + last_val = here_val; + for (;;) { + here = state.distcode[last_val + + ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)]; + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((last_bits + here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + //--- DROPBITS(last.bits) ---// + hold >>>= last_bits; + bits -= last_bits; + //---// + state.back += last_bits; + } + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + state.back += here_bits; + if (here_op & 64) { + strm.msg = 'invalid distance code'; + state.mode = BAD; + break; + } + state.offset = here_val; + state.extra = (here_op) & 15; + state.mode = DISTEXT; + /* falls through */ + case DISTEXT: + if (state.extra) { + //=== NEEDBITS(state.extra); + n = state.extra; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/; + //--- DROPBITS(state.extra) ---// + hold >>>= state.extra; + bits -= state.extra; + //---// + state.back += state.extra; + } + //#ifdef INFLATE_STRICT + if (state.offset > state.dmax) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD; + break; + } + //#endif + //Tracevv((stderr, "inflate: distance %u\n", state.offset)); + state.mode = MATCH; + /* falls through */ + case MATCH: + if (left === 0) { break inf_leave; } + copy = _out - left; + if (state.offset > copy) { /* copy from window */ + copy = state.offset - copy; + if (copy > state.whave) { + if (state.sane) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD; + break; + } + // (!) This block is disabled in zlib defaults, + // don't enable it for binary compatibility + //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR + // Trace((stderr, "inflate.c too far\n")); + // copy -= state.whave; + // if (copy > state.length) { copy = state.length; } + // if (copy > left) { copy = left; } + // left -= copy; + // state.length -= copy; + // do { + // output[put++] = 0; + // } while (--copy); + // if (state.length === 0) { state.mode = LEN; } + // break; + //#endif + } + if (copy > state.wnext) { + copy -= state.wnext; + from = state.wsize - copy; + } + else { + from = state.wnext - copy; + } + if (copy > state.length) { copy = state.length; } + from_source = state.window; + } + else { /* copy from output */ + from_source = output; + from = put - state.offset; + copy = state.length; + } + if (copy > left) { copy = left; } + left -= copy; + state.length -= copy; + do { + output[put++] = from_source[from++]; + } while (--copy); + if (state.length === 0) { state.mode = LEN; } + break; + case LIT: + if (left === 0) { break inf_leave; } + output[put++] = state.length; + left--; + state.mode = LEN; + break; + case CHECK: + if (state.wrap) { + //=== NEEDBITS(32); + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + // Use '|' instead of '+' to make sure that result is signed + hold |= input[next++] << bits; + bits += 8; + } + //===// + _out -= left; + strm.total_out += _out; + state.total += _out; + if (_out) { + strm.adler = state.check = + /*UPDATE(state.check, put - _out, _out);*/ + (state.flags ? crc32_1(state.check, output, _out, put - _out) : adler32_1(state.check, output, _out, put - _out)); + + } + _out = left; + // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too + if ((state.flags ? hold : zswap32(hold)) !== state.check) { + strm.msg = 'incorrect data check'; + state.mode = BAD; + break; + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + //Tracev((stderr, "inflate: check matches trailer\n")); + } + state.mode = LENGTH; + /* falls through */ + case LENGTH: + if (state.wrap && state.flags) { + //=== NEEDBITS(32); + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (hold !== (state.total & 0xffffffff)) { + strm.msg = 'incorrect length check'; + state.mode = BAD; + break; + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + //Tracev((stderr, "inflate: length matches trailer\n")); + } + state.mode = DONE; + /* falls through */ + case DONE: + ret = Z_STREAM_END$1; + break inf_leave; + case BAD: + ret = Z_DATA_ERROR$1; + break inf_leave; + case MEM: + return Z_MEM_ERROR$1; + case SYNC: + /* falls through */ + default: + return Z_STREAM_ERROR$1; + } + } + + // inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave" + + /* + Return from inflate(), updating the total counts and the check value. + If there was no progress during the inflate() call, return a buffer + error. Call updatewindow() to create and/or update the window state. + Note: a memory error from inflate() is non-recoverable. + */ + + //--- RESTORE() --- + strm.next_out = put; + strm.avail_out = left; + strm.next_in = next; + strm.avail_in = have; + state.hold = hold; + state.bits = bits; + //--- + + if (state.wsize || (_out !== strm.avail_out && state.mode < BAD && + (state.mode < CHECK || flush !== Z_FINISH$1))) { + if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) ; + } + _in -= strm.avail_in; + _out -= strm.avail_out; + strm.total_in += _in; + strm.total_out += _out; + state.total += _out; + if (state.wrap && _out) { + strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/ + (state.flags ? crc32_1(state.check, output, _out, strm.next_out - _out) : adler32_1(state.check, output, _out, strm.next_out - _out)); + } + strm.data_type = state.bits + (state.last ? 64 : 0) + + (state.mode === TYPE ? 128 : 0) + + (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0); + if (((_in === 0 && _out === 0) || flush === Z_FINISH$1) && ret === Z_OK$1) { + ret = Z_BUF_ERROR; + } + return ret; + }; + + + const inflateEnd = (strm) => { + + if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) { + return Z_STREAM_ERROR$1; + } + + let state = strm.state; + if (state.window) { + state.window = null; + } + strm.state = null; + return Z_OK$1; + }; + + + const inflateGetHeader = (strm, head) => { + + /* check state */ + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + const state = strm.state; + if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR$1; } + + /* save header structure */ + state.head = head; + head.done = false; + return Z_OK$1; + }; + + + const inflateSetDictionary = (strm, dictionary) => { + const dictLength = dictionary.length; + + let state; + let dictid; + let ret; + + /* check state */ + if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR$1; } + state = strm.state; + + if (state.wrap !== 0 && state.mode !== DICT) { + return Z_STREAM_ERROR$1; + } + + /* check for correct dictionary identifier */ + if (state.mode === DICT) { + dictid = 1; /* adler32(0, null, 0)*/ + /* dictid = adler32(dictid, dictionary, dictLength); */ + dictid = adler32_1(dictid, dictionary, dictLength, 0); + if (dictid !== state.check) { + return Z_DATA_ERROR$1; + } + } + /* copy dictionary to window using updatewindow(), which will amend the + existing dictionary if appropriate */ + ret = updatewindow(strm, dictionary, dictLength, dictLength); + if (ret) { + state.mode = MEM; + return Z_MEM_ERROR$1; + } + state.havedict = 1; + // Tracev((stderr, "inflate: dictionary set\n")); + return Z_OK$1; + }; + + + var inflateReset_1 = inflateReset; + var inflateReset2_1 = inflateReset2; + var inflateResetKeep_1 = inflateResetKeep; + var inflateInit_1 = inflateInit; + var inflateInit2_1 = inflateInit2; + var inflate_2$1 = inflate$2; + var inflateEnd_1 = inflateEnd; + var inflateGetHeader_1 = inflateGetHeader; + var inflateSetDictionary_1 = inflateSetDictionary; + var inflateInfo = 'pako inflate (from Nodeca project)'; + + /* Not implemented + module.exports.inflateCopy = inflateCopy; + module.exports.inflateGetDictionary = inflateGetDictionary; + module.exports.inflateMark = inflateMark; + module.exports.inflatePrime = inflatePrime; + module.exports.inflateSync = inflateSync; + module.exports.inflateSyncPoint = inflateSyncPoint; + module.exports.inflateUndermine = inflateUndermine; + */ + + var inflate_1$2 = { + inflateReset: inflateReset_1, + inflateReset2: inflateReset2_1, + inflateResetKeep: inflateResetKeep_1, + inflateInit: inflateInit_1, + inflateInit2: inflateInit2_1, + inflate: inflate_2$1, + inflateEnd: inflateEnd_1, + inflateGetHeader: inflateGetHeader_1, + inflateSetDictionary: inflateSetDictionary_1, + inflateInfo: inflateInfo + }; + + // (C) 1995-2013 Jean-loup Gailly and Mark Adler + // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin + // + // This software is provided 'as-is', without any express or implied + // warranty. In no event will the authors be held liable for any damages + // arising from the use of this software. + // + // Permission is granted to anyone to use this software for any purpose, + // including commercial applications, and to alter it and redistribute it + // freely, subject to the following restrictions: + // + // 1. The origin of this software must not be misrepresented; you must not + // claim that you wrote the original software. If you use this software + // in a product, an acknowledgment in the product documentation would be + // appreciated but is not required. + // 2. Altered source versions must be plainly marked as such, and must not be + // misrepresented as being the original software. + // 3. This notice may not be removed or altered from any source distribution. + + function GZheader() { + /* true if compressed data believed to be text */ + this.text = 0; + /* modification time */ + this.time = 0; + /* extra flags (not used when writing a gzip file) */ + this.xflags = 0; + /* operating system */ + this.os = 0; + /* pointer to extra field or Z_NULL if none */ + this.extra = null; + /* extra field length (valid if extra != Z_NULL) */ + this.extra_len = 0; // Actually, we don't need it in JS, + // but leave for few code modifications + + // + // Setup limits is not necessary because in js we should not preallocate memory + // for inflate use constant limit in 65536 bytes + // + + /* space at extra (only when reading header) */ + // this.extra_max = 0; + /* pointer to zero-terminated file name or Z_NULL */ + this.name = ''; + /* space at name (only when reading header) */ + // this.name_max = 0; + /* pointer to zero-terminated comment or Z_NULL */ + this.comment = ''; + /* space at comment (only when reading header) */ + // this.comm_max = 0; + /* true if there was or will be a header crc */ + this.hcrc = 0; + /* true when done reading gzip header (not used when writing a gzip file) */ + this.done = false; + } + + var gzheader = GZheader; + + const toString = Object.prototype.toString; + + /* Public constants ==========================================================*/ + /* ===========================================================================*/ + + const { + Z_NO_FLUSH, Z_FINISH, + Z_OK, Z_STREAM_END, Z_NEED_DICT, Z_STREAM_ERROR, Z_DATA_ERROR, Z_MEM_ERROR + } = constants$2; + + /* ===========================================================================*/ + + + /** + * class Inflate + * + * Generic JS-style wrapper for zlib calls. If you don't need + * streaming behaviour - use more simple functions: [[inflate]] + * and [[inflateRaw]]. + **/ + + /* internal + * inflate.chunks -> Array + * + * Chunks of output data, if [[Inflate#onData]] not overridden. + **/ + + /** + * Inflate.result -> Uint8Array|String + * + * Uncompressed result, generated by default [[Inflate#onData]] + * and [[Inflate#onEnd]] handlers. Filled after you push last chunk + * (call [[Inflate#push]] with `Z_FINISH` / `true` param). + **/ + + /** + * Inflate.err -> Number + * + * Error code after inflate finished. 0 (Z_OK) on success. + * Should be checked if broken data possible. + **/ + + /** + * Inflate.msg -> String + * + * Error message, if [[Inflate.err]] != 0 + **/ + + + /** + * new Inflate(options) + * - options (Object): zlib inflate options. + * + * Creates new inflator instance with specified params. Throws exception + * on bad params. Supported options: + * + * - `windowBits` + * - `dictionary` + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information on these. + * + * Additional options, for internal needs: + * + * - `chunkSize` - size of generated data chunks (16K by default) + * - `raw` (Boolean) - do raw inflate + * - `to` (String) - if equal to 'string', then result will be converted + * from utf8 to utf16 (javascript) string. When string output requested, + * chunk length can differ from `chunkSize`, depending on content. + * + * By default, when no options set, autodetect deflate/gzip data format via + * wrapper header. + * + * ##### Example: + * + * ```javascript + * const pako = require('pako') + * const chunk1 = new Uint8Array([1,2,3,4,5,6,7,8,9]) + * const chunk2 = new Uint8Array([10,11,12,13,14,15,16,17,18,19]); + * + * const inflate = new pako.Inflate({ level: 3}); + * + * inflate.push(chunk1, false); + * inflate.push(chunk2, true); // true -> last chunk + * + * if (inflate.err) { throw new Error(inflate.err); } + * + * console.log(inflate.result); + * ``` + **/ + function Inflate$1(options) { + this.options = common.assign({ + chunkSize: 1024 * 64, + windowBits: 15, + to: '' + }, options || {}); + + const opt = this.options; + + // Force window size for `raw` data, if not set directly, + // because we have no header for autodetect. + if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) { + opt.windowBits = -opt.windowBits; + if (opt.windowBits === 0) { opt.windowBits = -15; } + } + + // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate + if ((opt.windowBits >= 0) && (opt.windowBits < 16) && + !(options && options.windowBits)) { + opt.windowBits += 32; + } + + // Gzip header has no info about windows size, we can do autodetect only + // for deflate. So, if window size not set, force it to max when gzip possible + if ((opt.windowBits > 15) && (opt.windowBits < 48)) { + // bit 3 (16) -> gzipped data + // bit 4 (32) -> autodetect gzip/deflate + if ((opt.windowBits & 15) === 0) { + opt.windowBits |= 15; + } + } + + this.err = 0; // error code, if happens (0 = Z_OK) + this.msg = ''; // error message + this.ended = false; // used to avoid multiple onEnd() calls + this.chunks = []; // chunks of compressed data + + this.strm = new zstream(); + this.strm.avail_out = 0; + + let status = inflate_1$2.inflateInit2( + this.strm, + opt.windowBits + ); + + if (status !== Z_OK) { + throw new Error(messages[status]); + } + + this.header = new gzheader(); + + inflate_1$2.inflateGetHeader(this.strm, this.header); + + // Setup dictionary + if (opt.dictionary) { + // Convert data if needed + if (typeof opt.dictionary === 'string') { + opt.dictionary = strings.string2buf(opt.dictionary); + } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') { + opt.dictionary = new Uint8Array(opt.dictionary); + } + if (opt.raw) { //In raw mode we need to set the dictionary early + status = inflate_1$2.inflateSetDictionary(this.strm, opt.dictionary); + if (status !== Z_OK) { + throw new Error(messages[status]); + } + } + } + } + + /** + * Inflate#push(data[, flush_mode]) -> Boolean + * - data (Uint8Array|ArrayBuffer): input data + * - flush_mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE + * flush modes. See constants. Skipped or `false` means Z_NO_FLUSH, + * `true` means Z_FINISH. + * + * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + * new output chunks. Returns `true` on success. If end of stream detected, + * [[Inflate#onEnd]] will be called. + * + * `flush_mode` is not needed for normal operation, because end of stream + * detected automatically. You may try to use it for advanced things, but + * this functionality was not tested. + * + * On fail call [[Inflate#onEnd]] with error code and return false. + * + * ##### Example + * + * ```javascript + * push(chunk, false); // push one of data chunks + * ... + * push(chunk, true); // push last chunk + * ``` + **/ + Inflate$1.prototype.push = function (data, flush_mode) { + const strm = this.strm; + const chunkSize = this.options.chunkSize; + const dictionary = this.options.dictionary; + let status, _flush_mode, last_avail_out; + + if (this.ended) return false; + + if (flush_mode === ~~flush_mode) _flush_mode = flush_mode; + else _flush_mode = flush_mode === true ? Z_FINISH : Z_NO_FLUSH; + + // Convert data if needed + if (toString.call(data) === '[object ArrayBuffer]') { + strm.input = new Uint8Array(data); + } else { + strm.input = data; + } + + strm.next_in = 0; + strm.avail_in = strm.input.length; + + for (;;) { + if (strm.avail_out === 0) { + strm.output = new Uint8Array(chunkSize); + strm.next_out = 0; + strm.avail_out = chunkSize; + } + + status = inflate_1$2.inflate(strm, _flush_mode); + + if (status === Z_NEED_DICT && dictionary) { + status = inflate_1$2.inflateSetDictionary(strm, dictionary); + + if (status === Z_OK) { + status = inflate_1$2.inflate(strm, _flush_mode); + } else if (status === Z_DATA_ERROR) { + // Replace code with more verbose + status = Z_NEED_DICT; + } + } + + // Skip snyc markers if more data follows and not raw mode + while (strm.avail_in > 0 && + status === Z_STREAM_END && + strm.state.wrap > 0 && + data[strm.next_in] !== 0) + { + inflate_1$2.inflateReset(strm); + status = inflate_1$2.inflate(strm, _flush_mode); + } + + switch (status) { + case Z_STREAM_ERROR: + case Z_DATA_ERROR: + case Z_NEED_DICT: + case Z_MEM_ERROR: + this.onEnd(status); + this.ended = true; + return false; + } + + // Remember real `avail_out` value, because we may patch out buffer content + // to align utf8 strings boundaries. + last_avail_out = strm.avail_out; + + if (strm.next_out) { + if (strm.avail_out === 0 || status === Z_STREAM_END) { + + if (this.options.to === 'string') { + + let next_out_utf8 = strings.utf8border(strm.output, strm.next_out); + + let tail = strm.next_out - next_out_utf8; + let utf8str = strings.buf2string(strm.output, next_out_utf8); + + // move tail & realign counters + strm.next_out = tail; + strm.avail_out = chunkSize - tail; + if (tail) strm.output.set(strm.output.subarray(next_out_utf8, next_out_utf8 + tail), 0); + + this.onData(utf8str); + + } else { + this.onData(strm.output.length === strm.next_out ? strm.output : strm.output.subarray(0, strm.next_out)); + } + } + } + + // Must repeat iteration if out buffer is full + if (status === Z_OK && last_avail_out === 0) continue; + + // Finalize if end of stream reached. + if (status === Z_STREAM_END) { + status = inflate_1$2.inflateEnd(this.strm); + this.onEnd(status); + this.ended = true; + return true; + } + + if (strm.avail_in === 0) break; + } + + return true; + }; + + + /** + * Inflate#onData(chunk) -> Void + * - chunk (Uint8Array|String): output data. When string output requested, + * each chunk will be string. + * + * By default, stores data blocks in `chunks[]` property and glue + * those in `onEnd`. Override this handler, if you need another behaviour. + **/ + Inflate$1.prototype.onData = function (chunk) { + this.chunks.push(chunk); + }; + + + /** + * Inflate#onEnd(status) -> Void + * - status (Number): inflate status. 0 (Z_OK) on success, + * other if not. + * + * Called either after you tell inflate that the input stream is + * complete (Z_FINISH). By default - join collected chunks, + * free memory and fill `results` / `err` properties. + **/ + Inflate$1.prototype.onEnd = function (status) { + // On success - join + if (status === Z_OK) { + if (this.options.to === 'string') { + this.result = this.chunks.join(''); + } else { + this.result = common.flattenChunks(this.chunks); + } + } + this.chunks = []; + this.err = status; + this.msg = this.strm.msg; + }; + + + /** + * inflate(data[, options]) -> Uint8Array|String + * - data (Uint8Array): input data to decompress. + * - options (Object): zlib inflate options. + * + * Decompress `data` with inflate/ungzip and `options`. Autodetect + * format via wrapper header by default. That's why we don't provide + * separate `ungzip` method. + * + * Supported options are: + * + * - windowBits + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information. + * + * Sugar (options): + * + * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify + * negative windowBits implicitly. + * - `to` (String) - if equal to 'string', then result will be converted + * from utf8 to utf16 (javascript) string. When string output requested, + * chunk length can differ from `chunkSize`, depending on content. + * + * + * ##### Example: + * + * ```javascript + * const pako = require('pako'); + * const input = pako.deflate(new Uint8Array([1,2,3,4,5,6,7,8,9])); + * let output; + * + * try { + * output = pako.inflate(input); + * } catch (err) { + * console.log(err); + * } + * ``` + **/ + function inflate$1(input, options) { + const inflator = new Inflate$1(options); + + inflator.push(input); + + // That will never happens, if you don't cheat with options :) + if (inflator.err) throw inflator.msg || messages[inflator.err]; + + return inflator.result; + } + + + /** + * inflateRaw(data[, options]) -> Uint8Array|String + * - data (Uint8Array): input data to decompress. + * - options (Object): zlib inflate options. + * + * The same as [[inflate]], but creates raw data, without wrapper + * (header and adler32 crc). + **/ + function inflateRaw$1(input, options) { + options = options || {}; + options.raw = true; + return inflate$1(input, options); + } + + + /** + * ungzip(data[, options]) -> Uint8Array|String + * - data (Uint8Array): input data to decompress. + * - options (Object): zlib inflate options. + * + * Just shortcut to [[inflate]], because it autodetects format + * by header.content. Done for convenience. + **/ + + + var Inflate_1$1 = Inflate$1; + var inflate_2 = inflate$1; + var inflateRaw_1$1 = inflateRaw$1; + var ungzip$1 = inflate$1; + var constants = constants$2; + + var inflate_1$1 = { + Inflate: Inflate_1$1, + inflate: inflate_2, + inflateRaw: inflateRaw_1$1, + ungzip: ungzip$1, + constants: constants + }; + + const { Deflate, deflate, deflateRaw, gzip } = deflate_1$1; + + const { Inflate, inflate, inflateRaw, ungzip } = inflate_1$1; + + + + var Deflate_1 = Deflate; + var deflate_1 = deflate; + var deflateRaw_1 = deflateRaw; + var gzip_1 = gzip; + var Inflate_1 = Inflate; + var inflate_1 = inflate; + var inflateRaw_1 = inflateRaw; + var ungzip_1 = ungzip; + var constants_1 = constants$2; + + var pako = { + Deflate: Deflate_1, + deflate: deflate_1, + deflateRaw: deflateRaw_1, + gzip: gzip_1, + Inflate: Inflate_1, + inflate: inflate_1, + inflateRaw: inflateRaw_1, + ungzip: ungzip_1, + constants: constants_1 + }; + + exports.Deflate = Deflate_1; + exports.Inflate = Inflate_1; + exports.constants = constants_1; + exports['default'] = pako; + exports.deflate = deflate_1; + exports.deflateRaw = deflateRaw_1; + exports.gzip = gzip_1; + exports.inflate = inflate_1; + exports.inflateRaw = inflateRaw_1; + exports.ungzip = ungzip_1; + + Object.defineProperty(exports, '__esModule', { value: true }); + +})));